Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Analytical Procedure
2.3. Statistical Analysis
3. Results
3.1. Methodology Analysis
3.2. Inventory Analysis
3.2.1. Trout Production Systems
3.2.2. Salmon Production Systems
3.3. Cross-Study Technological Comparison
3.3.1. Overview of LCIA and FCR Results
3.3.2. Statistical Comparison of LCIA and FCR Results
4. Discussion
4.1. Methodologies
4.2. Inventories
4.3. Cross-study Technological Comparison
4.3.1. Outlying Results
4.3.2. Cross-Study Statistical Comparison
4.3.3. Data Quality for Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Wu, G.Y.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N. Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518. [Google Scholar] [CrossRef]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; de Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2016—Contributing to Food Security and Nutrition for All; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Dickie, A.; Streck, C.; Roe, S.; Zurek, M.; Haupt, F.; Dolginow, A. Strategies for Mitigating Climate Change in Agriculture: Recommendations for Philanthropy; Focus and California Environmental Associates, Prepared with the Support of the Climate and Land Use Alliance: San Francisco, CA, USA, 2014. [Google Scholar]
- Xiao, Z.; Ximing, C. Climate change impacts on global agricultural land availability. Environ. Res. Lett. 2011, 6, 014014. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Msangi, S.; Batka, M.; Vannuccini, S.; Dey, M.M.; Anderson, J.L. Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Globfish—Information and Analysis on World Fish Trade. Available online: http://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/1176223/ (accessed on 29 March 2019).
- Farmer, L.J.; McConnell, J.M.; Kilpatrick, D.J. Sensory characteristics of farmed and wild Atlantic salmon. Aquaculture 2000, 187, 105–125. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, R.; Banobi, J.; Hall Stephen, J.; Pucylowski, T.; Walsworth Timothy, E. The environmental cost of animal source foods. Front. Ecol. Env. 2018, 16, 329–335. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Ellerby, D.J. How efficient is a fish? J. Exp. Biol. 2010, 213, 3765–3767. [Google Scholar] [CrossRef]
- Ytrestøyl, T.; Aas, T.S.; Åsgård, T. Resource Utilisation of Norwegian Salmon Farming in 2012 and 2013; Nofima: Tromsø, Norway, 2014. [Google Scholar]
- Mennerat, A.; Nilsen, F.; Ebert, D.; Skorping, A. Intensive Farming: Evolutionary Implications for Parasites and Pathogens. J. Evol. Biol. 2010, 37, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Gracey, E. MFA of Omega-3 Fatty Acids EPA & DHA from a Norwegian Resource Perspective. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Philis, G.; Gracey, E.O.; Gansel, L.C.; Fet, A.M.; Rebours, C. Comparing the primary energy and phosphorus consumption of soybean and seaweed-based aquafeed proteins—A material and substance flow analysis. J. Clean. Prod. 2018, 200, 1142–1153. [Google Scholar] [CrossRef]
- Meld. St. 16. Forutsigbar og Miljømessig Bærekraftig Vekst i Norsk Lakse-og Ørretoppdrett. Available online: https://www.regjeringen.no/contentassets/6d27616f18af458aa930f4db9492fbe5/no/pdfs/stm201420150016000dddpdfs.pdf (accessed on 12 September 2019).
- Jonell, M.; Henriksson, P.J.G. Mangrove–shrimp farms in Vietnam—Comparing organic and conventional systems using life cycle assessment. Aquaculture 2015, 447, 66–75. [Google Scholar] [CrossRef]
- Jerbi, M.; Aubin, J.; Garnaoui, K.; Achour, L.; Kacem, A. Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac. Eng. 2012, 46, 1–9. [Google Scholar] [CrossRef]
- Papatryphon, E.; Petit, J.; Van der Werf, H.; Kaushik, S.; Saint-Pée-sur-Nivelle, F. Life Cycle Assessment of trout farming in France: A farm level approach. In Proceedings of the 4th International Conference, Life Cycle Assessment in the Agri-food sector, Bygholm, Denmark, 6–8 October 2003; DIAS Foulum: Tjele, Denmark, 2004; pp. 71–77. [Google Scholar]
- Ellingsen, H.; Aanondsen, S.A. Environmental impacts of wild caught cod and farmed Salmon—A comparison with chicken (7 pp). Int. J. Life Cycle Assess. 2006, 11, 60–65. [Google Scholar] [CrossRef]
- Fréon, P.; Durand, H.; Avadí, A.; Huaranca, S.; Orozco Moreyra, R. Life cycle assessment of three Peruvian fishmeal plants: Toward a cleaner production. J. Clean. Prod. 2017, 145, 50–63. [Google Scholar] [CrossRef]
- Smarason, B.O.; Ogmundarson, O.; Arnason, J.; Bjornsdottir, R.; Daviosdottir, B. Life Cycle Assessment of Icelandic Arctic Char Fed Three Different Feed Types. Turk. J. Fish Aquat. Sci. 2017, 17, 79–90. [Google Scholar] [CrossRef]
- Chen, X.; Samson, E.; Tocqueville, A.; Aubin, J. Environmental assessment of trout farming in France by life cycle assessment: Using bootstrapped principal component analysis to better define system classification. J. Clean. Prod. 2015, 87, 87–95. [Google Scholar] [CrossRef]
- Boissy, J.; Aubin, J.; Drissi, A.; van der Werf, H.M.G.; Bell, G.J.; Kaushik, S.J. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 2011, 321, 61–70. [Google Scholar] [CrossRef]
- Avadí, A.; Pelletier, N.; Aubin, J.; Ralite, S.; Núñez, J.; Fréon, P. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 2015, 435, 52–66. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F.; Flysjo, A.; Kruse, S.; Cancino, B.; Silverman, H. Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environ. Sci. Technol. 2009, 43, 8730–8736. [Google Scholar] [CrossRef]
- Hognes, E.S.; Nilsson, K.; Sund, V.; Ziegler, F. LCA of Norwegian Salmon Production 2012; Sintef Fisheries and Aquaculture: Trondheim, Norway, 2014. [Google Scholar]
- McGrath, K.P.; Pelletier, N.L.; Tyedmers, P.H. Life Cycle Assessment of a Novel Closed-Containment Salmon Aquaculture Technology. Environ. Sci. Technol. 2015, 49, 5628–5636. [Google Scholar] [CrossRef]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Liu, Y.; Rosten, T.W.; Henriksen, K.; Hognes, E.S.; Summerfelt, S.; Vinci, B. Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquac. Eng. 2016, 71, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Grönroos, J.; Seppala, J.; Silvenius, F.; Makinen, T. Life cycle assessment of Finnish cultivated rainbow trout. Boreal Environ. Res. 2006, 11, 401. [Google Scholar]
- Henriksson, P.J.G.; Guinee, J.B.; Kleijn, R.; de Snoo, G.R. Life cycle assessment of aquaculture systems—A review of methodologies. Int. J. Life Cycle Assess. 2012, 17, 304–313. [Google Scholar] [CrossRef]
- Aubin, J. Life cycle assessment as applied to environmental choices regarding farmed or wild-caught fish. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2013, 8. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Laurent, A. LCA of aquaculture systems: Methodological issues and potential improvements. Int. J. Life Cycle Assess. 2018, 24, 324–337. [Google Scholar] [CrossRef]
- Cao, L.; Diana, J.S.; Keoleian, G.A. Role of life cycle assessment in sustainable aquaculture. Rev. Aquac. 2013, 5, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Henriksson, P.J.G.; Pelletier, N.L.; Troell, M.; Tyedmers, P.H. Life Cycle Assessments and Their Applications to Aquaculture Production Systems life cycle assessment (LCA) aquaculture production systems. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013; pp. 1050–1066. [Google Scholar]
- Pahri, S.D.R.; Mohamed, A.F.; Samat, A. LCA for open systems: A review of the influence of natural and anthropogenic factors on aquaculture systems. Int. J. Life Cycle Assess. 2015, 20, 1324–1337. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Laurent, A. Life cycle assessments of aquaculture systems: A critical review of reported findings with recommendations for policy and system development. Rev. Aquac. 2018, 24, 324–337. [Google Scholar] [CrossRef]
- Buchspies, B.; Tölle, S.J.; Jungbluth, N. Life Cycle Assessment of High-Sea Fish and Salmon Aquaculture; ESU-Services Ltd.: Uster, Switzerland, 2011. [Google Scholar]
- Ytrestøyl, T.; Aas, T.; Berge, G.; Hatlen, B.; Sørensen, M.; Ruyter, B.; Thomassen, M.; Hognes, E.; Ziegler, F.; Sund, V. Resource Utilisation and Eco-Efficiency of Norwegian Salmon Farming in 2010; Nofima: Tromsø, Norway, 2011. [Google Scholar]
- Hall, S.J.; Delaporte, A.; Phillips, J.M.; Malcolm, B.; Mark, O.K. Blue Frontiers: Managing the Environmental Costs of Aquaculture; The WorldFish Center: Penang, Malaysia, 2011. [Google Scholar]
- Winther, U.; Ziegler, F.; Hognes, E.S.; Emanuelsson, A.; Sund, V.; Ellingsen, H. Carbon Footprint and Energy Use of Norwegian Seafood Products; Sintef Fisheries and Aquaculture: Trondheim, Norway, 2009. [Google Scholar]
- Ziegler, F.; Winther, U.; Hognes, E.S.; Emanuelsson, A.; Sund, V.; Ellingsen, H. The carbon footprint of Norwegian seafood products on the global seafood market. J. Ind. Ecol. 2013, 17, 103–116. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Schroeder, J.P.; Schulz, C. System delimitation in life cycle assessment (LCA) of aquaculture: Striving for valid and comprehensive environmental assessment using rainbow trout farming as a case study. Int. J. Life Cycle Assess. 2013, 18, 577–589. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Nagel, F.; Meyer, S.; Schroeder, J.P.; Schulz, C. Comparative life cycle assessment (LCA) of raising rainbow trout (Oncorhynchus mykiss) in different production systems. Aquac. Eng. 2013, 54, 85–92. [Google Scholar] [CrossRef]
- Aubin, J.; Papatryphon, E.; van der Werf, H.M.G.; Chatzifotis, S. Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J. Clean. Prod. 2009, 17, 354–361. [Google Scholar] [CrossRef]
- Ayer, N.; Martin, S.; Dwyer, R.L.; Gace, L.; Laurin, L. Environmental performance of copper-alloy Net-pens: Life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture 2016, 453, 93–103. [Google Scholar] [CrossRef]
- d’Orbcastel, E.R.; Blancheton, J.-P.; Aubin, J. Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment. Aquac. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef]
- Dekamin, M.; Veisi, H.; Safari, E.; Liaghati, H.; Khoshbakht, K.; Dekamin, M.G. Life cycle assessment for rainbow trout (Oncorhynchus mykiss) production systems: A case study for Iran. J. Clean. Prod. 2015, 91, 43–55. [Google Scholar] [CrossRef]
- Newton, R.W.; Little, D.C. Mapping the impacts of farmed Scottish salmon from a life cycle perspective. Int. J. Life Cycle Assess. 2017, 23, 1018–1029. [Google Scholar] [CrossRef] [Green Version]
- Nyhus, O.J. Life Cycle Assessment of Farmed Salmon, Comparing a Closed with an Open Sea Cage System. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Parker, R. Implications of high animal by-product feed inputs in life cycle assessments of farmed Atlantic salmon. Int. J. Life Cycle Assess. 2017, 23, 982–994. [Google Scholar] [CrossRef]
- Silvenius, F.; Grönroos, J.; Kankainen, M.; Kurppa, S.; Mäkinen, T.; Vielma, J. Impact of feed raw material to climate and eutrophication impacts of Finnish rainbow trout farming and comparisons on climate impact and eutrophication between farmed and wild fish. J. Clean. Prod. 2017, 164, 1467–1473. [Google Scholar] [CrossRef]
- White, A. A Comprehensive Analysis of Efficiency in the Tasmanian Salmon Industry. Ph.D. Thesis, Bond University, Gold Coast, Australia, 2013. [Google Scholar]
- Wilfart, A.; Prudhomme, J.; Blancheton, J.-P.; Aubin, J. LCA and emergy accounting of aquaculture systems: Towards ecological intensification. J. Environ. Manag. 2013, 121, 96–109. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Tlusty, M.; Tyedmers, P.; Ziegler, F.; Jonell, M.; Henriksson, P.J.; Newton, R.; Little, D.; Fry, J.; Love, D.; Cao, L. Commentary: Comparing efficiency in aquatic and terrestrial animal production systems. Environ. Res. Lett. 2018, 13, 128001. [Google Scholar] [CrossRef]
- Fornshell, G.; Hinshaw, J.; Tidwell, J.H. Flow-through Raceways. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Lexington, KY, USA, 2012. [Google Scholar]
- Langan, R. Ocean Cage Culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Lexington, KY, USA, 2012. [Google Scholar]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture Systems. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Lexington, KY, USA, 2012. [Google Scholar]
- ISO 14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed.; The International Standards Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: New York, NY, USA, 2007; p. 996. [Google Scholar]
- Heijungs, R.; Guinée, J.B.; Huppes, G.; Lankreijer, R.M.; Udo de Haes, H.A.; Wegener Sleeswijk, A.; Ansems, A.; Eggels, P.; Duin, R.v.; De Goede, H. Environmental Life Cycle Assessment of Products: Guide and Backgrounds (Part 1); Centre of Environmental Science: Leiden, The Netherlands, 1992. [Google Scholar]
- Huijbregts, M. Life-Cycle Impact Assessment of Acidifying and Eutrophying Air Pollutants. Calculation of Equivalency Factors with RAINS-LCA; Faculty of Environmental Science, University of Amsterdam: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.; Doka, G.; Dones, R.; Hirschier, R.; Hellweg, S.; Humbert, S.; Margni, M.; Nemecek, T.; et al. Implementation of Life Cycle Impact Assessment Methods; Swiss Centre for LCI: Duebendorf, Switzerland, 2003. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Hischier, R.; Doka, G.; Bauer, C.; Dones, R.; Nemecek, T.; Hellweg, S.; Humbert, S. Implementation of Life Cycle Impact Assessment Methods; Data v2. 0 (2007); Ecoinvent Report No. 3; Ecoinvent Centre: Duebendorf, Switzerland, 2007. [Google Scholar]
- Hauschild, M.; Potting, J. Spatial Differentiation in Life Cycle Impact Assessment—The EDIP2003 Methodology; Technical University of Denmark: Kongens Lyngby, Denmark, 2005. [Google Scholar]
- Thrane, M. Environmental Impacts from Danish Fish Products; Aalborg University: Aalborg, Denmark, 2004. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–264. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Life cycle assessment of horse mackerel fisheries in Galicia (NW Spain): Comparative analysis of two major fishing methods. Fish. Res. 2010, 106, 517–527. [Google Scholar] [CrossRef]
- Thrane, M. LCA of Danish fish products—New methods and insights. Int. J. Life Cycle Assess. 2006, 11, 66–74. [Google Scholar] [CrossRef]
- Tyedmers, P. Energy consumed by North Atlantic fisheries. Fisheries Centre Research Reports. In Fisheries Impacts on North Atlantic Ecosystems: Catch, Effort and National/Regional Datasets; Zeller, D., Watson, R., Pauly, D., Eds.; Fisheries Centre, University of British Columbia: Vancouver, BC, Canada, 2001. [Google Scholar]
- Cashion, T.; Tyedmers, P.; Parker, R.W. Global reduction fisheries and their products in the context of sustainable limits. Fish Fish. 2017, 18, 1026–1037. [Google Scholar] [CrossRef]
- Parker, R.W.; Tyedmers, P.H. Fuel consumption of global fishing fleets: Current understanding and knowledge gaps. Fish Fish. 2015, 16, 684–696. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Huijbregts, M.A.J. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50, 3913–3919. [Google Scholar] [CrossRef]
- Ford, J.S.; Pelletier, N.L.; Ziegler, F.; Scholz, A.J.; Tyedmers, P.H.; Sonesson, U.; Kruse, S.A.; Silverman, H. Proposed Local Ecological Impact Categories and Indicators for Life Cycle Assessment of Aquaculture A Salmon Aquaculture Case Study. J. Ind. Ecol. 2012, 16, 254–265. [Google Scholar] [CrossRef]
- Huijbregts, M.; Thissen, U.; Guinée, J.; Jager, T.; Kalf, D.; Van de Meent, D.; Ragas, A.; Sleeswijk, A.W.; Reijnders, L. Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES–LCA. Chemosphere 2000, 41, 541–573. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Schöpp, W.; Verkuijlen, E.; Heijungs, R.; Reijnders, L. Spatially Explicit Characterization of Acidifying and Eutrophying Air Pollution in Life-Cycle Assessment. J. Ind. Ecol. 2000, 4, 75–92. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.; Van Jaarsveld, H.A.; Reinds, G.J.; De Zwart, D.; Struijs, J.; Van de Meent, D. Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ. Sci. Technol. 2007, 41, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532. [Google Scholar] [CrossRef]
- ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines, 1st ed.; The International Standards Organization: Geneva, Switzerland, 2006. [Google Scholar]
- ILCD Handbook. General Guide for Life Cycle Assessment, Detailed Guidance; European Commission, Joint Research Centre: Luxembourg, 2010. [Google Scholar]
- Pettersen, J.; Osmundsen, T.; Aunsmo, A.; Mardones, F.; Rich, K. Controlling emerging infectious diseases in salmon aquaculture. Rev. Sci. Tech. Off. Int. Epiz. 2015, 34, 923–938. [Google Scholar] [CrossRef]
- Taranger, G.L.; Karlsen, Ø.; Bannister, R.J.; Glover, K.A.; Husa, V.; Karlsbakk, E.; Kvamme, B.O.; Boxaspen, K.K.; Bjørn, P.A.; Finstad, B. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J. Mar. Sci. 2014, 72, 997–1021. [Google Scholar] [CrossRef] [Green Version]
- Overton, K.; Dempster, T.; Oppedal, F.; Kristiansen, T.S.; Gismervik, K.; Stien, L.H. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 2018. [Google Scholar] [CrossRef]
- BarentsWarch. Fish Mortality and Loss in Production. 2018. Available online: https://www.barentswatch.no/en/havbruk/fish-mortality-and-loss-in-production (accessed on 22 March 2019).
- Pelletier, N.; Tyedmers, P. Feeding farmed salmon: Is organic better? Aquaculture 2007, 272, 399–416. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Guinée, J.B.; Heijungs, R.; de Koning, A.; Green, D.M. A protocol for horizontal averaging of unit process data—Including estimates for uncertainty. Int. J. Life Cycle Assess. 2014, 19, 429–436. [Google Scholar] [CrossRef]
- Colomb, V.; Ait-Amar, S.; Basset-Mens, C.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M. AGRIBALYSE®, the French LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling. Oilseeds Fats Crop. Lipids 2015, 22, D104. [Google Scholar] [CrossRef]
- Hognes, E.S.; Tyedmers, P.; Krewer, C.; Scholten, J.; Ziegler, F. Seafood Life Cycle Inventory Database—Methodology and Principles and Data Quality Guidelines; RISE Agrifood and Bioscience: Göteborg, Sweden, 2018. [Google Scholar]
- Chomkhamsri, K.; Mungcharoen, T.; Yuvaniyama, C. 10-year experience with the Thai national LCI database: Case study of “refinery products”. Int. J. Life Cycle Assess. 2017, 22, 1760–1770. [Google Scholar] [CrossRef]
- Hawkins, T.; Hendrickson, C.; Higgins, C.; Matthews, H.S.; Suh, S. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environ. Sci. Technol. 2007, 41, 1024–1031. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Strømman, A.H.; Hertwich, E.G. Evaluation of process-and input–output-based life cycle inventory data with regard to truncation and aggregation issues. Environ. Sci. Technol. 2011, 45, 10170–10177. [Google Scholar] [CrossRef]
- Merciai, S.; Schmidt, J. Methodology for the construction of global multi-regional hybrid supply and use tables for the EXIOBASE v3 database. J. Ind. Ecol. 2018, 22, 516–531. [Google Scholar] [CrossRef]
- Gibon, T.; Wood, R.; Arvesen, A.; Bergesen, J.D.; Suh, S.; Hertwich, E.G. A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ. Sci. Technol. 2015, 49, 11218–11226. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef]
- Silvenius, F.; (Luke, Natural Resources Institute, Helsinki, Finland). Personal communication, 2 March 2019.
- Park, H.M. Comparing Group Means: T-Tests and One-Way ANOVA Using Stata, SAS, R, and SPSS. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2009. [Google Scholar]
- Kim, H.-Y. Analysis of variance (ANOVA) comparing means of more than two groups. Restor. Dent. Endod. 2014, 39, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.-A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Kouhizadeh, M.; Sarkis, J. Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability 2018, 10, 3652. [Google Scholar] [CrossRef]
- Weidema, B.; Klarmann, M. What Will Distributed Ledger Technology Mean for LCA? Available online: https://lca-net.com/blog/what-will-distributed-ledger-technology-mean-for-lca/ (accessed on 18 March 2019).
ID | Author and Year | Topic | Organization |
---|---|---|---|
1 | Aubin et al. [51] | Carnivorous finfish production systems | INRA a |
2 | Avadi et al. [30] | Artisanal vs. commercial Peruvian feed | INRA a |
3 | Ayer et al. [52] | Comparison of copper and nylon net-pens | EarthShift Global b |
4 | Ayer and Tyedmers [34] | Culture systems in Canada | Jacques Witford c |
5 | Boissy et al. [29] | Impacts of plant-based salmonid diets | Montpellier U |
6 | Chen et al. [28] | Trout farming in France | INRA a |
7 | D’Orbcastel et al. [53] | Comparison of two trout systems | IFREMER d |
8 | Dekamin et al. [54] | Rainbow trout production in Iran | UMA e |
9 | Ellingsen and Aanon. [25] | Comparison of wild cod, farmed salmon, and chicken | SINTEF f |
10 | Grönroos et al. [36] | Finnish cultivated rainbow trout | SYKE g |
11 | Hognes et al. [32] * | Norwegian salmon production | SINTEF f |
12 | Liu et al. [35] | Carbon footprint of two farming models for salmon | SINTEF f |
13 | McGrath et al. [33] | Novel close aquaculture salmon technology | Dalhousie U |
14 | Newton and Little [55] | Farmed Scottish salmon | Stirling U |
15 | Nyhus [56] * | Comparing salmon closed and open cage system | NTNU h |
16 | Papatryphon et al. [24] * | Trout farming in France | INRA a |
17 | Parker [57] | Implications of high animal by-product feed inputs | British Colum. U |
18 | Pelletier et al. [31] | Global salmon farming systems | Dalhousie U |
19 | Samuel-Fitwi et al. [50] | Raising rainbow trout in different systems | GMA i |
20 | Silvenius et al. [58] | Climate and eutrophication impact of Finnish trout | LUKE j |
21 | Smárason et al. [27] | Icelandic arctic char fed three different feeds | Matis k |
22 | White [59] * | Efficiency of the Tasmanian salmon industry | Bond U |
23 | Wilfart et al. [60] | Accounting of aquaculture systems | INRA a |
24 | Ziegler et al. [48] | Carbon footprint of Norwegian seafood products | SIK l |
Process | Process Description |
---|---|
Energy carrier | All energy carriers required through the life cycle (e.g., electricity, gas) |
Transport | All transports required through the life cycle, without distribution (e.g., lorry, shipping) |
Chemotherapeutant | Includes chemicals, disinfectants, and veterinary products |
Equipment | Supply considered having a lifetime ranging from 1 to 10 years |
Infrastructure | Supply considered having a lifetime greater than 10 years |
Feed production | Agricultural and fishery ingredients, and their transformation into aquafeed |
Egg production | Selection, and reproduction of broodstock for egg production |
Hatchery | Grow-out of eggs into 70 g large juvenile fish |
Fish production | Grow-out of juveniles into 4–5 kg adult fish |
Effluent | Emissions of feces, urine, and feed waste generated during grow-out |
Effluent treatment | Treatment of hatchery and fish production effluents |
Infrastructure EOL | Dismantling and waste treatment of farms infrastructure |
Processing | Processing of live fish into HOG or filleted fishes |
Distribution | Transport and retail of HOG or filleted fishes from processing to customers |
ID | Goal and Scope Definition | LCIA/Interpretation | ||||||
---|---|---|---|---|---|---|---|---|
Functional Unit | Location | System Boundaries | Multi-functionality | CM | CA | SA | UA | |
1 | 1 t LW Rainbow Trout | France | Farm to farm | NA | CML-IA | ✔ | ✔ | |
2 | 1 t LW Rainbow Trout | Peru | Cradle to farm | Energy allocation | CML-IA/ReCiPe | ✔ | ✔ | ✔ |
3 | 1 t LW Atlantic Salmon | Chile | Farm to farm | Energy allocation | ReCiPe midpoint | ✔ | ✔ | ✔ |
4 | 1 t LW Atlantic Salmon/Arctic Char | Canada | Cradle to farm | Energy allocation/SE | CML-IA | ✔ | ✔ | |
5 | 1 t LW Atlantic Salmon/Rainbow Trout | Scotland/France | Cradle to farm | Economic allocation/MA | CML-IA | ✔ | ✔ | ✔ |
6 | 1 t LW Rainbow Trout | France | Cradle to farm | Economic allocation | CML-IA | ✔ | ✔ | |
7 | 1 t LW Trout/Arctic Char | France | Cradle to farm | NA | CML-IA | ✔ | ✔ | |
8 | 1 t LW Rainbow Trout | Iran | Cradle to farm | NA | CML-IA | ✔ | ✔ | ✔ |
9 | 200g Fillet Atlantic Salmon | Norway | Cradle to distribution | NA | Eco-indicator 99 | ✔ | ✔ | |
10 | 1 t Un-gutted Rainbow Trout | Finland | Cradle to processing | NA | Finnish factors | ✔ | ||
11 | 1 kg LW Atlantic Salmon | Norway | Cradle to farm | Mass allocation | ReCiPe midpoint | ✔ | ||
12 | 1 kg HOG Atlantic Salmon | Norway/USA | Cradle to distribution | Mass allocation | NA | ✔ | ||
13 | 1 t LW Chinook Salmon | Canada | Cradle to farm | Energy allocation | ReCiPe midpoint | ✔ | ✔ | ✔ |
14 | 1 t HOG Atlantic Salmon | Scotland | Farm to processing | Economic allocation/MA | CML-IA | ✔ | ✔ | |
15 | 1 t LW Atlantic Salmon | Norway | Cradle to farm | NA | ReCiPe midpoint | ✔ | ✔ | |
16 | 1 t LW Rainbow Trout | France | Cradle to farm | Economic allocation | CML-IA | ✔ | ||
17 | 1 t LW Atlantic Salmon | Australia | Cradle to farm | Energy allocation/SE | CML-IA | ✔ | ✔ | |
18 | 1 t LW Atlantic Salmon | NO/UK/Canada/Chile | Cradle to farm | Energy allocation | CML-IA | ✔ | ✔ | |
19 | 1 t LW Rainbow Trout | Germany/Denmark | Cradle to farm | System expansion | CML-IA | ✔ | ✔ | |
20 | 1 t Fillet Rainbow Trout | Finland | Cradle to distribution | Economic allocation/MA | Individual factors | ✔ | ||
21 | 1 kg LW Arctic Char | Iceland | Cradle to farm | Mass allocation | CML-IA | ✔ | ✔ | |
22 | 1 t HOG Atlantic Salmon | Australia | Cradle to processing | Mass allocation | CML-IA | ✔ | ✔ | |
23 | 1 t LW Atlantic Salmon | France | Cradle to farm | Economic allocation | CML-IA | ✔ | ✔ | |
24 | 1 kg HOG Atlantic Salmon | Norway | Cradle to distribution | Mass allocation | Individual factor | ✔ | ✔ |
Cluster | Technology | FCR (GWP) | FCR (AP) | FCR (EP) | FCR (CED) |
---|---|---|---|---|---|
1 | Closed, Sea-Based | 1.262 | 1.262 | 1.225 | 1.265 |
2 | Open, Land-Based | 1.124 | 1.124 | 1.124 | 1.131 |
3 | Open, Sea-Based | 1.256 | 1.249 | 1.261 | 1.291 |
4 | Closed, Land-Based | 1.125 | 1.131 | 1.131 | 1.113 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philis, G.; Ziegler, F.; Gansel, L.C.; Jansen, M.D.; Gracey, E.O.; Stene, A. Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives. Sustainability 2019, 11, 2517. https://doi.org/10.3390/su11092517
Philis G, Ziegler F, Gansel LC, Jansen MD, Gracey EO, Stene A. Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives. Sustainability. 2019; 11(9):2517. https://doi.org/10.3390/su11092517
Chicago/Turabian StylePhilis, Gaspard, Friederike Ziegler, Lars Christian Gansel, Mona Dverdal Jansen, Erik Olav Gracey, and Anne Stene. 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives" Sustainability 11, no. 9: 2517. https://doi.org/10.3390/su11092517
APA StylePhilis, G., Ziegler, F., Gansel, L. C., Jansen, M. D., Gracey, E. O., & Stene, A. (2019). Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives. Sustainability, 11(9), 2517. https://doi.org/10.3390/su11092517