Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development
Abstract
:1. Introduction
1.1. Student Teachers’ Knowledge of SD-Related Topics
1.2. Approach for Measuring Procedural Knowledge
- (i)
- student teachers’ effectiveness estimations differed from experts’ procedural knowledge,
- (ii)
- student teachers in bachelor differed from those in master programs regarding procedural knowledge and
- (iii)
- student teachers in biology, geography, and politics differed from each other regarding procedural knowledge.
2. Materials and Methods
2.1. Measurement Instrument and Data Collection
2.2. Validation Tools
2.3. Sample Composition
2.4. Statistical Analyses
3. Results
3.1. Comparison of the Effectiveness Estimations of Student Teachers and Experts
3.2. Comparing the Procedural Knowledge of Bachelor and Master Students
3.3. Comparing the Procedural Knowledge of Biology, Geography, and Politics Students
3.4. Indications for Validity of Measure
4. Discussion
4.1. Student Teachers’ Procedural Knowledge
4.2. Validity of the Measure
4.3. Limitations of the Study
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Solution Strategy | Sustainable Land Use vs. Ecosystem Services | Sustainable Land Use vs. Biodiversity Conservation/Climate Protection | Ecosystem Services vs. Biodiversity Conservation/Climate Protection | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MD | p | 95% CI | MD | p | 95% CI | MD | p | 95% CI | ||||
IP-1 | −0.030 | 1.00 | −0.157 | 0.097 | −0.466 | < 0.001 | −0.605 | −0.326 | −0.436 | <0.001 | −0.561 | −0.310 |
IP-2 | 0.225 | 0.001 | 0.082 | 0.367 | −0.051 | 1.00 | −0.183 | 0.081 | −0.275 | <0.001 | −0.391 | −0.160 |
IP-3 | 0.094 | 0.326 | −0.047 | −0.234 | −0.136 | 0.070 | −0.280 | 0.008 | −0.230 | <0.001 | −0.371 | −0.089 |
IP-4 | 0.183 | 0.001 | 0.062 | 0.304 | 0.043 | 1.00 | −0.065 | 0.150 | −0.140 | 0.014 | −0.259 | −0.022 |
IP-5 | 0.626 | <0.001 | 0.467 | 0.784 | −0.277 | <0.001 | −0.407 | −0.146 | −0.902 | <0.001 | −1.051 | −0.753 |
IP-6 | 0.684 | <0.001 | 0.531 | 0.836 | 0.226 | <0.001 | 0.104 | 0.349 | −0.457 | <0.001 | −0.611 | −0.303 |
IP-7 | 0.203 | 0.006 | 0.047 | 0.359 | −0.305 | <0.001 | −0.435 | −0.175 | −0.508 | <0.001 | −0.643 | −0.374 |
IP-8 | −0.013 | 1.00 | −0.159 | 0.134 | −0.453 | <0.001 | −0.588 | −0.319 | −0.441 | <0.001 | −0.570 | −0.311 |
PU-1 | −0.361 | <0.001 | 0.214 | 0.507 | 0.026 | 1.00 | −0.110 | 0.162 | −0.335 | <0.001 | −0.482 | −0.187 |
PU-2 | 0.277 | <0.001 | 0.148 | 0.405 | −0.119 | 0.037 | −0.233 | −0.005 | −0.396 | <0.001 | −0.538 | −0.253 |
PU-3 | 0.246 | <0.001 | 0.102 | 0.390 | 0.091 | 0.381 | −0.052 | 0.233 | −0.155 | 0.076 | −0.321 | 0.011 |
PU-4 | 0.349 | <0.001 | 0.223 | 0.475 | 0.153 | 0.017 | 0.021 | 0.285 | −0.196 | 0.002 | −0.334 | −0.057 |
PU-5 | 0.754 | <0.001 | 0.591 | 0.918 | 0.328 | <0.001 | 0.156 | 0.499 | −0.427 | <0.001 | −0.622 | −0.232 |
PU-6 | 0.209 | 0.015 | 0.031 | 0.386 | −0.421 | <0.001 | −0.574 | −0.269 | −0.630 | <0.001 | −0.793 | −0.467 |
PU-7 | 0.175 | 0.015 | 0.026 | 0.324 | −0.145 | 0.029 | −0.280 | −0.011 | −0.321 | <0.001 | −0.462 | −0.179 |
PU-8 | 0.655 | <0.001 | 0.497 | 0.814 | −0.004 | 1.00 | −0.141 | 0.133 | −0.660 | <0.001 | −0.818 | −0.501 |
PU-9 | 0.670 | < 0.001 | 0.506 | 0.833 | 0.232 | <0.001 | 0.106 | 0.358 | −0.438 | <0.001 | −0.589 | −0.286 |
References
- IPBES—Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia; IPBES: Bonn, Germany, 2018. [Google Scholar]
- UNESCO (United Nations Educational, Scientific and Cultural Organization). Roadmap for Implementing the Global Action Programme on Education for Sustainable Development; UNESCO: Paris, France, 2014. [Google Scholar]
- UNESCO (United Nations Educational, Scientific and Cultural Organization). Education for Sustainable Development Goals: Learning Objectives; UNESCO: Paris, France, 2017. [Google Scholar]
- KMK (Kultusministerkonferenz der Länder). Zur Situation und zu Perspektiven der Bildung für Nachhaltige Entwicklung: Bericht der Kultusministerkonferenz vom 17.03.2017. Available online: https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2017/2017_03_17-Bericht-BNE-2017.pdf (accessed on 15 June 2018).
- United Nations (UN), General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations (UN), General Assembly: New York, NY, USA, 2015. [Google Scholar]
- United Nations (UN), General Assembly. Education for Sustainable Development in the Framework of the 2030 Agenda for Sustainable Development; UN, General Assembly: New York, NY, USA, 2017. [Google Scholar]
- Leicht, A.; Combes, B.; Byun, W.J.; Agbedahin, A.V. From Agenda 21 to Target 4.7: The development of Education for Sustainable Development. In Issues and Trends in Education for Sustainable Development: Education on the Move; Leicht, A., Heiss, J., Byun, W.J., Eds.; UNESCO: Paris, France, 2018; pp. 25–38. ISBN 978-92-3-100244-1. [Google Scholar]
- Bagoly-Simó, P.; Hemmer, I. Bildung für nachhaltige Entwicklung in den Sekundarschulen: Ziele, Einblicke in die Realität, Perspektiven. 2017. Available online: https://www.ku.de/fileadmin/150305/Professur_fuer_Didaktik_der_Geographie/Forschung/Literatur/Bildung_f%c3%bcr_nachhaltige_Entwicklung_in_den_Sekundarschulen_%e2%80%93_Ziele__Einblicke_in_die_Realit%c3%a4t__Perspektiven_-_Bagoly-Simo___Hemmer.pdf (accessed on 20 September 2019).
- Singer-Brodowski, M.; Etzkorn, N.; von Seggern, J. One Transformation Path Does Not Fit All—Insights into the Diffusion Processes of Education for Sustainable Development in Different Educational Areas in Germany. Sustainability 2019, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Rieckmann, M.; Holz, V. Verankerung von BNE in der Lehrerbildung in Deutschland. Z. Int. Bildungsforschung Entwicklungspädagogik 2017, 40, 4–10. [Google Scholar]
- Rieckmann, M. Learning to transform the world: key competencies in Education for Sustainable Development. In Issues and Trends in Education for Sustainable Development: Education on the Move; Leicht, A., Heiss, J., Byun, W.J., Eds.; UNESCO: Paris, France, 2018; pp. 39–59. ISBN 978-92-3-100244-1. [Google Scholar]
- Bourn, D.; Frances, H.; Phil, B. A Review of Education for Sustainable Development and Global Citizenship Education in Teacher Education; UNESCO: Paris, France, 2017; Available online: http://unesdoc.unesco.org/images/0025/002595/259566e.pdf (accessed on 26 June 2018).
- UNESCO (United Nations Educational, Scientific and Cultural Organization). SDG 4—Education 2030: Part II, Education for Sustainable Development Beyond 2019; UNESCO: Paris, France, 2019. [Google Scholar]
- Baumert, J.; Kunter, M. Stichwort: Professionelle Kompetenz von Lehrkräften. Z. Erziehungswissenschaft 2006, 9, 469–520. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M. Das Kompetenzmodell von COACTIV. In Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Waxmann: Münster, Germany, 2011; pp. 29–53. ISBN 978-3-8309-2433-3. [Google Scholar]
- Reinke, V.; Hemmer, I. Bildung für nachhaltige Entwicklung—Über welche Kompetenzen verfügen Lehrkräfte und Akteur/-innen aus den außerschulischen Einrichtungen. Zeitschrift ZLB. KU 2017, 1, 38–42. [Google Scholar]
- Shulman, L.S. Knowledge and Teaching: Foundation of the New Reform. Harv. Educ. Rev. 1987, 57. [Google Scholar] [CrossRef]
- Hellberg-Rode, G.; Schrüfer, G. Welche spezifischen professionellen Handlungskompetenzen benötigen Lehrkräfte für die Umsetzung von Bildung für Nachhaltige Entwicklung (BNE)? Ergebnisse einer explorativen Studie. Z. Didakt. Biol. 2016, 20, 1–29. [Google Scholar] [CrossRef]
- Hellberg-Rode, G.; Schrüfer, G.; Hemmer, M. Brauchen Lehrkräfte für die Umsetzung von Bildung für nachhaltige Entwicklung (BNE) spezifische professionelle Handlungskompetenzen? Theoretische Grundlagen, Forschungsdesign und erste Ergebnisse. Z. Geographiedidakt. 2014, 42, 257–281. [Google Scholar]
- Hagedorn, G.; Loew, T.; Seneviratne, S.I.; Lucht, W.; Beck, M.-L.; Hesse, J.; Knutti, R.; Quaschning, V.; Schleimer, J.-H.; Mattauch, L.; et al. The Concerns of the Young Protesters are Justified: A Statement by Scientists for Future Concerning the Protests for more Climate Protection. GAIA Ecol. Perspect. Sci. Soc. 2019, 28, 79–87. [Google Scholar] [CrossRef]
- Schreiber, J.-R. Competencies, Themes, Standards, Design of Lessons and Curricula. In Curriculum Framework: Education for Sustainable Development, 2nd ed.; Schreiber, J.-R., Siege, H., Eds.; Engagement Global gGmbH: Bonn, Germany, 2016; pp. 86–110. ISBN 978-3-06-230062-2. [Google Scholar]
- Zamora-Polo, F.; Sánchez-Martín, J.; Corrales-Serrano, M.; Espejo-Antúnez, L. What Do University Students Know about Sustainable Development Goals? A Realistic Approach to the Reception of this UN Program Amongst the Youth Population. Sustainability 2019, 11, 3533. [Google Scholar] [CrossRef] [Green Version]
- Herman, B.C.; Feldman, A.; Vernaza-Hernandez, V. Florida and Puerto Rico Secondary Science Teachers’ Knowledge and Teaching of Climate Change Science. Int. J. Sci. Math. Educ. 2017, 15, 451–471. [Google Scholar] [CrossRef]
- Summers, M.; Kruger, C.; Childs, A.; Mant, J. Primary School Teachers’ Understanding of Environmental Issues: An Interview Study. Environ. Educ. Res. 2000, 6, 293–312. [Google Scholar] [CrossRef]
- Khalid, T. Pre-service Teachers’ Misconceptions Regarding Three Environmental Issues. Can. J. Environ. Educ. 2001, 6, 102–120. [Google Scholar]
- Boon, H.J. Climate Change? Who Knows? A Comparison of Secondary Students and Pre-service Teachers. Aust. J. Teach. Educ. 2010, 35, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Boon, H.J. Teachers and the Communication of Climate Change Science: A Critical Partnership in Australia. Procedia Soc. Behav. Sci. 2014, 116, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
- Plutzer, E.; McCaffrey, M.; Hannah, A.L.; Rosenau, J.; Berbeco, M.; Reid, A.H. Climate Confusion Among U.S. Teachers. Science 2016, 351, 664–665. [Google Scholar] [CrossRef]
- Stevenson, K.T.; Peterson, M.N.; Bradshaw, A. How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students. PLoS ONE 2016, 11, e0161462. [Google Scholar] [CrossRef] [Green Version]
- Dikmenli, M. Biology Student Teachers’ Conceptual Frameworks in Regarding Biodiversity. Education 2010, 130, 479–490. [Google Scholar]
- Lindemann-Matthies, P.; Constantinou, C.; Lehnert, H.-J.; Nagel, U.; Raper, G.; Kadji-Beltran, C. Confidence and Perceived Competence of Preservice Teachers to Implement Biodiversity Education in Primary Schools—Four comparative case studies from Europe. Int. J. Sci. Educ. 2011, 33, 2247–2273. [Google Scholar] [CrossRef]
- Fiebelkorn, F.; Menzel, S. Student Teachers’ Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country. Res. Sci. Educ. 2013, 43, 1593–1615. [Google Scholar] [CrossRef]
- Fiebelkorn, F.; Menzel, S. Biology Teachers’ Worldviews on the Global Distribution and Loss of Biodiversity: A GIS-Based Mental-Mapping Approach. Front. Psychol. 2019, 10, 1021. [Google Scholar] [CrossRef]
- Jiwa, R.A.M.; Esa, N. Student Teachers’ Knowledge of Biodiversity. Int. J. Sci. Res. Publ. 2015, 5, 1–4. [Google Scholar]
- Wagner, K.; Bergner, M.; Krause, U.-M.; Stark, R. Förderung wissenschaftlichen Denkens im Lehramtsstudium: Lernen aus eigenen und fremden Fehlern in multiplen und uniformen Kontexten. Z. Pädagogische Psychol. 2018, 32, 5–22. [Google Scholar] [CrossRef]
- Koch, S.; Barkmann, J.; Strack, M.; Sundawati, L.; Bögeholz, S. Knowledge of Indonesian University Students on the Sustainable Management of Natural Resources. Sustainability 2013, 5, 1443–1460. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.; Wagner, K.; Klopp, E.; Stark, R. Fostering of Applicable Educational Knowledge in Student Teachers: Effects of an Error-based Seminar Concept and Instructional Support during Testing on Qualities of Applicable Knowledge. J. Educ. Res. Online 2017, 9, 88–114. [Google Scholar]
- Gräsel, C. Ökologische Kompetenz: Analyse und Förderung; Ludwig-Maximilian-Universität, Fakultät für Psychologie und Pädagogik: München, Germany, 2000; in press. [Google Scholar]
- De Jong, T.; Ferguson-Hessler, M. Types and Qualities of Knowledge. J. Educ. Psychol. 1996, 31, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Voss, T.; Kunina-Habenicht, O.; Hoehne, V.; Kunter, M. Stichwort Pädagogisches Wissen von Lehrkräften: Empirische Zugänge und Befunde. Z. Erziehungswiss 2015, 18, 187–223. [Google Scholar] [CrossRef]
- Bögeholz, S.; Hössle, C.; Höttecke, D.; Menthe, J. Bewertungskompetenz. In Theorien in der Naturwissenschaftsdidaktischen Forschung; Krüger, D., Parchmann, I., Schecker, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 261–281. ISBN 978-3-662-56319-9. [Google Scholar]
- Overwien, B. Education for Global and Sustainable Development in Teacher Education. In Curriculum Framework: Education for Sustainable Development, 2nd ed.; Schreiber, J.-R., Siege, H., Eds.; Engagement Global gGmbH: Bonn, Germany, 2016; pp. 420–435. ISBN 978-3-06-230062-2. [Google Scholar]
- Richter-Beuschel, L.; Grass, I.; Bögeholz, S. How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Educ. Sci. 2018, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- OECD (Organisation for Economic Co-operation and Development). PISA 2006, Science Competencies for Tomorrow’s World; OECD: Paris, France, 2007; ISBN 9789264040007. [Google Scholar]
- Rotgans, J.I.; Schmidt, H.G. The Relation between Individual Interest and Knowledge Acquisition. Br. Educ. Res. J. 2017, 43, 350–371. [Google Scholar] [CrossRef]
- Renninger, K.A.; Hidi, S. The Power of Interest for Motivation and Engagement; Routledge Taylor & Francis Group: New York, NY, USA; London, UK, 2016; ISBN 9781138779792. [Google Scholar]
- Michalos, A.C.; Creech, H.; Swayze, N.; Maurine Kahlke, P.; Buckler, C.; Rempel, K. Measuring Knowledge, Attitudes and Behaviours Concerning Sustainable Development among Tenth Grade Students in Manitoba. Soc. Indic. Res. 2012, 106, 213–238. [Google Scholar] [CrossRef]
- Tuncer, G.; Tekkaya, C.; Sungur, S.; Cakiroglu, J.; Ertepinar, H.; Kaplowitz, M. Assessing Pre-service Teachers’ Environmental Literacy in Turkey as a Mean to Develop Teacher Education Programs. Int. J. Educ. Dev. 2009, 29, 426–436. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- European Academies’ Science Advisory Council (EASAC). Ecosystem Services, Agriculture and Neonicotinoids; EASAC Policy Report 26; EASAC Secretariat Deutsche Akademie der Naturforscher Leopoldina: Halle, Germany, 2015. [Google Scholar]
- Hopfenmuller, S.; Steffan-Dewenter, I.; Holzschuh, A. Trait-specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krewenka, K.M.; Holzschuh, A.; Tscharntke, T.; Dormann, C.F. Landscape Elements as Potential Barriers and Corridors for Bees, Wasps and Parasitoids. Biol. Conserv. 2011, 144, 1816–1825. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making; International Peat Society, International Mire Conservation Group: Greifswald, Germany, 2002; ISBN 951-97744-8-3. [Google Scholar]
- Christensen, T.R.; Friborg, T.; Byrne, K.A.; Chojnicki, B.; Christensen, T.R.; Freibauer, A.; Friborg, T.; Frolking, S.; Lindroth, A.; Mailhammer, J.; et al. EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes. In Concerted Action: Synthesis of the European Greenhouse Gas Budget; Technical Report No 4; Geosphere-Biosphere Centre, University of Lund: Lund, Sweden, 2004. [Google Scholar]
- Frolking, S.; Talbot, J.; Jones, M.C.; Treat, C.C.; Kauffman, J.B.; Tuittila, E.-S.; Roulet, N. Peatlands in the Earth’s 21st Century Climate System. Environ. Rev. 2011, 19, 371–396. [Google Scholar] [CrossRef]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Wellbeing: Current State and Trends; Hassan, R.M., Scholes, R.J., Ash, N., Eds.; Island Press: Washington, DC, USA, 2005; Volume 1, ISBN 1-55963-227-5. [Google Scholar]
- Joosten, H.; Brust, K.; Couwenberg, J.; Gerner, A.; Holsten, B.; Permien, T.; Schäfer, A.; Tanneberger, F.; Trepel, M.; Wahren, A. MoorFutures. Integration von Weiteren Ökosystemdienstleistungen Einschließlich Biodiversität in Kohlenstoffzertifikate—Standard, Methodologie und Übertragbarkeit in Andere Regionen; BfN-Skripten 350; Bundesamt für Naturschutz: Bonn, Germany, 2013. [Google Scholar]
- Biasutti, M.; Frate, S. A Validity and Reliability Study of the Attitudes toward Sustainable Development scale. Environ. Educ. Res. 2017, 23, 214–230. [Google Scholar] [CrossRef]
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). Umweltbewusstsein in Deutschland 2008: Ergebnisse Einer Repräsentativen Bevölkerungsumfrage; Sinus-Institut: Berlin, Germany, 2008; Available online: www.umweltbundesamt.de/umweltbewusstsein (accessed on 2 August 2018).
- Irfan, R.; Strack, M.; Bögeholz, S. Inwiefern interessieren sich Schülerinnen und Schüler für die biologische Vielfalt? In Proceedings of the 14. Frühjahrsschule, Fachsektion Didaktik der Biologie im VBIO, Bremen, Germany, 12–15 März 2012; Bremen University: Bremen, Germany, 2012. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Bortz, J.; Döring, N. Forschungsmethoden und Evaluation: Für Human-und Sozialwissenschaftler, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-662-07299-8. [Google Scholar]
- Wynes, S.; Nicholas, K.A. Climate Science Curricula in Canadian Secondary Schools Focus on Human Warming, not Scientific Consensus, Impacts or Solutions. PLoS ONE 2019, 14, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Cini, A.; Mifsud, M. Knowledge, Attitudes and Behaviour Towards the Environment of Secondary School Teachers. In Handbook of Lifelong Learning for Sustainable Development; Leal Filho, W., Mifsud, M., Pace, P., Eds.; World Sustainability Series; Springer: Cham, Switzerland, 2018; pp. 211–227. ISBN 978-3-319-63533-0. [Google Scholar]
- Schreiber, J.-R.; Siege, H. (Eds.) Curriculum Framework: Education for Sustainable Development, 2nd ed.; Engagement Global gGmbH: Bonn, Germany, 2016; ISBN 978-3-06-230062-2. [Google Scholar]
- KMK (Kultusministerkonferenz der Länder). Umwelt und Unterricht. Beschluss der Kultusministerkonferenz (KMK) vom 17.10.1980; KMK: Neuwied, Germany, 1980. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium—Gymnasiale Oberstufe die Gesamtschule—Gymnasiale Oberstufe das Fachgymnasium das Abendgymnasium das Kolleg Politik-Wirtschaft; Niedersächsisches Kultusministerium: Hannover, Germany, 2018. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium—Gymnasiale Oberstufe die Gesamtschule—Gymnasiale Oberstufe das Fachgymnasium das Abendgymnasium das Kolleg: Biologie; Niedersächsisches Kultusministerium: Hannover, Germany, 2017. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium—Gymnasiale Oberstufe die Gesamtschule—Gymnasiale Oberstufe das Fachgymnasium das Abendgymnasium das Kolleg: Erdkunde; Niedersächsisches Kultusministerium: Hannover, Germany, 2017. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium Schuljahrgänge 5–10. Naturwissenschaften; Niedersächsisches Kultusministeriu: Hannover, Germany, 2015. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium Schuljahrgänge 5–10: Erdkunde; Niedersächsisches Kultusministerium: Hannover, Germany, 2015. [Google Scholar]
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium Schuljahrgänge 8–10: Politik-Wirtschaft; Niedersächsisches Kultusministerium: Hannover, Germany, 2015. [Google Scholar]
- Deutsche Gesellschaft für Geographie. Bildungsstandards im Fach Geographie für den Mittleren Schulabschluss; Selbstverlag Deutsche Gesellschaft für Geographie (DGfG): Bonn, Germany, 2017. [Google Scholar]
- Detjen, J.; Kuhn, H.-W.; Massing, P.; Richter, D.; Sander, W.; Weißeno, G. Anforderungen an Nationale Bildungsstandards für den Fachunterricht in der Politischen Bildung an Schulen: Ein Entwurf; Wochenschau Verlag: Schwalbach, Germany, 2004. [Google Scholar]
- Effeney, G.; Davis, J. Education for Sustainability: A Case Study of Pre-service Primary Teachers’ Knowledge and Efficacy. Aust. J. Teach. Educ. 2013, 38, 5. [Google Scholar] [CrossRef] [Green Version]
- Mairesse, O.; Macharis, C.; Lebeau, K.; Turcksin, L. Understanding the attitude-action gap: functional integration of environmental aspects in car purchase intentions. Psicológica 2012, 33, 547–574. [Google Scholar]
- Gaspar de Carvalho, R.; Palma-Oliveira, J.M.; Corral-Verdugo, V. Why do people fail to act? Situational barriers and constraints on ecological behavior. In Psychological Approaches to Sustainability: Current Trends in Research, Theory and Practice; Corral-Verdugo, V., García-Cadena, C., Frías-Armenta, M., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 269–294. ISBN 978-1-60876-356-6. [Google Scholar]
- Von Borgstede, C.; Biel, A. Pro-Environmental Behaviour: Situational Barriers and Concern for the Good at Stake. Göteborg Psychol. Rep. 2002, 32. [Google Scholar]
- Terlau, W.; Hirsch, D. Sustainable Consumption and the Attitude-Behaviour-Gap Phenomenon—Causes and Measurements towards a Sustainable Development. Int. J. Food Syst. Dyn. 2015, 6, 159–174. [Google Scholar]
- Kreuter, F.; Presser, S.; Tourangeau, R. Social Desirability Bias in CATI, IVR, and Web Surveys: The Effects of Mode and Question Sensitivity. Public Opin. Q. 2008, 72, 847–865. [Google Scholar] [CrossRef] [Green Version]
- Bogner, K.; Landrock, U. Antworttendenzen in Standardisierten Umfragen; GESIS Leibniz Institut für Sozialwissenschaften (GESIS Survey Guidelines): Mannheim, Germany, 2015. [Google Scholar] [CrossRef]
- United Nations (UN). The Sustainable Development Goals Report 2017. Available online: https://unstats.un.org/sdgs/files/report/2017/TheSustainableDevelopmentGoalsReport2017.pdf (accessed on 28 June 2018).
- University of Koblenz-Landau. Bildung—Transformation—Nachhaltigkeit. Zertifikat für Lehramtsstudierende. Available online: https://www.uni-koblenz-landau.de/de/bildung-transformation- nachhaltigkeit (accessed on 30 October 2019).
- Eggert, S.; Bögeholz, S.; Oberle, M.; Sauer, M.; Schneider, S.; Surkamp, C. Herausforderung Interdisziplinäres Unterrichten in der Lehrerbildung—Das Göttinger Zertifikatsmodell. J. LehrerInnenbildung 2018, 18, 51–55. [Google Scholar]
- Kohlmann, E.-M.; Overwien, B. Bildung für nachhaltige Entwicklung und globale Perspektiven in der Lehrerbildung. Z. Int. Bildungsforschung Entwicklungspädagogik 2017, 40, 27–29. [Google Scholar]
- Lawson, D.F.; Stevenson, K.T.; Peterson, M.N.; Carrier, S.J.; Strnad, L.R.; Seekamp, E. Children can Foster Climate Change Concern Among their Parents. Nat. Clim. Chang. 2019, 9, 458–462. [Google Scholar] [CrossRef]
Solution Strategies Regarding Insects and Pollination | Fields of Action | |||||
Sustainable Land Use | Ecosystem Services | Protection | ||||
M | SD | M | SD | M | SD | |
IP-1 Individuals ask in petitions to introduce bee-friendly laws. | 2.48 | 0.92 | 2.51 | 0.89 | 2.95 | 0.92 |
2.14 | 0.82 | 2.24 | 0.78 | 2.31 | 0.85 | |
IP-2 Include contents of pollinator respective bee-related problems in curricula for schools, environment-related vocational training, and university studies. | 2.95 | 0.96 | 2.73 | 0.98 | 3.00 | 0.87 |
2.54 | 1.03 | 2.41 | 1.09 | 2.69 | 0.97 | |
IP-3 The government provides financial incentives for using bee-friendly bloomers as biomass in biogas power stations. | 2.83 | 0.87 | 2.73 | 0.81 | 2.97 | 0.92 |
2.68 | 0.96 | 2.68 | 0.69 | 2.77 | 0.66 | |
IP-4 Support pollinator-friendly agriculture by purchasing ecologically produced products. | 2.99 | 0.73 | 2.81 | 0.73 | 2.95 | 0.75 |
2.88 | 0.68 | 3.00 | 0.78 | 2.93 | 0.85 | |
IP-5 Farmers reduce their use of pesticides and fertilizers. | 3.32 | 0.74 | 2.70 | 0.91 | 3.60 | 0.59 |
3.56 | 0.60 | 3.31 | 0.66 | 3.58 | 0.68 | |
IP-6 Realign agricultural subsidies to stop promoting conventional and intensive agriculture. | 3.27 | 0.81 | 2.59 | 0.85 | 3.04 | 0.81 |
3.77 | 0.44 | 3.42 | 0.60 | 3.47 | 0.52 | |
IP-7 Design a cultural landscape to serve pollinators as food source and habitat. | 3.32 | 0.74 | 3.11 | 0.79 | 3.62 | 0.60 |
3.60 | 0.51 | 3.42 | 0.60 | 3.85 | 0.37 | |
IP-8 Strengthen the protection of wild bees and other pollinating insects. | 3.39 | 0.80 | 3.41 | 0.76 | 3.85 | 0.39 |
3.49 | 0.88 | 3.78 | 0.43 | 3.86 | 0.36 | |
Solution Strategies Regarding Peatland Use | Fields of Action | |||||
Sustainable Land Use | Ecosystem Services | Protection | ||||
M | SD | M | SD | M | SD | |
PU-1 After rewetting of intensively agricultural used peatlands, farmers grow moisture-loving plants, e.g., reed. | 2.87 | 0.84 | 2.51 | 0.85 | 2.84 | 0.78 |
2.75 | 0.96 | 2.19 | 0.91 | 2.69 | 0.92 | |
PU-2 Inform the public more intensively about the important role of peatlands, e.g., via media or educational projects. | 3.09 | 0.88 | 2.81 | 0.95 | 3.21 | 0.82 |
2.75 | 0.71 | 2.57 | 0.85 | 2.78 | 0.86 | |
PU-3 Allow companies to incorporate CO2 savings from peatland conservation into the EU emissions trading. | 2.66 | 0.90 | 2.42 | 0.87 | 2.57 | 0.95 |
3.11 | 0.80 | 2.88 | 0.82 | 2.92 | 0.68 | |
PU-4 Investigate cultivation methods that preserve peatlands to apply them on agricultural-used peatlands. | 3.30 | 0.67 | 2.95 | 0.71 | 3.14 | 0.79 |
3.09 | 0.67 | 2.91 | 0.64 | 2.94 | 0.60 | |
PU-5 Cultivate peatlands without fertilizers and pesticides. | 3.34 | 0.77 | 2.59 | 0.95 | 3.02 | 1.02 |
3.20 | 0.92 | 3.08 | 0.87 | 2.67 | 1.20 | |
PU-6 Raise the water level of dehydrated peatlands to the water level of intact, near-nature peatlands. | 3.07 | 0.87 | 2.86 | 0.93 | 3.49 | 0.72 |
3.08 | 0.82 | 3.13 | 0.87 | 3.48 | 0.77 | |
PU-7 Intensify the investigation of regenerative peat substitutes. | 2.99 | 0.83 | 2.82 | 0.85 | 3.14 | 0.77 |
3.34 | 0.69 | 3.13 | 0.86 | 3.31 | 0.76 | |
PU-8 Apply existing laws stricter, e.g., prohibit the converting of grassland into maize cultivation. | 3.46 | 0.71 | 2.80 | 0.95 | 3.46 | 0.71 |
3.50 | 0.71 | 3.28 | 0.65 | 3.03 | 0.97 | |
PU-9 Provide agricultural subsidies only for sustainably managed peatlands. | 3.41 | 0.76 | 2.74 | 0.90 | 3.18 | 0.78 |
3.64 | 0.64 | 3.39 | 0.72 | 3.47 | 0.71 |
Insects and Pollination | Peatland Use | ||||||
---|---|---|---|---|---|---|---|
Item | rmANOVA | p | Partial η2 | Item | rmANOVA | p | Partial η2 |
IP-1 | F(2, 466) = 46.28 | < 0.001 | 0.166 | PU-1 | F(2, 464) = 22.88 | < 0.001 | 0.090 |
IP-2 1 | F(1.89, 445.12) = 14.72 | < 0.001 | 0.059 | PU-2 1 | F(1.88, 439.38) = 28.82 | < 0.001 | 0.110 |
IP-3 | F(2, 468) = 7.74 | < 0.001 | 0.032 | PU-3 1 | F(1.92, 443.02) = 7.85 | 0.001 | 0.033 |
IP-4 | F(2, 468) = 7.94 | < 0.001 | 0.033 | PU-4 | F(2, 468) = 20.49 | < 0.001 | 0.080 |
IP-5 1 | F(1.91, 446.45) = 115.76 | < 0.001 | 0.331 | PU-5 1 | F(1.91, 441.32) = 52.95 | < 0.001 | 0.186 |
IP-6 1 | F(1.86, 433.68) = 68.23 | < 0.001 | 0.227 | PU-6 1 | F(1.94, 453.93) = 44.29 | < 0.001 | 0.159 |
IP-7 1 | F(1.90, 446.26) = 38.42 | < 0.001 | 0.141 | PU-7 | F(2, 466) = 14.95 | < 0.001 | 0.060 |
IP-8 1 | F(1.84, 432.71) = 84.11 | < 0.001 | 0.264 | PU-8 1 | F(1.93, 452.24) = 72.82 | < 0.001 | 0.237 |
PU-9 1 | F(1.84, 427.16) = 61.43 | < 0.001 | 0.209 |
Fields of Action | |||
---|---|---|---|
Sustainable Land Use | Ecosystem Services | Protection | |
Student teachers (n = 236) | 0.741 | 0.848 | 0.718 |
Experts (n = 20) | 0.846 | 0.910 | 0.861 |
Source of Variance | dfw | dfb | F | p | eta2 |
---|---|---|---|---|---|
Study program | 1 | 233 | 2.72 | 0.100 | 0.012 |
Field of action | 2 | 466 | 29.19 | < 0.001 | 0.111 |
Study program * field of action | 2 | 466 | 1.00 | 0.357 | 0.004 |
Study Program | Fields of Action | ||
---|---|---|---|
Sustainable Land Use | Ecosystem Services | Protection | |
Bachelor (n = 123) | 0.748 | 0.837 | 0.648 |
Master (n = 112) | 0.729 | 0.861 | 0.757 |
Subject | Fields of Action | ||
---|---|---|---|
Sustainable Land Use | Ecosystem Services | Protection | |
Biology (n = 154) | 0.744 | 0.831 | 0.726 |
Geography (n = 80) | 0.738 | 0.856 | 0.703 |
Politics (n = 24) | 0.716 | 0.823 | 0.755 |
ESD | Total | Study Program | Subject | |||||||||
BA | MA | Biology | Geography | Politics | ||||||||
n = 236 | n = 123 | n = 112 | n = 154 | n = 80 | n = 24 | |||||||
Total | BA | MA | Total | BA | MA | Total | BA | MA | ||||
At school | 43.6 | 49.6 | 37.5 | 40.5 | 46.5 | 32.8 | 55.0 | 64.4 | 42.9 | 58.3 | 66.7 | 53.3 |
At university | 55.9 | 41.5 | 72.3 | 51.0 | 32.6 | 74.6 | 76.3 | 68.9 | 85.6 | 33.3 | 22.2 | 40.0 |
Topic | All Subjects | Biology | Geography | Politics | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Rank | Mean | SD | Mean | SD | Mean | SD | |
Diversity of species | 2.63 | 0.80 | 5 | 2.41 | 0.76 | 2.72 | 0.83 | 2.91 | 0.90 |
Diversity of ecosystems | 2.59 | 0.80 | 4 | 2.42 | 0.72 | 2.58 | 0.80 | 2.96 | 1.07 |
Genetic diversity | 2.76 | 1.03 | 6 | 2.41 | 0.86 | 3.14 | 1.04 | 3.13 | 1.06 |
Bees and pollination | 2.76 | 1.09 | 7 | 2.55 | 1.01 | 2.95 | 1.13 | 3.30 | 1.15 |
Ecosystem services | 3.38 | 1.05 | 11 | 3.36 | 1.04 | 3.12 | 1.02 | 3.78 | 1.09 |
Climate change | 2.10 | 0.79 | 1 | 2.15 | 0.81 | 1.84 | 0.67 | 2.35 | 0.83 |
Importance of peatlands | 3.68 | 1.10 | 12 | 3.67 | 1.08 | 3.59 | 1.10 | 3.83 | 1.27 |
Sustainable development | 2.54 | 0.87 | 3 | 2.68 | 0.88 | 2.12 | 0.63 | 2.57 | 1.04 |
Sustainable consumption | 2.19 | 0.84 | 2 | 2.28 | 0.89 | 1.96 | 0.74 | 2.13 | 0.69 |
Sustainable land use | 2.96 | 1.04 | 8 | 3.05 | 1.00 | 2.49 | 0.90 | 3.52 | 1.10 |
Education for sustainable development | 3.25 | 1.13 | 10 | 3.45 | 1.10 | 2.74 | 1.10 | 3.39 | 1.23 |
Environmental policy | 3.11 | 1.08 | 9 | 3.34 | 1.01 | 2.89 | 0.97 | 2.00 | 0.74 |
Agricultural policy | 3.75 | 1.00 | 13 | 3.93 | 0.93 | 3.50 | 0.97 | 3.22 | 1.17 |
Validation Tool | Sustainable Land Use | Ecosystem Services | Protection | Average | |||||
---|---|---|---|---|---|---|---|---|---|
ASD | Environ-ment | r = 0.230 p < 0.001 | r = −0.044 p = 0.499 | r = 0.207 p < 0.001 | r = 0.024 p = 0.719 | ||||
Economy | r = 0.239 p < 0.001 | r = −0.052 p = 0.424 | |||||||
Society | r = 0.21 p = 0.001 | r = −0.029 p = 0.658 | |||||||
Average | r = 0.425 p < 0.001 | r = −0.044 p = 0.499 | |||||||
Responsibilities | Total | r = 0.396 p < 0.001 | r = −0.022 p = 0.740 |
Subscale | Domain | ||||
---|---|---|---|---|---|
M | SD | M | SD | ||
Biodiversity loss | 3.71 | 0.48 | Research | 3.82 | 0.49 |
Biodiversity protection | 3.59 | 0.56 | Politics and law | 3.21 | 0.65 |
Access and benefit-sharing | 3.39 | 0.58 | Economy | 3.46 | 0.60 |
Ecosystem services | 3.43 | 0.48 | Ecology | 3.88 | 0.49 |
Biodiversity in general | 3.55 | 0.51 | Society | 3.80 | 0.56 |
Biodiversity and climate change | 3.73 | 0.59 |
Subscale of Interests in Biodiversity Issues | Sustainable Land Use | Ecosystem Services | Protection | |||
---|---|---|---|---|---|---|
IP | PU | IP | PU | IP | PU | |
Biodiversity loss | r = 0.282 p = 0.008 | r = 0.129 p = 0.231 | r = 0.204 p = 0.057 | r = 0.099 p = 0.360 | r = −0.248 p = 0.020 | r = −0.038 p = 0.722 |
Biodiversity conservation | r = 0.251 p = 0.018 | r = 0.140 p = 0.194 | r = 0.194 p = 0.080 | r = 0.106 p = 0.327 | r = 0.220 p = 0.039 | r = −0.036 p = 0.736 |
Access and benefit sharing | r = 0.446 p < 0.001 | r = 0.229 p = 0.033 | r = 0.303 p = 0.004 | r = 0.093 p = 0.393 | r = 0.358 p = 0.001 | r = 0.168 p = 0.119 |
Ecosystem services | r = 0.169 p = 0.115 | r = 0.028 p = 0.795 | r = 0.097 p = 0.368 | r = 0.025 p = 0.818 | r = 0.109 p = 0.313 | r = −0.058 p = 0.592 |
Biodiversity in general | r = 0.326 p = 0.002 | r = 0.156 p = 0.148 | r = 0.196 p = 0.069 | r = 0.132 p = 0.223 | r = 0.193 p = 0.074 | r = 0.031 p = 0.777 |
Climate change | r = 0.309 p = 0.003 | r = 0.197 p = 0.065 | r = 0.227 p = 0.033 | r = 0.141 p = 0.191 | r = 0.259 p = 0.015 | r = 0.025 p = 0.816 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter-Beuschel, L.; Bögeholz, S. Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability 2020, 12, 79. https://doi.org/10.3390/su12010079
Richter-Beuschel L, Bögeholz S. Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability. 2020; 12(1):79. https://doi.org/10.3390/su12010079
Chicago/Turabian StyleRichter-Beuschel, Lisa, and Susanne Bögeholz. 2020. "Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development" Sustainability 12, no. 1: 79. https://doi.org/10.3390/su12010079
APA StyleRichter-Beuschel, L., & Bögeholz, S. (2020). Student Teachers’ Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability, 12(1), 79. https://doi.org/10.3390/su12010079