Motorcycle Drivers’ Parking Lot Choice Behaviors in Developing Countries: Analysis to Identify Influence Factors
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Stated Preference Design and Data Collection.
3.2. Parking Lot Choice Model Estimation
- -
- Uni is the true utility of the alternative i to the decision maker n
- -
- εni is the error or portion of the utility unknown.
- -
- Xn = (xn1, ……, xnKo) is the set of individual-specific,
- -
- Wni = (wni1, ……, wniKa) is the set of alternative-specific
- -
- αi = (αi1, ……, αiKo) and βi = (βi1, ……, βiKa) are the coefficients correspond to individual Xn and alternative Wni
- -
- αi0 = (α10, ……, αJ0) is the alternative-specific constants.
3.2.1. The Nested Logit Model
- -
- λk is a measure of the degree of independence in unobserved utility among the alternatives in nest k.
- -
- IV is inclusive value:
3.2.2. Mixed Logit Model
- -
- f(β) is a density function.
- -
- Vni(β) is the observed portion of the utility, which depends on the parameters β
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Department of Transportation. Growth of Vehicle. Available online: https://vnexpress.net/infographics/phuong-tien-giao-thong-o-ha-noi-phat-trien-nhu-the-nao-3322639.html (accessed on 28 January 2019).
- Wismadi, A.; Soemardjito, J.; Sutomo, H. Transport Situation in Jakarta. In Study on Energy Efficiency Improvement in the Transport Sector through Transport Improvement and Smart Community Development in the Urban Area; Lambert Academic Publishing: Saarbrücken, Germany, 2013; pp. 29–58. Available online: http://www.eria.org/RPR_FY2012_No.29_Chapter_4.pdf (accessed on 28 January 2019).
- Tulyasuwan, N. Private Motorized Transport. Retriev. April 2013, 25, 16. [Google Scholar]
- Shoup, D.C. Cruising for parking. Transp. Policy 2006, 13, 479–486. [Google Scholar] [CrossRef]
- Liu, W.; Geroliminis, N. Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach. Transp. Res. Part B Methodol. 2016, 93, 470–494. [Google Scholar] [CrossRef] [Green Version]
- Alemi, F.; Rodier, C.; Drake, C. Cruising and on-street parking pricing: A difference-in-difference analysis of measured parking search time and distance in San Francisco. Transp. Res. Part A Policy Pract. 2018, 111, 187–198. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Batt, S.B.; Lee, C.C.; Wagschal, K.; Robertson, G.H.; Omer, I.; Kaplan, N.; Rodier, C.J.; Shaheen, S.A.; Ngoc, A.M.; et al. Modelling drivers’ car parking behaviour using data from a travel choice simulator. Transp. Res. Procedia 2017, 25, 198–206. [Google Scholar] [CrossRef]
- Cao, J.; Menendez, M. Quantification of potential cruising time savings through intelligent parking services. Transp. Res. Part A Policy Pract. 2018, 116, 151–165. [Google Scholar] [CrossRef]
- Arnott, R.; Williams, P. Cruising for parking around a circle. Transp. Res. Part B Methodol. 2017, 104, 357–375. [Google Scholar] [CrossRef]
- Simićević, J.; Milosavljević, N.; Maletić, G.; Kaplanović, S. Defining parking price based on users’ attitudes. Transp. Policy 2012, 23, 70–78. [Google Scholar] [CrossRef]
- Kobus, M.B.W.; Gutiérrez-i-Puigarnau, E.; Rietveld, P.; Van Ommeren, J.N. The on-street parking premium and car drivers’ choice between street and garage parking. Reg. Sci. Urban. Econ. 2013, 43, 395–403. [Google Scholar] [CrossRef]
- Arnott, R. On the optimal target curbside parking occupancy rate. Econ. Transp. 2014, 3, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Fabusuyi, T.; Hampshire, R.C. Rethinking performance based parking pricing: A case study of SFpark. Transp. Res. Part A Policy Pract. 2018, 115, 90–101. [Google Scholar] [CrossRef]
- Yan, X.; Levine, J.; Marans, R. The effectiveness of parking policies to reduce parking demand pressure and car use. Transp. Policy 2018, 73, 41–50. [Google Scholar] [CrossRef]
- Čuljković, V. Influence of parking price on reducing energy consumption and co2emissions. Sustain. Cities Soc. 2018, 41, 706–710. [Google Scholar] [CrossRef]
- Golias, J.; Yannis, G.; Harvatis, M. Off-street parking choice sensitivity. Transp. Plan. Technol. 2002, 25, 333–348. [Google Scholar] [CrossRef]
- Benenson, I.; Martens, K.; Birfir, S. PARKAGENT: An agent-based model of parking in the city. Comput. Environ. Urban. Syst. 2008, 32, 431–439. [Google Scholar] [CrossRef]
- Verma, A.; Verma, M.; Rahul, T.M.; Khurana, S.; Rai, A. Acceptable trip distance for walking in mass religious gatherings—A case study of world’s largest human gathering Kumbh Mela in Ujjain, India. Sustain. Cities Soc. 2018, 41, 505–512. [Google Scholar] [CrossRef]
- Li, S.; Zhao, P.; Zhang, H.; Quan, J. Walking behavior in the old downtown Beijing: The impact of perceptions and attitudes and social variations. Transp. Policy 2019, 73, 1–11. [Google Scholar] [CrossRef]
- Moghaddam, Z.R.; Jeihani, M. The Effect of Travel Time Information, Reliability, and Level of Service on Driver Behavior Using a Driving Simulator. Procedia Comput. Sci. 2017, 109, 34–41. [Google Scholar] [CrossRef]
- Van der Waerden, P.; Timmermans, H.; da Silva, A.N.R. The influence of personal and trip characteristics on habitual parking behavior. Case Stud. Transp. Policy 2015, 3, 33–36. [Google Scholar] [CrossRef]
- Bonsall, P.; Palmer, I. Modelling drivers’ car parking behaviour using data from a travel choice simulator. Transp. Res. Part. C Emerg. Technol. 2004, 12, 321–347. [Google Scholar] [CrossRef] [Green Version]
- Teodorović, D.; Lučić, P. Intelligent parking systems. Eur. J. Oper. Res. 2006, 175, 1666–1681. [Google Scholar] [CrossRef]
- Chen, Z.; Spana, S.; Yin, Y.; Du, Y. An Advanced Parking Navigation System for Downtown Parking. Netw. Spat. Econ. 2019, 1–16. [Google Scholar] [CrossRef]
- Arnott, R.; Inci, E.; Rowse, J. Downtown curbside parking capacity. J. Urban. Econ. 2015, 86, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Amer, A.; Chow, J.Y.J. A downtown on-street parking model with urban truck delivery behavior. Transp. Res. Part A Policy Pract. 2017, 102, 51–67. [Google Scholar] [CrossRef]
- My Thanh, T.T.; Friedrich, H. Legalizing the illegal parking, a solution for parking scarcity in developing countries. Transp. Res. Procedia 2017, 25, 4954–4969. [Google Scholar] [CrossRef]
- Thompson, R.G. A parking search model. Transpn Res. Part A Policy Pract. 1998, 32, 159–170. [Google Scholar] [CrossRef]
- Arnott, R.; Rowse, J. Modeling Parking. J. Urban. Econ. 1999, 45, 97–124. [Google Scholar] [CrossRef]
- Antolín, G.; Ibeas, Á.; Alonso, B.; dell’Olio, L. Modelling parking behaviour considering users heterogeneities. Transp. Policy 2018, 67, 23–30. [Google Scholar] [CrossRef]
- Van der Waerden, P.; Timmermans, H.; Borgers, A. PAMELA—Parking analysis model for predicting effects in local areas. Transp. Res. Rec. 2002, 1781, 10–18. [Google Scholar] [CrossRef]
- Rose, J.M.; Bliemer, M.C.J.; Hensher, D.A.; Collins, A.T. Designing efficient stated choice experiments in the presence of reference alternatives. Transp. Res. Part B Methodol. 2008, 42, 395–406. [Google Scholar] [CrossRef]
- Kuhfeld, W.F. Marketing Research Methods in Sas: Experimental Design, Choice, Conjoint, and Graphical Techniques. Available online: http://support.sas.com/techsup/technote/mr2010.pdf (accessed on 25 June 2018).
- Hensher, D.; Louviere, J.; Swait, J. Combining sources of preference data. J. Econom. 1998, 89, 197–221. [Google Scholar] [CrossRef]
- Cavazzuti, M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics; Springer Science and Business Media: Berlin, Germany, 2013; ISBN 9783642311871. [Google Scholar]
- Guwahat, S. Chapter 2 Determination of appropriate Sample Size. Bull. Gauhati Univ. Math. Assoc. Int. J. Appl. Math. Stat. Sci. 2013, 12, 28. [Google Scholar] [CrossRef]
- Koppelman, F.S.; Bhat, C. A Self Instructing Course in Mode Choice Modeling. Available online: http://www.ce.utexas.edu/prof/bhat/COURSES/LM_Draft_060131Final-060630.pdf (accessed on 26 March 2017).
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 76–96. [Google Scholar] [CrossRef]
- Bierlaire, M. The estimation of generalized extreme value models from choice-based samples. Transp. Res. Part B Methodol. 2008, 42, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Barrios, J.A. Generalized sample selection bias correction under RUM. Econ. Lett. 2004, 85, 129–132. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003; ISBN 978051175. [Google Scholar]
- Chaniotakis, E.; Pel, A.J. Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment. Transp. Res. Part A Policy Pract. 2015, 82, 228–239. [Google Scholar] [CrossRef]
- Van Der Waerden, P.; Janssens, D.; Da Silva, A.N.R. The influence of parking facility characteristics on car drivers’ departure time decisions. Transp. Res. Procedia 2017, 25, 4062–4071. [Google Scholar] [CrossRef]
- Christiansen, P.; Engebretsen, Ø.; Fearnley, N.; Usterud Hanssen, J. Parking facilities and the built environment: Impacts on travel behaviour. Transp. Res. Part A Policy Pract. 2017, 95, 198–206. [Google Scholar] [CrossRef]
- Hess, S.; Train, K.E.; Polak, J.W. On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice. Transp. Res. Part B Methodol. 2006, 40, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Ibeas, A.; Dell’Olio, L.; Bordagaray, M.; de Ortúzar, J.D. Modelling parking choices considering user heterogeneity. Transp. Res. Part A Policy Pract. 2014, 70, 41–49. [Google Scholar] [CrossRef]
No | Attributes | Level | On-Street | Off-Street | Temporary Parking |
---|---|---|---|---|---|
1 | Guidance and information system | 1 | Yes | Yes | |
2 | No | No | |||
2 | Parking cost (VND per time) (less than 8 h/time) | 1 | 0 | 0 | |
2 | 3000 | 2000 | |||
3 | 5000 | 4000 | |||
3 | Walking distant (m) | 1 | 100 | 100 | 50 |
2 | 300 | 400 | 200 | ||
3 | 500 | 700 | 400 | ||
4 | Queuing time to park | 1 | 0 | 2 | 0 |
2 | 5 | 6 | 4 | ||
3 | 10 | 10 | 8 | ||
5 | Capacity/area (veh/m2) | 1 | 100 veh/250 m2 | 100 veh/250 m2 | |
2 | 200 veh/500 m2 | 400 veh/1000 m2 | |||
3 | 300 veh/750 m2 | 1000 veh/2500 m2 | |||
6 | Checking and payment | 1 | Cash | Cash | |
2 | Swipe card | Swipe card | |||
3 | Automatic | Automatic |
Variable | Coefficient | Description |
---|---|---|
Constant | αi0 (i = 1,2,3) * | On-street (i = 1), Off-street (i = 2), Temporary parking (i = 3) |
Gender | αi1 | Male = 1, Female = 0 |
Age | αi2 | <24 = 0, otherwise = 1 |
Education | αi3 | Bachelor or above = 1, otherwise = 0 |
Income | αi4 | <6 million VND = 0, otherwise = 1 |
Driving Experience | αi5 | >5 years = 1, otherwise = 0 |
Home Location dum1: Study area | αi6 | CBD = 1, otherwise = 0 |
Home Location dum2: Other areas | αi7 | Home Located in center area = 0, otherwise = 1 |
Trip purpose dum3: Working/Schooling | αi8 | Trip purpose: working = 1, otherwise = 0 |
Trip purpose dum4: Visiting | αi9 | Trip purpose: visiting = 1, otherwise = 0 |
Trip purpose dum5: Shopping | αi10 | Trip purpose: shopping = 1, otherwise = 0 |
Parking cost (VND) | β1 | Parking cost (VND) |
Walking distant to the destination (m) | β2 | Walking distant to the destination (m) |
Queuing time to park | β3 | Queuing time to park |
Capacity/area (veh/m2) | β4 | Capacity/area (veh/m2) |
Guidance and information system | β5 | Yes = 2, No = 1 |
Checking and payment | β6 | Cash = 1, Swipe card = 2, Automatic = 3 |
Motorcycle | ||
---|---|---|
Motorcycle Respondent/Total | 318/530 | |
Gender | Male | 55.3% |
Female | 44.7% | |
Age | <18 years old | 1.3% |
18–24 years old | 41.5% | |
25–34 years old | 54.1% | |
35–54 years old | 2.5% | |
>55 years old | 0.6% | |
Education | Lower than bachelor | 18.2% |
Bachelor | 73.6% | |
Master or higher | 8.2% | |
Monthly income | < 2 million VND | 12.6% |
2–6 million VND | 26.4% | |
6–10 million VND | 37.1% | |
10–15 million VND | 17.0% | |
15–30 million VND | 6.3% | |
30–50 million VND | 0.0% | |
>50 million VND | 0.6% |
Variables | Coef. | MNL Logit Model | Nested Logit Model | Mixed Logit Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
On-street | Off-street | Temporary | On-street | Off-street | Temporary | On-street | Off-street | Temporary | ||
Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | ||
Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | Rob. t-test | ||
Constant | αi0 | 2.86 | 1.47 | - | 2.15 | 2.03 | - | 3.02 | 1.47 | - |
(8.7 ***) | 4.4 *** | - | (6.15 ***) | (6.79 ***) | - | (8.24 ***) | (4.14 ***) | - | ||
Gender | αi1 | −0.464 | - | - | −0.0686 | - | - | -0.507 | - | - |
(−3.54 ***) | - | - | (−1.9 .) | - | - | (−3.57 ***) | - | - | ||
Age | αi2 | −0.441 | - | - | - | - | - | −0.446 | - | - |
(−3.17 ***) | - | - | - | - | - | (−3.03 ***) | - | - | ||
Driving Experience | αi5 | −0.531 | −0.578 | - | −0.576 | −0.48 | - | −0.571 | −0.607 | - |
(−2.14 *) | (−2.41 *) | - | (−2.79 **) | (−2.66 **) | - | (−2.19 **) | (−2.45 **) | - | ||
Dum1: CBD | αi7 | −1.02 | −0.991 | - | −0.745 | −0.665 | - | −1.08 | −1.05 | - |
(−4.57 ***) | −4.31 ***) | - | (−3.25 ***) | (−3.31 ***) | - | (−4.49 ***) | (−4.27 ***) | - | ||
Dum3: Working/Schooling | αi8 | 1.23 | 1.33 | - | 0.842 | 0.76 | - | 1.35 | 1.49 | - |
(4.32 ***) | 4.54 ***) | - | (3.05 ***) | (3.25 ***) | - | (4.32 ***) | (4.64 ***) | - | ||
Dum4: Visiting | αi9 | 1.58 | 1.59 | - | 1.01 | 0.903 | - | 1.78 | 1.85 | - |
(5.14 ***) | 4.83 ***) | - | (3.25 ***) | (3.36 ***) | - | (4.71 ***) | (4.56 ***) | - | ||
Dum5: Shopping | αi10 | 1.26 | 1.28 | - | 0.87 | 0.772 | - | 1.24 | 1.33 | - |
(4.22 ***) | 4.08 ***) | - | (2.72 **) | (2.81 ***) | - | (3.99 ***) | (4.02 ***) | - | ||
Cost | β1 | −3.58 × 10−4 | −1.07 × 10−4 | −3.99 × 10−4 | ||||||
(−11.29 ***) | (−4.88 ***) | (−8.95 ***) | ||||||||
Walking | β2 | −1.21 × 10−3 | −2.48 × 10−4 | −1.43 × 10−3 | ||||||
(−5.61 ***) | (−3.33 ***) | (−5.32 ***) | ||||||||
Queuing | β3 | −6.13 × 10−2 | −1.25 × 10−2 | −7.07 × 10−2 | ||||||
(−4.54 ***) | (−2.67 **) | (−4.3 ***) | ||||||||
Capacity | β4 | 2.07 × 10−3 | 3.89 × 10−4 | 2.31 × 10−3 | ||||||
(11.76 ***) | (4.22 ***) | (9.64 ***) | ||||||||
IV | λk | 5.4 | ||||||||
(4.35 ***) | ||||||||||
Queuing_S Std. dev. | σ | 0.148 | ||||||||
(2.93 ***) | ||||||||||
L0 | −1397.435 | −1397.435 | −1397.435 | |||||||
LL | −997.586 | −969.493 | −995.444 | |||||||
0.286 | 0.306 | 0.288 |
Variable | Parameter | Value | Std. Error |
---|---|---|---|
Queuing time | Mean of normal distribution (coefficient) | −7.07 × 10−2 | 0.0165 |
Std. dev. of normal distribution (coefficient) | 0.148 | 0.0504 |
Variables | Coef. | Mixed Logit Model | ||
---|---|---|---|---|
On-street | Off-street | Temporary | ||
Coefficient | Coefficient | Coefficient | ||
Rob. t-test Value | Rob. t-test Value | Rob. t-test Value | ||
Robust Std err | Robust Std err | Robust Std err | ||
Constant | αi0 | 3.02 | 1.47 | - |
(8.24 ***) | (4.14 ***) | - | ||
[0.366] | [0.356] | |||
Gender | αi1 | −0.507 | - | - |
(−3.57 ***) | - | - | ||
[0.142] | ||||
Age | αi2 | −0.446 | - | - |
(−3.03 ***) | - | - | ||
[0.148] | ||||
Driving Experience | αi5 | −0.571 | −0.607 | - |
(−2.19 **) | (−2.45 **) | - | ||
[0.261] | [0.248] | |||
Dum1: CBD | αi7 | −1.08 | −1.05 | - |
(−4.49 ***) | (−4.27 ***) | - | ||
[0.241] | [0.245] | |||
Dum3: Working/Schooling | αi8 | 1.35 | 1.49 | - |
(4.32 ***) | (4.64 ***) | - | ||
[0.312] | [0.321] | |||
Dum4: Visiting | αi9 | 1.78 | 1.85 | - |
(4.71 ***) | (4.56 ***) | - | ||
[0.377] | [0.406] | |||
Dum5: Shopping | αi10 | 1.24 | 1.33 | - |
(3.99 ***) | (4.02 ***) | - | ||
[0.311] | [0.331] | |||
Cost | β1 | −3.99 × 10−4 | ||
(−8.95 ***) | ||||
[4.46E-005] | ||||
Walking | β2 | −1.43 × 10−3 | ||
(−5.32 ***) | ||||
[0.000268] | ||||
Queuing | β3 | −7.07 × 10−2 | ||
(−4.3 ***) | ||||
[0.0165] | ||||
Capacity | β4 | 2.31 × 10−3 | ||
(9.64 ***) | ||||
[0.000240] | ||||
Queuing_S Std. dev. | σ | 0.148 | ||
(2.93 ***) | ||||
[0.0504] | ||||
L0 | −1397.435 | |||
LL | −995.444 | |||
0.288 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, P.H.; Zhao, S.; Houn, S.E. Motorcycle Drivers’ Parking Lot Choice Behaviors in Developing Countries: Analysis to Identify Influence Factors. Sustainability 2019, 11, 2463. https://doi.org/10.3390/su11092463
Hoang PH, Zhao S, Houn SE. Motorcycle Drivers’ Parking Lot Choice Behaviors in Developing Countries: Analysis to Identify Influence Factors. Sustainability. 2019; 11(9):2463. https://doi.org/10.3390/su11092463
Chicago/Turabian StyleHoang, Phuc Hai, Shengchuan Zhao, and Siv Eng Houn. 2019. "Motorcycle Drivers’ Parking Lot Choice Behaviors in Developing Countries: Analysis to Identify Influence Factors" Sustainability 11, no. 9: 2463. https://doi.org/10.3390/su11092463
APA StyleHoang, P. H., Zhao, S., & Houn, S. E. (2019). Motorcycle Drivers’ Parking Lot Choice Behaviors in Developing Countries: Analysis to Identify Influence Factors. Sustainability, 11(9), 2463. https://doi.org/10.3390/su11092463