Extreme Weather Events in Agriculture: A Systematic Review
Abstract
:1. Introduction
- -
- inter-disciplinary, approaching the topic from a holistic perspective;
- -
- supporting decision-making from local to international level;
- -
- communicating clearly the state-of-the-art and the gaps of research.
2. Methodology
3. Results
3.1. Class 1: Trend and Cluster Analysis
3.2. Class 2.1: Analysis of Trend and Geographical Distribution of Publications
3.3. Class 2.2: Cluster Analysis
3.4. Class 2.3: Interrelationships among Variables
4. Discussion
4.1. Cluster Analysis: Trend and Gaps in the Research
4.2. Geographical Distribution of Publications
4.3. Interrelationships among Variables
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Eds.; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
- Motha, R.P. The Impact of Extreme Weather Events on Agriculture in the United States. In Challenges and Opportunities in Agrometeorology; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 397–407. [Google Scholar]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. Biogeosci. 2006, 111, 1–22. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nat. Cell Boil. 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D. The ecological role of climate extremes: Current understanding and future prospects. J. Ecol. 2011, 99, 651–655. [Google Scholar] [CrossRef]
- Fischer, E.M.; Beyerle, U.; Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Chang. 2013, 3, 1033–1038. [Google Scholar] [CrossRef]
- Ben-Asher, J.; Garcia, A.G.Y.; Hoogenboom, G. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 2008, 46, 595–603. [Google Scholar] [CrossRef]
- Shah, N.; Paulsen, G. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 2003, 257, 219–226. [Google Scholar] [CrossRef]
- Torrion, J.; Setiyono, T.D.; Cassman, K.; Specht, J. Soybean Phenology Simulation in the North-Central United States. Agron. J. 2011, 103, 1661–1667. [Google Scholar] [CrossRef]
- Souza, G.M.; Catuchi, T.A.; Bertolli, S.C.; Soratto, R.P. Soybean Under Water Deficit: Physiological and Yield Responses. In A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J.E., Ed.; InTech: Rijeka, Croatia, 2013; pp. 115–157. [Google Scholar]
- Jha, P.K.; Kumar, S.N.; Ines, A.V. Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: Field experiment and modeling approach. Field Crop Res. 2018, 219, 76–86. [Google Scholar] [CrossRef]
- Raz-Yaseef, N.; Billesbach, D.P.; Fischer, M.L.; Biraud, S.C.; Gunter, S.A.; Bradford, J.A.; Torn, M.S. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains. Agric. Ecosyst. Environ. 2015, 213, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Schultz, H.R. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M.; Costa, J.; Lopes, C. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Tesfahun, W. Climate change mitigation and adaptation through biotechnology approaches: A review. Cogent Food Agric. 2018, 4, 1–12. [Google Scholar]
- Pace, C. Genomic tools and plant genes to mitigate impacts of climate change and extreme environments. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Resour. 2015, 10, 553–568. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.; Moutinho-Pereira, J.; Santos, J.A. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef]
- Yadav, S.S.; Redden, R.; McNeil, D.L.; Patil, S.A. Climate change and management of cool season grain legume crops. Clim. Chang. Manag. Cool Seas Grain Legum. Crop. 2010, 2010, 1–460. [Google Scholar]
- Kenny, P.; Harrison, G.J. The effects of climate variability and change on grape suitability in Europe The Effects of Climate Variability and Change on Grape Suitability in Europe. J. Wine Res. 1992, 3, 37–41. [Google Scholar] [CrossRef]
- Tian, L.; Yuan, S.; Quiring, S.M. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. Meteorol. 2018, 249, 107–119. [Google Scholar] [CrossRef]
- Nguyen-Huy, T.; Deo, R.C.; Mushtaq, S.; An-Vo, D.-A.; Khan, S. Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach. Eur. J. Agron. 2018, 98, 65–81. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. What Do We Learn from the Weather? The New Climate-Economy Literature †. J. Econ. Lit. 2014, 52, 740–798. [Google Scholar] [CrossRef] [Green Version]
- Castells-Quintana, D.; Lopez-Uribe, M.d.; McDermott, T.K.J. Geography, institutions and development: A review of the long-run impacts of climate change. Clim. Dev. 2017, 9, 452–470. [Google Scholar] [CrossRef]
- Parihar, J.S. FASAL concept in meeting the requirements of assessment and forecasting crop production affected by extreme weather events. Mausam 2016, 67, 93–104. [Google Scholar]
- Singh, K.K.; Kalra, N. Simulating impact of climatic variability and extreme climatic events on crop production. Mausam 2016, 67, 113–130. [Google Scholar]
- Trębicki, P.; Dáder, B.; Vassiliadis, S.; Fereres, A. Insect-plant-pathogen interactions as shaped by future climate: Effects on biology, distribution, and implications for agriculture. Insect Sci. 2017, 24, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Phalkey, R.K.; Aranda-Jan, C.; Marx, S.; Höfle, B.; Sauerborn, R.; Jan, C.B.A. Systematic review of current efforts to quantify the impacts of climate change on undernutrition. Proc. Acad. Sci. USA 2015, 112, E4522–E4529. [Google Scholar] [CrossRef] [Green Version]
- Sacchelli, S.; Fabbrizzi, S.; Menghini, S. Climate change effects and adaptation strategies in the wine sector: A quantitative literature review. Wine Econ. Policy 2016, 5, 114–126. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- Guidi, C.; Di Matteo, G.; Grego, S. An overview of proven Climate Change Vulnerability Assessment tools for forests and forest-dependent communities across the globe: A literature analysis. J. For. 2018, 29, 1167–1175. [Google Scholar] [CrossRef]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable patterns of main agricultural products combining different footprint parameters. J. Clean. Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Young, I.; Smith, B.A.; Fazil, A. A systematic review and meta-analysis of the effects of extreme weather events and other weather-related variables on Cryptosporidium and Giardia in fresh surface waters. J. Water Health 2015, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kannan, S.; Gurusamy, V. Preprocessing Techniques for Text Mining. IJCSC 2014, 5, 7–16. [Google Scholar]
- Felton, A.; Fischer, J.; Lindenmayer, D.B.; Montague-Drake, R.; Lowe, A.R.; Saunders, D.; Felton, A.M.; Steffen, W.; Munro, N.T.; Youngentob, K.; et al. Climate change, conservation and management: An assessment of the peer-reviewed scientific journal literature. Biodivers. Conserv. 2009, 18, 2243–2253. [Google Scholar] [CrossRef]
- Ho-Lem, C.; Zerriffi, H.; Kandlikar, M. Who participates in the Intergovernmental Panel on Climate Change and why: A quantitative assessment of the national representation of authors in the Intergovernmental Panel on Climate Change. Environ. Chang. 2011, 21, 1308–1317. [Google Scholar] [CrossRef]
- Kiparsky, M.; Brooks, C.; Gleick, P.H. Do Regional Disparities in Research on Climate and Water Influence Adaptive Capacity? Clim. Chang. 2006, 77, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Winterhalter, L.; Mistele, B.; Jampatong, S.; Schmidhalter, U. High throughput phenotyping of canopy water mass and canopy temperature in well-watered and drought stressed tropical maize hybrids in the vegetative stage. Eur. J. Agron. 2011, 35, 22–32. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F. Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef]
- USDA/NASS. Agricultural Statistics 2015; United States Government Printing Office: Washington, DC, USA, 2015.
- OECD and FAO. World Cereal Projections; OECD and FAO: Rome, Italy, 2018; pp. 9–10. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. 2016. Available online: http://faostat.fao.org/site/291/default.aspx (accessed on 1 September 2018).
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Cammarano, D.; Tian, D. The effects of projected climate and climate extremes on a winter and summer crop in the southeast USA. Agric. Meteorol. 2018, 248, 109–118. [Google Scholar] [CrossRef]
- Coccia, M.; Bozeman, B. Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics 2016, 108, 1065–1084. [Google Scholar] [CrossRef]
- Dubbini, M.; Pezzuolo, A.; De Giglio, M.; Gattelli, M. Last generation instrument for agriculture multispectral data collection. Agric. Eng. Int. CIGR J. 2017, 19, 87–93. [Google Scholar]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Haile, M. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philos. Trans. Soc. B Boil. Sci. 2005, 360, 2169–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; von Braun, J. Climate Cange Impacts on Global Food Security. Science 2011, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Chung, U.; Gbegbelegbe, S.; Shiferaw, B.; Robertson, R.; Yun, J.I.; Tesfaye, K.; Hoogenboom, G.; Sonder, K. Modeling the effect of a heat wave on maize production in the USA and its implications on food security in the developing world. Clim. Extremes 2014, 5, 67–77. [Google Scholar] [CrossRef] [Green Version]
Class | Script for extraction |
---|---|
1. Extreme weather events (subject area: Agriculture) | (TITLE-ABS-KEY (extreme AND weather AND event*) OR TITLE-ABS-KEY (severe AND weather AND event*)) AND (LIMIT-TO (SUBJAREA, "AGRI")) |
2. Extreme weather events—Agriculture | (((TITLE-ABS-KEY (extreme AND weather AND event*)) OR (TITLE-ABS-KEY (severe AND weather AND event*))) AND (TITLE-ABS-KEY (agricult*))) |
Cluster | Lemmas and relative occurrence [%] | Cluster percentage |
---|---|---|
Climate | Climate, 16.3%, Change 11.0%, Extreme 8.0%, Weather 7.5%r, Event 6.3%, Temperature 4.7%, Water 4.1%, Drought 3.2%, Precipitation 2.7%, Rain 2.7%… | 30% |
Ecosystems | Environment 8.5%, Forest 7.7%, Population 6.1%, Animal 5.6%, Ecosystem 5.5%, Plant 4.6%, Sea 3.8%, Species 3.9%, System 3.1%, Carbon 2.8%… | 15% |
Methods | Model 11.9%, Analysis 9.1%, Forecast 3.9%, Assess 3.1%, Data 3.0%, Simulation 2.7%… | 13% |
Responses | Effect 10.1%, Stress 5.7%, Growth 5.7%, Adaptation 5.1%, Dynamic 5.0%, Response 5.0%, Disease 4.5%, Physiology 3.5%… | 11% |
Other | 31% |
Country | Single-Country | International | Total Amount |
---|---|---|---|
USA | 141 | 62 | 203 |
China | 46 | 27 | 83 |
UK | 42 | 38 | 80 |
Australia | 41 | 30 | 71 |
Canada | 40 | 23 | 63 |
Germany | 32 | 22 | 54 |
India | 50 | 13 | 63 |
Italy | 22 | 27 | 49 |
Switzerland | 11 | 16 | 27 |
Netherlands | 8 | 18 | 26 |
Country | no. Collaboration |
---|---|
USA | 62 |
UK | 38 |
Australia | 30 |
China | 27 |
Italy | 27 |
Canada | 23 |
Germany | 22 |
France | 19 |
Netherlands | 18 |
Spain | 17 |
Cluster | Lemmas and Relative occurrence [%] | Cluster Percentage |
---|---|---|
Climate | Climate, 21.1%, Change 13.0%, Extreme 7.7%, Weather 7.4%r, Event 5.7%, Water 5.4%, Drought 4.2%, Temperature 4.7%, Rain 3.6%, Precipitation 2.9%… | 31% |
Implications | Management 9.0%, Risk 7.3%, Impact 7.1%, Food 6.3%, Global 4.0%, Use 4.0%, Economy 3.7%, Human 3.1%, Variation 3.1%, Security 3.1%… | 14% |
Methods | Model 13.2%, Analysis 9.0%, Forecast 5.8%, Assess 5.4%, Data 3.7%, Development 3.5%, Simulation 3.1%, Index 2.3%… | 14% |
Agriculture | Agriculture 31.0%, Crop 14.6%, Production 9.7%, Yield 6%, Farm 5.5%, Wheat 4.3%, Maize 3.7%, Irrigation 3.4%, Quality 2.3%… | 11% |
Other | 30% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. https://doi.org/10.3390/su11092547
Cogato A, Meggio F, De Antoni Migliorati M, Marinello F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability. 2019; 11(9):2547. https://doi.org/10.3390/su11092547
Chicago/Turabian StyleCogato, Alessia, Franco Meggio, Massimiliano De Antoni Migliorati, and Francesco Marinello. 2019. "Extreme Weather Events in Agriculture: A Systematic Review" Sustainability 11, no. 9: 2547. https://doi.org/10.3390/su11092547
APA StyleCogato, A., Meggio, F., De Antoni Migliorati, M., & Marinello, F. (2019). Extreme Weather Events in Agriculture: A Systematic Review. Sustainability, 11(9), 2547. https://doi.org/10.3390/su11092547