Soft Computing Applications in Air Quality Modeling: Past, Present, and Future
Abstract
:1. Introduction
2. Input and Output Selection Approaches
3. Analysis of Available Soft Computing Models
3.1. Artificial Neural Networks Models
3.2. Support Vector Machine Models
3.3. Evolutionary Neural Network and Support Vector Machine Models
3.4. Fuzzy Logic and Neuro-Fuzzy Models
3.5. Deep Learning Models
3.6. Ensemble Models
3.7. Hybrid and Other Models
3.8. Generalized Overview
4. Potential Soft Computing Models and Approaches
4.1. Variations of ANN Models
4.2. Evolutionary Fuzzy and Neuro-Fuzzy Models
4.3. Group Method Data Handling Models and Functional Network Models
4.4. Case-Based Reasoning and Knowledge-Based Models
4.5. Ensemble and Hybrid Models
4.6. Development of Universal Models
4.7. Appropriate Input Selection Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Acronyms
Acronym | Explication |
AI | Artificial Intelligence |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
ANN | Artificial Neural Network |
ANN | Artificial Neural Networks |
ANVMD | Adaptive Noise and Variational Mode Decomposition |
AQM | Air Quality Modeling |
ARIMA | Autoregressive Integrated Moving Average |
BA | Bat Algorithm |
BP-NN | Backpropagation Neural Networks |
BR | Bias Ratio |
BSA | Backtracking Search Algorithm |
CART | Classification and Regression Trees |
CBR | Case-Based Reasoning |
CCA | Cross-Correlation Analysis |
CEEMD | Complimentary Ensemble Empirical Mode Decomposition |
CH4 | Methane |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
COx | Oxides of Carbon |
CSA | Cuckoo Search Algorithm |
CW-SVM | Chance Theory Assisted Weighted Support Vector Machine |
DE | Differential Evolution |
EELM | Ensemble Extreme Learning Machine |
ELM | Extreme Learning Machine |
EM | Expectation Maximization |
EO | Evolutionary Optimization |
FCM | Fuzzy c-Means |
FF-NN | Feed Forward Neural Network |
FIS | Fuzzy Inference System |
FKM | Fuzzy k-Means |
FLM | Fuzzy Logic Model |
FNM | Functional Network Models |
FPA | Flower Pollination Algorithm |
GA | Genetic Algorithm |
GC-NN | Graph Convolutional Neural Network |
GMDH | Group Method Data Handling |
GR-NN | General Regression Neural Networks |
GSA | Gravitational Search Algorithm |
GWO | Grey Wolf Optimizer |
HC | Hydrocarbons |
HCHO | Formaldehyde |
HMM | Hidden Markov Model |
IA | Index of Agreement |
IA-SVM | Immune-Algorithm-Tuned Support Vector Machine |
KBS | Knowledge-Based System |
LM-NN | Levenberg–Marquardt Neural Network |
LVQ | Learning Vector Quantization |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MBE | Mean Bias Error |
MLP-NN | Multilayer Perceptron Neural Networks |
MLR | Multiple Linear Regression |
NARX-NN | Non-Linear Autoregressive Exogenous Neural Networks |
NH3 | Ammonia |
NMHC | Non-Methane Hydrocarbons |
NO | Nitric Oxide |
NO2 | Nitrogen Dioxide |
NOx | Oxides of Nitrogen |
O3 | Ozone |
Pb | Lead |
PCA | Principal Component Analysis |
PCR | Principal Component Regression |
PM | Particulate Matters |
P-NN | Pruned Neural Networks |
P-NN | Pruned Neural Network |
PSE | Proportion of Systematic Error |
PSO | Particle Swarm Optimization |
QPSO | Quantum-Behaved Particle Swarm Optimization |
R | Correlation Coefficient |
R2 | Determination Coefficient |
RBF-NN | Radial Basis Function Neural Networks |
RF | Random Forest |
RFP | Random Forest Partitioned |
RMSE | Root Mean Squared Error |
R-NN | Recursive Neural Networks |
RSP | Respirable Suspended Particle |
RST | Rough Set Theory |
RST | Rough Set Theory |
SCA | Sine Cosine Algorithm |
SMLP-NN | Square Multilayer Perceptron Neural Networks |
SO2 | Sulfur Dioxide |
SOx | Oxides of Sulphur |
SPI | Statistical Performance Indices |
SVM | Support Vector Machine |
TSP | Total Suspended Particulate |
TSP | Total Suspended Particulate Matter |
TT | Time Taken |
TVOC | Total Volatile Organic Compounds |
VARMA | Vector Autoregressive Moving-Average |
VR | Variance Ratio |
WELM | Weighted Extreme Learning Machine |
W-NN | Ward Neural Networks |
References
- Li, Y.; Guan, D.; Tao, S.; Wang, X.; He, K. A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. J. Clean. Prod. 2018, 184, 959–968. [Google Scholar] [CrossRef]
- Ortínez-Alvarez, A.; Peralta, O.; Alvarez-Ospina, H.; Martínez-Arroyo, A.; Castro, T.; Páramo, V.H.; Ruiz-Suárez, L.G.; Garza, J.; Saavedra, I.; de la Luz Espinosa, M.; et al. Concentration profile of elemental and organic carbon and personal exposure to other pollutants from brick kilns in Durango, Mexico. Air Qual. Atmos. Heal. 2018, 11, 285–300. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Du, M.; Zhang, W.; Huang, X.; Zhang, Y.; Yang, Y.; Zhang, J.; Deng, S.; Shen, F.; et al. Indentifying the major air pollutants base on factor and cluster analysis, a case study in 74 Chinese cities. Atmos. Environ. 2016, 144, 37–46. [Google Scholar] [CrossRef]
- Chen, Y.; Du, W.; Zhuo, S.; Liu, W.; Liu, Y.; Shen, G.; Wu, S.; Li, J.; Zhou, B.; Wang, G.; et al. Stack and fugitive emissions of major air pollutants from typical brick kilns in China. Environ. Pollut. 2017, 224, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Hvidtfeldt, U.A.; Sørensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjønneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Ehrampoush, M.H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ. Res. 2019, 170, 141–150. [Google Scholar] [CrossRef]
- Liu, F.; Chen, G.; Huo, W.; Wang, C.; Liu, S.; Li, N.; Mao, S.; Hou, Y.; Lu, Y.; Xiang, H. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Environ. Pollut. 2019, 252, 1235–1245. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Huang, J.; Zhang, L.; Song, F.; Mao, H.; Chen, K.; Chen, J.; Liu, Y.; Jiang, G.; et al. Nonmalignant respiratory mortality and long-term exposure to PM10 and SO2: A 12-year cohort study in northern China. Environ. Pollut. 2017, 231, 761–767. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Alimissis, A.; Philippopoulos, K.; Tzanis, C.G.; Deligiorgi, D. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 2018, 191, 205–213. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Taylan, O. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 2017, 150, 356–365. [Google Scholar] [CrossRef]
- Reikard, G. Volcanic emissions and air pollution: Forecasts from time series models. Atmos. Environ. X 2019, 1, 100001. [Google Scholar] [CrossRef]
- Silibello, C.; D’Allura, A.; Finardi, S.; Bolignano, A.; Sozzi, R. Application of bias adjustment techniques to improve air quality forecasts. Atmos. Pollut. Res. 2015, 6, 928–938. [Google Scholar] [CrossRef]
- Sozzi, R.; Bolignano, A.; Ceradini, S.; Morelli, M.; Petenko, I.; Argentini, S. Quality control and gap-filling of PM10 daily mean concentrations with the best linear unbiased estimator. Environ. Monit. Assess. 2017, 189, 562. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Goyal, P. Forecasting of air quality in Delhi using principal component regression technique. Atmos. Pollut. Res. 2011, 2, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, A.; Misstear, B.; Broderick, B. Real time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmos. Environ. 2015, 103, 53–65. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R.; Rybarczyk, Y.; Zalakeviciute, R. Machine Learning Approaches for Outdoor Air Quality Modelling: A Systematic Review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wu, P.; Chen, H.; Zhou, L.; Tao, Z.; Zhu, J.; Wu, P.; Chen, H.; Zhou, L.; Tao, Z. A Hybrid Forecasting Approach to Air Quality Time Series Based on Endpoint Condition and Combined Forecasting Model. Int. J. Environ. Res. Public Health 2018, 15, 1941. [Google Scholar] [CrossRef] [Green Version]
- Hrust, L.; Klaić, Z.B.; Križan, J.; Antonić, O.; Hercog, P. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmos. Environ. 2009, 43, 5588–5596. [Google Scholar] [CrossRef]
- Radojević, D.; Antanasijević, D.; Perić-Grujić, A.; Ristić, M.; Pocajt, V. The significance of periodic parameters for ANN modeling of daily SO2 and NOx concentrations: A case study of Belgrade, Serbia. Atmos. Pollut. Res. 2019, 10, 621–628. [Google Scholar] [CrossRef]
- Pawlak, I.; Jarosławski, J.; Pawlak, I.; Jarosławski, J. Forecasting of Surface Ozone Concentration by Using Artificial Neural Networks in Rural and Urban Areas in Central Poland. Atmosphere 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Jothilakshmi, S.; Gudivada, V.N. Large scale data enabled evolution of spoken language research and applications. In Handbook of Statistics; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 35, pp. 301–340. ISBN 9780444637444. [Google Scholar]
- Shafiullah, M.; Ijaz, M.; Abido, M.A.; Al-Hamouz, Z. Optimized Support Vector Machine & Wavelet Transform for Distribution Grid Fault Location. In Proceedings of the 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, Spain, 4–6 April 2017; pp. 77–82. [Google Scholar]
- Shahriar, M.S.; Shafiullah, M.; Rana, M.J. Stability enhancement of PSS-UPFC installed power system by support vector regression. Electr. Eng. 2017, 1–12. [Google Scholar] [CrossRef]
- Ortiz-García, E.G.; Salcedo-Sanz, S.; Pérez-Bellido, Á.M.; Portilla-Figueras, J.A.; Prieto, L. Prediction of hourly O3 concentrations using support vector regression algorithms. Atmos. Environ. 2010, 44, 4481–4488. [Google Scholar] [CrossRef]
- García Nieto, P.J.; Sánchez Lasheras, F.; García-Gonzalo, E.; de Cos Juez, F.J. PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: A case study. Sci. Total Environ. 2018, 621, 753–761. [Google Scholar] [CrossRef]
- Luna, A.S.; Paredes, M.L.L.; de Oliveira, G.C.G.; Corrêa, S.M. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos. Environ. 2014, 98, 98–104. [Google Scholar] [CrossRef]
- Chen, S.; Mihara, K.; Wen, J. Time series prediction of CO2, TVOC and HCHO based on machine learning at different sampling points. Build. Environ. 2018, 146, 238–246. [Google Scholar] [CrossRef]
- Grivas, G.; Chaloulakou, A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40, 1216–1229. [Google Scholar] [CrossRef]
- Tanaka, K.; Sugeno, M. Introduction to fuzzy modeling. In Fuzzy Systems; Springer: New York, NY, USA, 1998; pp. 63–89. [Google Scholar]
- Hossain, M.I.; Khan, S.A.; Shafiullah, M.; Hossain, M.J. Design and implementation of MPPT controlled grid connected photovoltaic system. In Proceedings of the 2011 IEEE Symposium on Computers & Informatics, Kuala Lumpur, Malaysia, 20–23 March 2011; pp. 284–289. [Google Scholar]
- Hoon Joo, Y.; Chen, G. Fuzzy systems modeling. In Encyclopedia of Artificial Intelligence; IGI Global: Hershey, PA, USA, 2011; pp. 734–743. [Google Scholar]
- Jorquera, H.; Pérez, R.; Cipriano, A.; Espejo, A.; Victoria Letelier, M.; Acuña, G. Forecasting ozone daily maximum levels at Santiago, Chile. Atmos. Environ. 1998, 32, 3415–3424. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. Neuro-fuzzy and neural network systems for air quality control. Atmos. Environ. 2009, 43, 4811–4821. [Google Scholar] [CrossRef]
- Morabito, F.C.; Versaci, M. Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Neural Networks 2003, 16, 493–506. [Google Scholar] [CrossRef]
- Ghoneim, O.A.; Doreswamy; Manjunatha, B.R. Forecasting of ozone concentration in smart city using deep learning. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2017, pp. 1320–1326. [Google Scholar]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Valput, D.; Navares, R.; Aznarte, J.L. Forecasting hourly NO2 concentrations by ensembling neural networks and mesoscale models. Neural. Comput. Appl. 2019. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22, 97–103. [Google Scholar] [CrossRef]
- Juhos, I.; Makra, L.; Tóth, B. Forecasting of traffic origin NO and NO2 concentrations by Support Vector Machines and neural networks using Principal Component Analysis. Simul. Model. Pract. Theory 2008, 16, 1488–1502. [Google Scholar] [CrossRef]
- Cabaneros, S.M.S.; Calautit, J.K.S.; Hughes, B.R. Hybrid Artificial Neural Network Models for Effective Prediction and Mitigation of Urban Roadside NO2 Pollution. Energy Procedia 2017, 142, 3524–3530. [Google Scholar] [CrossRef]
- Özbay, B.; Keskin, G.A.; Doǧruparmak, Ş.Ç.; Ayberk, S. Predicting tropospheric ozone concentrations in different temporal scales by using multilayer perceptron models. Ecol. Inform. 2011, 6, 242–247. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.N.; Abdel-Aal, R. Self organizing ozone model for Empty Quarter of Saudi Arabia: Group method data handling based modeling approach. Atmos. Environ. 2012, 59, 398–407. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Palazoglu, A.; Sun, W. Prediction of ozone levels using a Hidden Markov Model (HMM) with Gamma distribution. Atmos. Environ. 2012, 62, 64–73. [Google Scholar] [CrossRef]
- Kamińska, J.A. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci. Total Environ. 2019, 651, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Ayturan, Y.A.; Ayturan, Z.C.; Altun, H.O. Air pollution modelling with deep learning: A review. Inter. J. Environ. Pollut. Environ. Model. 2018, 1, 58–62. [Google Scholar]
- Zhou, K.; Xie, R. Review of neural network models for air quality prediction. In Proceedings of the Advances in Intelligent Systems and Computing AISC; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1117, pp. 83–90. [Google Scholar]
- Iskandaryan, D.; Ramos, F.; Trilles, S. Air Quality Prediction in Smart Cities Using Machine Learning Technologies based on Sensor Data: A Review. Appl. Sci. 2020, 10, 2401. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Mukherjee, A.; Jana, D.K. Prediction of maximum oil-yield from almond seed in a chemical industry: A novel type-2 fuzzy logic approach. South African J. Chem. Eng. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Razzak, S.A.; Shafiullah, M.; Rahman, S.M.; Hossain, M.M.; Zhu, J. A Multigene Genetic Programming approach for modeling effect of particle size in a liquid–solid circulating fluidized bed reactor. Chem. Eng. Res. Des. 2018, 134, 370–381. [Google Scholar] [CrossRef]
- Walton, R.; Binns, A.; Bonakdari, H.; Ebtehaj, I.; Gharabaghi, B. Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling. J. Hydrol. 2019, 575, 671–689. [Google Scholar] [CrossRef]
- Shafiullah, M.; Juel Rana, M.; Shafiul Alam, M.; Abido, M.A. Online Tuning of Power System Stabilizer Employing Genetic Programming for Stability Enhancement. J. Electr. Syst. Inf. Technol. 2018. [Google Scholar] [CrossRef]
- Balaguer Ballester, E.; Camps, I.; Valls, G.; Carrasco-Rodriguez, J.; Soria Olivas, E.; del Valle-Tascon, S. Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecol. Modell. 2002, 156, 27–41. [Google Scholar] [CrossRef]
- Corani, G. Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning. Ecol. Modell. 2005, 185, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Shlens, J. A Tutorial on Principal Component Analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Wise, B.M.; Ricker, N.L.; Veltkamp, D.J. Upset and Sensor Failure Detection in Multivariate Processes; University of Washington: Seattle, WA, USA, 1989. [Google Scholar]
- Joback, K.G. A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques; Massachusetts Institute of Technology: Cambridge, MA, USA, 1984. [Google Scholar]
- Fukunaga, K.; Koontz, W.L.G. Application of the Karhunen-Loève Expansion to Feature Selection and Ordering. IEEE Trans. Comput. 1970, C-19, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998, 44, 1596–1610. [Google Scholar] [CrossRef]
- MacGregor, J.F.; Kourti, T. Statistical process control of multivariate processes. Control Eng. Pract. 1995, 3, 403–414. [Google Scholar] [CrossRef]
- Kresta, J.V.; Macgregor, J.F.; Marlin, T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69, 35–47. [Google Scholar] [CrossRef]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Wold, S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemom. Intell. Lab. Syst. 1994, 23, 149–161. [Google Scholar] [CrossRef]
- Lu, W.Z.; Wang, W.J.; Fan, H.Y.; Leung, A.Y.T.; Xu, Z.B.; Lo, S.M.; Wong, J.C.K. Prediction of Pollutant Levels in Causeway Bay Area of Hong Kong Using an Improved Neural Network Model. J. Environ. Eng. 2002, 128, 1146–1157. [Google Scholar] [CrossRef]
- Mu, B.; Li, S.; Yuan, S. An improved effective approach for urban air quality forecast. In Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD); IEEE: Piscataway, NJ, USA, 2017; pp. 935–942. [Google Scholar]
- Dubey, A. Feature Selection Using Random Forest. Available online: https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f (accessed on 28 August 2019).
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Abingdon, UK, 2017; ISBN 9781315139470. [Google Scholar]
- Shang, Z.; Deng, T.; He, J.; Duan, X. A novel model for hourly PM2.5 concentration prediction based on CART and EELM. Sci. Total Environ. 2019, 651, 3043–3052. [Google Scholar] [CrossRef]
- Feng, R.; Zheng, H.; Gao, H.; Zhang, A.; Huang, C.; Zhang, J.; Luo, K.; Fan, J. Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China. J. Clean. Prod. 2019, 231, 1005–1015. [Google Scholar] [CrossRef]
- Li, J.; Shao, X.; Sun, R. A DBN-Based Deep Neural Network Model with Multitask Learning for Online Air Quality Prediction. J. Control Sci. Eng. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sailaja, N.V.; Sree, L.P.; Mangathayaru, N. Rough set based feature selection approach for text mining. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 40–45. [Google Scholar]
- Zhang, Q.; Xie, Q.; Wang, G. A survey on rough set theory and its applications. CAAI Trans. Intell. Technol. 2016, 1, 323–333. [Google Scholar] [CrossRef]
- Lei, L.; Chen, W.; Xue, Y.; Liu, W. A comprehensive evaluation method for indoor air quality of buildings based on rough sets and a wavelet neural network. Build. Environ. 2019, 106296. [Google Scholar] [CrossRef]
- Liu, J.; Zuo, B.; Zeng, X.; Vroman, P.; Rabenasolo, B. Nonwoven uniformity identification using wavelet texture analysis and LVQ neural network. Expert Syst. Appl. 2010, 37, 2241–2246. [Google Scholar] [CrossRef]
- Jiang, P.; Dong, Q.; Li, P. A novel hybrid strategy for PM2.5 concentration analysis and prediction. J. Environ. Manag. 2017, 196, 443–457. [Google Scholar] [CrossRef]
- Gan, K.; Sun, S.; Wang, S.; Wei, Y. A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration. Atmos. Pollut. Res. 2018, 9, 989–999. [Google Scholar] [CrossRef]
- Zhao, F.; Li, W. A Combined Model Based on Feature Selection and WOA for PM2.5 Concentration Forecasting. Atmosphere 2019, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Cortina–Januchs, M.G.; Quintanilla–Dominguez, J.; Vega–Corona, A.; Andina, D. Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico. Atmos. Pollut. Res. 2015, 6, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.P.; Pai, P.F.; Yang, S.L. Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms. Appl. Math. Comput. 2011, 217, 5318–5327. [Google Scholar] [CrossRef]
- Ben Ishak, A. Variable selection based on statistical learning approaches to improve PM10 concentration forecasting. J. Environ. Informatics 2017, 30, 79–94. [Google Scholar] [CrossRef]
- Liu, W.; Guo, G.; Chen, F.; Chen, Y. Meteorological pattern analysis assisted daily PM2.5 grades prediction using SVM optimized by PSO algorithm. Atmos. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Liu, D.; Li, L.; Liu, D.; Li, L. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 7085–7099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karatzas, K.; Kaltsatos, S. Air pollution modelling with the aid of computational intelligence methods in Thessaloniki. Simul. Model. Pract. Theory 2007, 15, 1310–1319. [Google Scholar] [CrossRef]
- Andretta, M.; Eleuteri, A.; Fortezza, F.; Manco, D.; Mingozzi, L.; Serra, R.; Tagliaferri, R. Neural networks for sulphur dioxide ground level concentrations forecasting. Neural Comput. Appl. 2000, 9, 93–100. [Google Scholar] [CrossRef]
- Biancofiore, F.; Verdecchia, M.; Di Carlo, P.; Tomassetti, B.; Aruffo, E.; Busilacchio, M.; Bianco, S.; Di Tommaso, S.; Colangeli, C. Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 2015, 514, 379–387. [Google Scholar] [CrossRef]
- Gualtieri, G.; Carotenuto, F.; Finardi, S.; Tartaglia, M.; Toscano, P.; Gioli, B. Forecasting PM10 hourly concentrations in northern Italy: Insights on models performance and PM10 drivers through self-organizing maps. Atmos. Pollut. Res. 2018, 9, 1204–1213. [Google Scholar] [CrossRef]
- Boznar, M.; Lesjak, M.; Mlakar, P. A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmos. Environ. Part B. Urban Atmos. 1993, 27, 221–230. [Google Scholar] [CrossRef]
- Tanaka, K.; Sano, M.; Watanabe, H. Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique. IEEE Trans. Fuzzy Syst. 1995, 3, 271–279. [Google Scholar] [CrossRef]
- Ruiz-Suarez, J.C.; Mayora, O.A.; Smith-Perez, R.; Ruiz-Suarez, L.G. A Neural Network-based Prediction Model of Ozone for Mexico City. WIT Trans. Ecol. Environ. 1994, 3. [Google Scholar] [CrossRef]
- Spellman, G. An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom. Appl. Geogr. 1999, 19, 123–136. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 1999, 33, 709–719. [Google Scholar] [CrossRef]
- Heo, J.-S.; Kim, D.-S. A new method of ozone forecasting using fuzzy expert and neural network systems. Sci. Total Environ. 2004, 325, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.; Trier, A.; Reyes, J. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 2000, 34, 1189–1196. [Google Scholar] [CrossRef]
- Yildirim, Y.; Bayramoglu, M. Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak. Chemosphere 2006, 63, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.; Reyes, J. Prediction of Particlulate Air Pollution using Neural Techniques. Neural Comput. Appl. 2001, 10, 165–171. [Google Scholar] [CrossRef]
- Nebot, À.; Acosta, J.; Mugica, V. Environmental modeling by means of genetic fuzzy systems. In Proceedings of the IEEE International Conference on Fuzzy Systems, London, UK, 23–26 July 2007. [Google Scholar]
- Chelani, A.B.; Chalapati Rao, C.; Phadke, K.; Hasan, M. Prediction of sulphur dioxide concentration using artificial neural networks. Environ. Model. Softw. 2002, 17, 159–166. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.; Al-Alawi, S. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ. Model. Softw. 2002, 17, 219–228. [Google Scholar] [CrossRef]
- Jain, S.; Khare, M. Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways. Air Qual. Atmos. Heal. 2010, 3, 203–212. [Google Scholar] [CrossRef]
- Hooyberghs, J.; Mensink, C.; Dumont, G.; Fierens, F.; Brasseur, O. A neural network forecast for daily average PM10 concentrations in Belgium. Atmos. Environ. 2005, 39, 3279–3289. [Google Scholar] [CrossRef]
- Hájek, P.; Olej, V. Ozone prediction on the basis of neural networks, support vector regression and methods with uncertainty. Ecol. Inform. 2012, 12, 31–42. [Google Scholar] [CrossRef]
- Varela, C.A.R.; Rey, M.A.M.; Varela, A.R.; Nieto, L.D.A. Genetic Fuzzy System for the prediction of air pollution level by Particulate Matter—Case study: Bogotá. Ingeniería 2012, 17, 1. [Google Scholar] [CrossRef]
- Ordieres, J.B.; Vergara, E.P.; Capuz, R.S.; Salazar, R.E. Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 2005, 20, 547–559. [Google Scholar] [CrossRef]
- Abd Rahman, N.H.; Lee, M.H.; Latif, M.T.; Suhartono, S. Forecasting of Air Pollution Index with Artificial Neural Network. J. Teknol. 2013, 63. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Sanchis, J.; Martín-Guerrero, J.D.; Soria-Olivas, E.; Vila-Francés, J.; Carrasco, J.L.; del Valle-Tascón, S. Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration. Atmos. Environ. 2006, 40, 6173–6180. [Google Scholar] [CrossRef]
- Azadeh, A.; Sheikhalishahi, M.; Saberi, M.; Mostaghimi, M.H. An intelligent multivariate approach for optimum forecasting of daily ozone concentration in large metropolitans with incomplete inputs. Int. J. Product. Qual. Manag. 2013, 12, 209. [Google Scholar] [CrossRef]
- Perez, P.; Reyes, J. An integrated neural network model for PM10 forecasting. Atmos. Environ. 2006, 40, 2845–2851. [Google Scholar] [CrossRef]
- Savic, M.; Mihajlovic, I.N.; Zivkovic, Z. An ANFIS-Based Air Quality Model for Prediction of SO2 Concentration in Urban Area. SSRN Electron. J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, T.A.; Coulibaly, P.; Kanaroglou, P. Ground-level ozone forecasting using data-driven methods. Air Qual. Atmos. Heal. 2008, 1, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Goyal, P.; Upadhyay, A. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India. Atmos. Environ. 2015, 102, 239–248. [Google Scholar] [CrossRef]
- Kurt, A.; Gulbagci, B.; Karaca, F.; Alagha, O. An online air pollution forecasting system using neural networks. Environ. Int. 2008, 34, 592–598. [Google Scholar] [CrossRef]
- Mihalache, S.F.; Popescu, M.; Oprea, M. Particulate matter prediction using ANFIS modelling techniques. In Proceedings of the 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015—Joint Conference SINTES 19, SACCS 15, SIMSIS 19; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 895–900. [Google Scholar]
- Prasad, K.; Gorai, A.K.; Goyal, P. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos. Environ. 2016, 128, 246–262. [Google Scholar] [CrossRef]
- Kurt, A.; Oktay, A.B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 2010, 37, 7986–7992. [Google Scholar] [CrossRef]
- Wahid, H.; Ha, Q.P.; Duc, H.; Azzi, M. Neural network-based meta-modelling approach for estimating spatial distribution of air pollutant levels. Appl. Soft Comput. 2013, 13, 4087–4096. [Google Scholar] [CrossRef]
- Yeganeh, B.; Hewson, M.G.; Clifford, S.; Knibbs, L.D.; Morawska, L. A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environ. Model. Soft. 2017, 88, 84–92. [Google Scholar] [CrossRef] [Green Version]
- De Gennaro, G.; Trizio, L.; Di Gilio, A.; Pey, J.; Pérez, N.; Cusack, M.; Alastuey, A.; Querol, X. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Sci. Total Environ. 2013, 463–464, 875–883. [Google Scholar] [CrossRef]
- Yeganeh, B.; Hewson, M.G.; Clifford, S.; Tavassoli, A.; Knibbs, L.D.; Morawska, L. Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environ. Model. Soft. 2018, 100, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-J.; Hsieh, Y.-Y.; Lin, H.-C. Fuzzy inference system for modeling the environmental risk map of air pollutants in Taiwan. J. Environ. Manag. 2019, 246, 808–820. [Google Scholar] [CrossRef]
- Özdemir, U.; Taner, S. Impacts of Meteorological Factors on PM10: Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) Approaches. Environ. Forensics 2014, 15, 329–336. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Pruthi, D. Evolutionary Techniques for Optimizing Air Quality Model. Proc. Comput. Sci. 2020, 167, 1872–1879. [Google Scholar] [CrossRef]
- Moustris, K.P.; Proias, G.T.; Larissi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Prognosis of maximum daily surface ozone concentration within the greater Athens urban area, Greece. Glob. NEST J. 2014, 16, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Zeinalnezhad, M.; Chofreh, A.G.; Goni, F.A.; Klemeš, J.J. Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. J. Clean. Prod. 2020, 261, 121218. [Google Scholar] [CrossRef]
- Faris, H.; Alkasassbeh, M.; Rodan, A. Artificial Neural Networks for Surface Ozone Prediction: Models and Analysis. Polish J. Environ. Stud. 2014, 23, 341–348. [Google Scholar]
- Ha, Q.P.; Wahid, H.; Duc, H.; Azzi, M. Enhanced radial basis function neural networks for ozone level estimation. Neurocomputing 2015, 155, 62–70. [Google Scholar] [CrossRef]
- Solazzo, E.; Bianconi, R.; Vautard, R.; Appel, K.W.; Moran, M.D.; Hogrefe, C.; Bessagnet, B.; Brandt, J.; Christensen, J.H.; Chemel, C.; et al. Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmos. Environ. 2012, 53, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Lind, P.G.; Raischel, F.; Trigo, R.; Mendes, M. Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos. Pollut. Res. 2015, 6, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Bing, G.; Meré, J.O.; Cabrera, C.B. Prediction models for ozone in metropolitan area of Mexico City based on artificial intelligence techniques. Int. J. Inf. Dec. Sci. 2015, 7, 115. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [Google Scholar] [CrossRef]
- Niu, M.; Wang, Y.; Sun, S.; Li, Y. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting. Atmos. Environ. 2016, 134, 168–180. [Google Scholar] [CrossRef]
- Chellali, M.R.; Abderrahim, H.; Hamou, A.; Nebatti, A.; Janovec, J. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers. Environ. Sci. Pollut. Res. 2016, 23, 14008–14017. [Google Scholar] [CrossRef]
- Niu, M.; Gan, K.; Sun, S.; Li, F. Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting. J. Environ. Manag. 2017, 196, 110–118. [Google Scholar] [CrossRef]
- Perez, P.; Gramsch, E. Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes. Atmos. Environ. 2016, 124, 22–27. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Qiu, W.; Wang, J.; Fang, Y. An ensemble spatiotemporal model for predicting PM2.5 concentrations. Int. J. Environ. Res. Public Health 2017, 14, 549. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.K.; Oh, H.R.; Ho, C.H.; Kim, J.; Song, C.K.; Chang, L.S.; Lee, J.B. Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns. Environ. Pollut. 2016, 218, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, G. A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction. Neurocomputing 2018, 314, 198–206. [Google Scholar] [CrossRef]
- Peng, H.; Lima, A.R.; Teakles, A.; Jin, J.; Cannon, A.J.; Hsieh, W.W. Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual. Atmos. Heal. 2017, 10, 195–211. [Google Scholar] [CrossRef]
- Rahimi, A. Short-term prediction of NO2 and NOx concentrations using multilayer perceptron neural network: A case study of Tabriz, Iran. Ecol. Process. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhai, B.; Chen, J. Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China. Sci. Total Environ. 2018, 635, 644–658. [Google Scholar] [CrossRef]
- Shtein, A.; Kloog, I.; Schwartz, J.; Silibello, C.; Michelozzi, P.; Gariazzo, C.; Viegi, G.; Forastiere, F.; Karnieli, A.; Just, A.C.; et al. Estimating Daily PM2.5 and PM10 over Italy Using an Ensemble Model. Environ. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Gao, M.; Yin, L.; Ning, J. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmos. Environ. 2018, 184, 129–139. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Xie, Y.; Petersen, A.K.; Bouarar, I.; Flemming, J.; Gauss, M.; Jiang, F.; Kouznetsov, R.; Kranenburg, R.; Mijling, B.; et al. Ensemble forecasts of air quality in eastern China—Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1. Geosci. Model Dev. 2019, 12, 33–67. [Google Scholar] [CrossRef] [Green Version]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef]
- Palomares-Salas, J.C.; González-de-la-Rosa, J.J.; Agüera-Pérez, A.; Sierra-Fernández, J.M.; Florencias-Oliveros, O. Forecasting PM10 in the Bay of Algeciras Based on Regression Models. Sustainability 2019, 11, 968. [Google Scholar] [CrossRef] [Green Version]
- Maciąg, P.S.; Kasabov, N.; Kryszkiewicz, M.; Bembenik, R. Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area. Environ. Model. Softw. 2019, 118, 262–280. [Google Scholar] [CrossRef]
- Schornobay-Lui, E.; Alexandrina, E.C.; Aguiar, M.L.; Hanisch, W.S.; Corrêa, E.M.; Corrêa, N.A. Prediction of short and medium term PM10 concentration using artificial neural networks. Manag. Environ. Qual. An Int. J. 2019, 30, 414–436. [Google Scholar] [CrossRef]
- Masih, A. Application of ensemble learning techniques to model the atmospheric concentration of SO2. Glob. J. Environ. Sci. Manag. 2019, 5, 309–318. [Google Scholar] [CrossRef]
- Ventura, L.M.B.; de Oliveira Pinto, F.; Soares, L.M.; Luna, A.S.; Gioda, A. Forecast of daily PM2.5 concentrations applying artificial neural networks and Holt–Winters models. Air Qual. Atmos. Heal. 2019, 12, 317–325. [Google Scholar] [CrossRef]
- Masih, A. Application of Random Forest Algorithm to Predict the Atmospheric Concentration of NO2. In Proceedings of the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 252–255. [Google Scholar]
- Mohebbi, M.R.; Karimi Jashni, A.; Dehghani, M.; Hadad, K. Short-Term Prediction of Carbon Monoxide Concentration Using Artificial Neural Network (NARX) Without Traffic Data: Case Study: Shiraz City. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 533–540. [Google Scholar] [CrossRef]
- Mohan, S.; Saranya, P. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration. J. Air Waste Manag. Assoc. 2019, 69, 220–233. [Google Scholar] [CrossRef]
- Abdul Aziz, F.A.B.; Rahman, N.; Mohd Ali, J. Tropospheric ozone formation estimation in Urban City, Bangi, Using Artificial Neural Network (ANN). Comput. Intell. Neurosci. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Xu, Y.; Chen, C. Improved pollution forecasting hybrid algorithms based on the ensemble method. Appl. Math. Model. 2019, 73, 473–486. [Google Scholar] [CrossRef]
- Resmi, C.T.; Nishanth, T.; Satheesh Kumar, M.K.; Balachandramohan, M.; Valsaraj, K.T. Long-term variations of air quality influenced by surface ozone in a coastal site in India: Association with synoptic meteorological conditions with model simulations. Atmosphere 2020, 11, 193. [Google Scholar]
- Feng, X.; Fu, T.-M.; Cao, H.; Tian, H.; Fan, Q.; Chen, X. Neural network predictions of pollutant emissions from open burning of crop residues: Application to air quality forecasts in southern China. Atmos. Environ. 2019, 204, 22–31. [Google Scholar] [CrossRef]
- Savi, F.; Nemitz, E.; Coyle, M.; Aitkenhead, M.; Frumau, K.; Gerosa, G.; Finco, A.; Gruening, C.; Goded, I.; Loubet, B.; et al. Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions. Front. For. Glob. Chang. 2020, 3, 42. [Google Scholar] [CrossRef]
- Shishegaran, A.; Saeedi, M.; Kumar, A.; Ghiasinejad, H. Prediction of air quality in Tehran by developing the nonlinear ensemble model. J. Clean. Prod. 2020, 259, 120825. [Google Scholar] [CrossRef]
- Kow, P.Y.; Wang, Y.S.; Zhou, Y.; Kao, I.F.; Issermann, M.; Chang, L.C.; Chang, F.J. Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2.5 forecasting. J. Clean. Prod. 2020, 261, 121285. [Google Scholar] [CrossRef]
- Sun, W.; Li, Z. Hourly PM2.5 concentration forecasting based on feature extraction and stacking-driven ensemble model for the winter of the Beijing-Tianjin-Hebei area. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Photphanloet, C.; Lipikorn, R. PM10 concentration forecast using modified depth-first search and supervised learning neural network. Sci. Total Environ. 2020, 727, 138507. [Google Scholar] [CrossRef]
- Al-Alawi, S.M.; Abdul-Wahab, S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Soft. 2008, 23, 396–403. [Google Scholar] [CrossRef]
- Athira, V.; Geetha, P.; Vinayakumar, R.; Soman, K.P. DeepAirNet: Applying Recurrent Networks for Air Quality Prediction. Proc. Comput. Sci. 2018, 132, 1394–1403. [Google Scholar] [CrossRef]
- Freeman, B.S.; Taylor, G.; Gharabaghi, B.; Thé, J. Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc. 2018, 68, 866–886. [Google Scholar] [CrossRef]
- Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU. IEEE Access 2019, 7, 76690–76698. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.P.; Lin, C.; Tan, Y.; Zhang, J. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 2019, 116885. [Google Scholar] [CrossRef]
- Zarandi, M.H.F.; Faraji, M.R.; Karbasian, M. Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities. Appl. Soft Comput. 2012, 12, 291–301. [Google Scholar] [CrossRef]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S.; Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Goyal, P. Forecasting of Air Quality Index in Delhi Using Neural Network Based on Principal Component Analysis. Pure Appl. Geophys. 2013, 170, 711–722. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, J.J.; Liu, X.; Wang, J.Z. Prediction of Ozone Concentration in Semi-Arid Areas of China Using a Novel Hybrid Model. J. Environ. Inform. 2013, 22, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Taşpınar, F. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models. J. Air Waste Manag. Assoc. 2015, 65, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Wang, W.; Leung, A.Y.T.; Lo, S.M.; Yuen, R.K.K.; Xu, Z.; Fan, H. Air pollutant parameter forecasting using support vector machines. In Proceedings of the International Joint Conference on Neural Networks, Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 630–635. [Google Scholar]
- Wang, W.; Xu, Z.; Weizhen Lu, J. Three improved neural network models for air quality forecasting. Eng. Comput. 2003, 20, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Lu, W.-Z.; Wang, W.-J. Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 2005, 59, 693–701. [Google Scholar] [CrossRef]
- Sharma, S.; Kalra, U.; Srivathsan, S.; Rana, K.P.S.; Kumar, V. Efficient air pollutants prediction using ANFIS trained by Modified PSO algorithm. In Proceedings of the 4th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Wang, P.; Liu, Y.; Qin, Z.; Zhang, G. A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 2015, 505, 1202–1212. [Google Scholar] [CrossRef]
- Mehdipour, V.; Memarianfard, M. Ground-level O3 sensitivity analysis using support vector machine with radial basis function. Int. J. Environ. Sci. Technol. 2019, 16, 2745–2754. [Google Scholar] [CrossRef]
- Mishra, D.; Goyal, P. Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra. Atmos. Pollut. Res. 2015, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Faris, H.; Ghatasheh, N.; Rodan, A.; Abu-Faraj, M.M.; Cornuelle, B.D. Predicting Surface Ozone Concentrations using Support Vector Regression. Life Sci. J. 2014, 11, 126–131. [Google Scholar]
- Bai, Y.; Li, Y.; Wang, X.; Xie, J.; Li, C. Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 2016, 7, 557–566. [Google Scholar] [CrossRef]
- Suleiman, A.; Tight, M.R.; Quinn, A.D. Hybrid Neural Networks and Boosted Regression Tree Models for Predicting Roadside Particulate Matter. Environ. Model. Assess. 2016, 21, 731–750. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.-C.; Binaykia, A.; Chang, P.-C.; Tiwari, M.K.; Tsao, C.-C. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 2017, 12, e0179763. [Google Scholar] [CrossRef]
- Yang, W.; Deng, M.; Xu, F.; Wang, H. Prediction of hourly PM2.5 using a space-time support vector regression model. Atmos. Environ. 2018, 181, 12–19. [Google Scholar] [CrossRef]
- Li, W.; Kong, D.; Wu, J. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China. Comput. Intell. Neurosci. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Q.; Yu, D.; Gu, Y. Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms. Appl. Sci. 2019, 9, 4069. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Sun, J. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J. Environ. Manag. 2017, 188, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Cai, J.; Han, H.; Cai, J. Predicting PM2.5 concentrations at a regional background station using second order self-organizing fuzzy neural network. Atmosphere 2017, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Debnath, J.; Majumder, D.; Biswas, A. Air quality assessment using weighted interval type-2 fuzzy inference system. Ecol. Inform. 2018, 46, 133–146. [Google Scholar] [CrossRef]
- Lu, W.Z.; Fan, H.Y.; Lo, S.M. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing 2003, 51, 387–400. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, P.; She, Q.; Lin, G. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environ. Pollut. 2018, 241, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Kapageridis, I.K.; Triantafyllou, A.G. A Genetically Optimised Neural Network ForPrediction Of Maximum Hourly PM10 Concentration—Semantic Scholar. In Proceedings of the 12th International Conference on Modeling, Monitoring and Management of Air Pollution; Wessex Institute of Technology: Rhodes, Greece, 2004; pp. 161–170. [Google Scholar]
- Eldakhly, N.M.; Aboul-Ela, M.; Abdalla, A. A Novel Approach of Weighted Support Vector Machine with Applied Chance Theory for Forecasting Air Pollution Phenomenon in Egypt. Int. J. Comput. Intell. Appl. 2018, 17. [Google Scholar] [CrossRef]
- Niska, H.; Hiltunen, T.; Karppinen, A.; Ruuskanen, J.; Kolehmainen, M. Evolving the neural network model for forecasting air pollution time series. Eng. Appl. Artif. Intell. 2004, 17, 159–167. [Google Scholar] [CrossRef]
- Xu, S.; Zou, B.; Shafi, S.; Sternberg, T. A hybrid Grey-Markov/ LUR model for PM10 concentration prediction under future urban scenarios. Atmos. Environ. 2018, 187, 401–409. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S.; Kang, C.-C. Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting. Sci. Total Environ. 2019, 651, 230–240. [Google Scholar] [CrossRef]
- Antanasijević, D.Z.; Pocajt, V.V.; Povrenović, D.S.; Ristić, M.D.; Perić-Grujić, A.A. PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 2013, 443, 511–519. [Google Scholar] [CrossRef]
- Yadav, V.; Nath, S. Novel hybrid model for daily prediction of PM10 using principal component analysis and artificial neural network. Int. J. Environ. Sci. Technol. 2019, 16, 2839–2848. [Google Scholar] [CrossRef]
- Elangasinghe, M.A.; Singhal, N.; Dirks, K.N.; Salmond, J.A. Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5, 696–708. [Google Scholar] [CrossRef] [Green Version]
- De Mattos Neto, P.S.G.; Cavalcanti, G.D.C.; Madeiro, F.; Ferreira, T.A.E. An Approach to Improve the Performance of PM Forecasters. PLoS ONE 2015, 10, e0138507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghari Esfandani, M.; Nematzadeh, H. Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network. J. AI Data Min. 2016, 4, 49–54. [Google Scholar]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef]
- Saxena, A.; Shekhawat, S. Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine. J. Environ. Public Health 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Long, Z. PM2.5 Prediction Based on Neural Network. In Proceedings of the 11th International Conference on Intelligent Computation Technology and Automation, ICICTA 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 44–47. [Google Scholar]
- Chen, S.; Wang, J.Q.; Zhang, H.Y. A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting. Technol. Forecast. Soc. Change 2019, 146, 41–54. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China. Atmos. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Bui, X.-N.; Lee, C.W.; Nguyen, H.; Bui, H.-B.; Long, N.Q.; Le, Q.-T.; Nguyen, V.-D.; Nguyen, N.-B.; Moayedi, H.; Bui, X.-N.; et al. Estimating PM10 Concentration from Drilling Operations in Open-Pit Mines Using an Assembly of SVR and PSO. Appl. Sci. 2019, 9, 2806. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Qiu, X.; Yin, Y.; Fang, M.; Liu, X.; Zhao, X.; Shi, Y. Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting. Atmos. Pollut. Res. 2019, 10, 1326–1335. [Google Scholar] [CrossRef]
- Li, X.; Luo, A.; Li, J.; Li, Y. Air Pollutant Concentration Forecast Based on Support Vector Regression and Quantum-Behaved Particle Swarm Optimization. Environ. Model. Assess. 2019, 24, 205–222. [Google Scholar] [CrossRef]
- Wang, J.; Du, P.; Hao, Y.; Ma, X.; Niu, T.; Yang, W. An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting. J. Environ. Manag. 2020, 255, 109855. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, J.; Ma, X.; Lu, H.; Bai, L.; Wang, J.; Ma, X.; Lu, H. Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 1994; ISBN 0132733501. [Google Scholar]
- Park, D.; Rilett, L.R.; Han, G. Spectral Basis Neural Networks for Real-Time Travel Time Forecasting. J. Transp. Eng. 1999, 125, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Afandizadeh, S.; Kianfar, J. A Hybrid Neuro-Genetic Approach to Short-Term Traffic Volume Prediction. Int. J. Civ. Eng. 2009, 7, 41–48. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In 5th Annual Workshop on Computational Learning Theory—COLT ’92, Proc. Conf.; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1475732643. [Google Scholar]
- Vapnik, V.; Golowich, S.E.; Smola, A.J. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Adv. Neural Inf. Process. Syst. 1997, 9, 281–287. [Google Scholar]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining Know. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, Z.; Yu, J.; Kim, G.; Hwang, S. Development of NOx reduction system utilizing artificial neural network (ANN) and genetic algorithm (GA). J. Clean. Prod. 2019, 232, 1418–1429. [Google Scholar] [CrossRef]
- Masiur Rahman, S.; Khondaker, A.N.; Imtiaz Hossain, M.; Shafiullah, M.; Hasan, M.A. Neurogenetic modeling of energy demand in the United Arab Emirates, Saudi Arabia, and Qatar. Environ. Prog. Sustain. Energy 2017, 36. [Google Scholar] [CrossRef]
- Ijaz, M.; Shafiullah, M.; Abido, M.A. Classification of power quality disturbances using Wavelet Transform and Optimized ANN. In Proceedings of the 18th International Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; pp. 1–6. [Google Scholar]
- Vonk, E.; Jain, L.C.; Johnson, R.P.; Ray, P. Automatic Generation of Neural Network Architecture Using Evolutionary Computation; World Scientific Inc.: River Edge, NJ, USA, 1997; ISBN 9810231067. [Google Scholar]
- Shafiullah, M.; Abido, M.; Abdel-Fattah, T. Distribution Grids Fault Location employing ST based Optimized Machine Learning Approach. Energies 2018, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Karray, F.O.; De Silva, C.W. Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications; Pearson/Addison Wesley: Boston, MA, USA, 2004; ISBN 0321116178. [Google Scholar]
- Von Altrock, C. Fuzzy Logic and Neuro Fuzzy Applications Explained; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995; ISBN 0133684652. [Google Scholar]
- Tanyildizi, H. Fuzzy logic model for prediction of mechanical properties of lightweight concrete exposed to high temperature. Mater. Des. 2009, 30, 2205–2210. [Google Scholar] [CrossRef]
- Godil, S.; Shamim, M.; Enam, S.; Qidwai, U. Fuzzy logic: A “simple” solution for complexities in neurosciences. Surg. Neurol. Int. 2011, 2. [Google Scholar] [CrossRef] [Green Version]
- Allibhai, E. Building A Deep Learning Model Using Keras; Towards Data Science Inc.: Toronto, ON, Canada, 2018. [Google Scholar]
- Idri, A.; Hosni, M.; Abran, A. Systematic Mapping Study of Ensemble Effort Estimation. In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering, Rome, Italy, 27–28 April 2016; pp. 132–139. [Google Scholar]
- Assi, K.J.; Shafiullah, M.; Md Nahiduzzaman, K.; Mansoor, U. Travel-To-School Mode Choice Modelling Employing Artificial Intelligence Techniques: A Comparative Study. Sustainability 2019, 11, 4484. [Google Scholar] [CrossRef] [Green Version]
- Werbin-Ofir, H.; Dery, L.; Shmueli, E. Beyond majority: Label ranking ensembles based on voting rules. Expert Syst. Appl. 2019, 136, 50–61. [Google Scholar] [CrossRef]
- Hosni, M.; Abnane, I.; Idri, A.; Carrillo de Gea, J.M.; Fernández Alemán, J.L. Reviewing ensemble classification methods in breast cancer. Comput. Methods Programs Biomed. 2019, 177, 89–112. [Google Scholar] [CrossRef]
- Demir, N. Ensemble Methods: Elegant Techniques to Produce Improved Machine Learning Results. Available online: https://www.toptal.com/machine-learning/ensemble-methods-machine-learning (accessed on 2 August 2019).
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 1993, 6, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Hammer, B.; Gersmann, K. A note on the universal approximation capability of support vector machines. Neural Process. Lett. 2003, 17, 43–53. [Google Scholar] [CrossRef]
- Ying, H. General Takagi-Sugeno fuzzy systems are universal approximators. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems Proceedings—IEEE World Congress on Computational Intelligence; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 1998; Volume 1, pp. 819–823. [Google Scholar]
- Morabito, F.C.; Marino, D.; Ricca, B. Мanagement of uncertainty in environmental problems: An assesment of technical aspects and policies. In Handbook of Management under Uncertainty; Springer: Berlin/Heidelberg, Germany, 2001; pp. 747–799. [Google Scholar]
- Herrera, F.; Lozano, M.; Verdegay, J.L. Dynamic and heuristic fuzzy connectives-based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms. Int. J. Intell. Syst. 1998, 11, 1013–1040. [Google Scholar] [CrossRef]
- Cordón, O.; Gomide, F.; Herrera, F.; Hoffmann, F.; Magdalena, L. Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets Syst. 2004, 141, 5–31. [Google Scholar] [CrossRef]
- Hassan, M.R.; Arafat, S.M.; Begg, R.K. Fuzzy-Genetic Model for the Identification of Falls Risk Gait. In Proceedings of the Procedia Computer Science; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 82, pp. 4–11. [Google Scholar]
- Chatterjee, A.; Chatterjee, R.; Matsuno, F.; Endo, T. Neuro-fuzzy state modeling of flexible robotic arm employing dynamically varying cognitive and social component based PSO. Meas. J. Int. Meas. Confed. 2007, 40, 628–643. [Google Scholar] [CrossRef]
- Dolgopolov, P.; Konstantinov, D.; Rybalchenko, L.; Muhitovs, R. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms. In Proceedings of the Procedia Computer Science; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 149, pp. 11–18. [Google Scholar]
- Ashish, K.; Dasari, A.; Chattopadhyay, S.; Hui, N.B. Genetic-neuro-fuzzy system for grading depression. Appl. Comput. Informatics 2018, 14, 98–105. [Google Scholar] [CrossRef]
- Douiri, M.R. Particle swarm optimized neuro-fuzzy system for photovoltaic power forecasting model. Sol. Energy 2019, 91–104. [Google Scholar] [CrossRef]
- Karnik, N.N.; Mendel, J.M. Applications of type-2 fuzzy logic systems: Handling the uncertainty associated with surveys. In Proceedings of the FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315); IEEE: Piscataway, NJ, USA, 1999; Volume 3, pp. 1546–1551. [Google Scholar]
- Shafaei Bajestani, N.; Vahidian Kamyad, A.; Nasli Esfahani, E.; Zare, A. Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model. Eur. J. Oper. Res. 2018, 264, 859–869. [Google Scholar] [CrossRef]
- Sharifian, A.; Ghadi, M.J.; Ghavidel, S.; Li, L.; Zhang, J. A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data. Renew. Energy 2018, 120, 220–230. [Google Scholar] [CrossRef]
- Barron, A. Predicted squared error: A criterion for automatic model selection. In Proceedings of the Self-Organizing Methods in Modeling; Marcel Dekker: New York, NY, USA, 1984; pp. 87–103. [Google Scholar]
- Castillo, E. Functional Networks. Neural Process. Lett. 1998, 7, 151–159. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Y.; Huang, H.; Tang, Z. Functional networks and applications: A survey. Neurocomputing 2019, 335, 384–399. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Zhang, X.; Chen, Z. A novel state of health estimation method of Li-ion battery using group method of data handling. J. Power Sources 2016, 327, 457–464. [Google Scholar] [CrossRef]
- Liu, H.; Duan, Z.; Wu, H.; Li, Y.; Dong, S. Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement 2019, 148, 106971. [Google Scholar] [CrossRef]
- Kolodner, J.L. An introduction to case-based reasoning. Artif. Intell. Rev. 1992, 6, 3–34. [Google Scholar] [CrossRef]
- Aamodt, A.; Plaza, E. Case-based reasoning: Foundational issues, methodological variations, and system approaches. J. AI Commun. 1994, 7, 39–59. [Google Scholar] [CrossRef]
- Meyer, M.D.; Watson, L.S.; Walton, M.; Skinner, R.E. Artificial Intelligence in Transportation: Information for Application; National Research Council: Washington, DC, USA, 2007. [Google Scholar]
- Abutair, H.Y.A.; Belghith, A. Using Case-Based Reasoning for Phishing Detection. In Proceedings of the Procedia Computer Science; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 109, pp. 281–288. [Google Scholar]
- Raza, B.; Kumar, Y.J.; Malik, A.K.; Anjum, A.; Faheem, M. Performance prediction and adaptation for database management system workload using Case-Based Reasoning approach. Inf. Syst. 2018, 76, 46–58. [Google Scholar] [CrossRef]
- Blondet, G.; Le Duigou, J.; Boudaoud, N. A knowledge-based system for numerical design of experiments processes in mechanical engineering. Expert Syst. Appl. 2019, 122, 289–302. [Google Scholar] [CrossRef]
- Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning and Data Mining, 2nd ed.; Springer: New York, NY, USA, 2017; ISBN 9781489976857. [Google Scholar]
Inputs | Outputs | ||
---|---|---|---|
Meteorological data | Air pollutant data | Geographical data | API or AQI COx NOx O3 Pb PM2.5 PM10 (TSP/RSP) SOx TVOC |
General weather condition Temperatures Wind speed Wind direction Wind bearing Atmospheric pressure Relative humidity Solar radiation Sunshine duration Precipitation/rain Air mass origin Moisture content Dew point Urban heat island Visibility Cloud cover Stability class Mixing height Planetary layer height Solar elevation Friction velocity | AQI COx NH3 NOx O3 Pb PM2.5 PM10 (TSP or RSP) SOx TVOC | Altitude Longitude Latitude | |
Sustainability and economic parameters | |||
Gross domestic product Gross inland energy consumption Production of primary coal and lignite Paper and paperboard Round wood Sand wood Refined copper, aluminum, pig iron, crude steel, and fertilizers Incineration of wood Motorization rate | |||
Other data types | |||
Direct industrial and thermal power plant data Satellite data (aerosol optical depth) Daily fire pixel observations Drilling diameter Moisture and slit content Rock mass density Rebound hardness number | |||
Traffic data | |||
Vehicle movement Vehicle volume Vehicle emission Vehicle type (two- or three-wheelers, diesel- or gasoline-powered) | |||
Temporal data | |||
Hour of the day Day of the week and month Month of the year Weekday or weekend day Sine and cosine of the hour Sine of the weekday |
Year | Ref. | Study Region | Model Name | Outputs | Year | Ref. | Study Region | Model Name | Outputs |
---|---|---|---|---|---|---|---|---|---|
ANN Models | Fuzzy Logic and Neuro-Fuzzy Models | ||||||||
1993 | [90] | Šoštanj, Slovenia | MLP-NN | SO2 | 1995 | [91] | Japan | Neuro-fuzzy system | CO |
1994 | [92] | Mexico | ANN | O3 | 1998 | [35] | Santiago, Chile | Fuzzy logic model | O3 |
1999 | [93] | UK | MLP-NN | O3 | 2003 | [37] | Villa San Giovanni, Italy | Neuro-fuzzy system | HC |
1999 | [94] | Central London, UK | MLP-NN | NOx | 2004 | [95] | Seoul, Korea | Neuro-fuzzy system | O3 |
2000 | [96] | Santiago, Chile | MLP-NN | PM2.5 | 2006 | [97] | Zonguldak, Turkey | ANFIS | SO2 and TSP |
2001 | [98] | Santiago, Chile | ANN | PM2.5 | 2007 | [99] | Mexico City, Mexico | Genetic fuzzy System | O3 |
2002 | [100] | Delhi, India | LM-NN | SO2 | 2009 | [36] | Northern Italy | Neuro-fuzzy system | O3 and PM10 |
2002 | [101] | Kuwait | ANN | O3 | 2010 | [102] | Delhi, India | Neuro-fuzzy system | CO |
2005 | [103] | Belgium | ANN | PM10 | 2012 | [104] | Dukla, Czech Republic | Fuzzy logic model | O3 |
2005 | [57] | Milan, Italy | FF-NN | O3 and PM10 | 2012 | [105] | Bogotá, Colombia | Genetic fuzzy System | PM10 |
2005 | [106] | US–Mexico border | MLP-NN, RBF-NN, and SMLP-NN | PM2.5 | 2013 | [107] | Johor Bahru, Malaysia | Fuzzy time series | API |
2006 | [108] | Carcaixent, Spain | MLP-NN | O3 | 2013 | [109] | Tehran, Iran | ANFIS | O3 |
2006 | [110] | Santiago, Chile | MLP-NN | PM10 | 2013 | [111] | Bor, Serbia | ANFIS | SO2 |
2008 | [112] | Ontario, Canada | FF-NN and B-NN | O3 | 2015 | [113] | Delhi, India | Neuro-fuzzy system | PM2.5 |
2008 | [114] | Istanbul, Turkey | FF-NN | SO2, PM10, and CO | 2015 | [115] | Romania | ANFIS | PM10 |
2009 | [20] | Zagreb, Croatia | ANN | NO2, O3, CO, and PM10 | 2016 | [116] | Howrah, India | ANFIS | SO2, NO2, CO, O3, and PM10 |
2010 | [117] | Istanbul, Turkey | FF-NN | SO2, PM10, and CO | 2017 | [12] | Jeddah, Saudi Arabia | ANFIS | O3 |
2013 | [118] | New South Wales, Australia | RBF-NN | O3 | 2017 | [78] | China | Neuro-fuzzy system | PM2.5 |
2013 | [109] | Tehran, Iran | ANN | O3 | 2017 | [119] | Queensland, Australia | ANFIS | PM2.5 |
2013 | [120] | Northeast Spain | MLP-NN | PM10 | 2018 | [121] | Queensland, Australia | ANFIS | NO2 |
2013 | [107] | Johor Bahru, Malaysia | MLP-NN | API | 2019 | [122] | Mid–southern Taiwan | Fuzzy inference system | PM2.5 and Pb |
2014 | [123] | Kocaeli, Turkey | ANN | PM10 | 2020 | [124] | Delhi, India | ANFIS | PM2.5 |
2014 | [125] | Athens, Greece | ANN | O3 | 2020 | [126] | Tehran, Iran | ANFIS | CO, SO2, O3, and NO2 |
2014 | [127] | Nagercoil, India | MPL and RBF NN | O3 | Ensembles Models | ||||
2015 | [128] | Australia | RBF-NN | O3 | 2012 | [129] | Europe and North America | Ensemble model | O3 |
2015 | [130] | Lisbon, Portugal | BP-NN | PM10 | 2015 | [131] | Mexico City, Mexico | Two ensemble techniques | O3 |
2016 | [132] | Beijing City, China | ANN | PM2.5 | 2016 | [133] | Harbin and Chongqing, China | Decomposition-ensemble method | PM2.5 |
2016 | [134] | Algiers, Algeria | ANN | PM10 | 2017 | [135] | Guangzhou and Lanzhou, China | Decomposition-ensemble learning paradigm | PM2.5 |
2016 | [136] | Santiago, Chile | FF-NN | PM2.5 | 2017 | [137] | Shandong Province, China | Ensemble model | PM2.5 |
2016 | [138] | Seoul, Korea | ANN | PM10 | 2018 | [139] | Beijing, China | Deep spatial-temporal ensemble model | PM2.5 |
2017 | [140] | Canada | MLP-NN and ELM | O3, PM2.5, and NO2 | 2018 | [79] | Shenyang and Chengdu, China | Secondary-decomposition-ensemble | PM2.5 |
2017 | [141] | Tabriz, Iran | MLP-NN | NOx | 2018 | [142] | Beijing, China | Stacked ensemble method | PM2.5 |
2018 | [89] | Brescia, Italy | ANN | PM10 | 2019 | [143] | Italy | Ensemble model | PM10 and PM2.5 |
2018 | [144] | Northern China | ANN | O3 | 2019 | [145] | China | Ensemble model | AQI |
2019 | [21] | Belgrade, Serbia | W-NN and GR-NN | SOx and NOx | 2019 | [146] | United States | Ensemble model | PM2.5 |
2019 | [22] | Central Poland | ANN | O3 | 2019 | [40] | Madrid, Spain | Ensemble neural networks | NO2 |
2019 | [147] | Andalusia, Spain | BP-NN and RBF-NN | PM10 | 2019 | [148] | London, UK | Ensemble neural networks | O3 and PM10 |
2019 | [149] | São Carlos-SP, Brazil | MLP-NN and NARX-NN | PM10 | 2019 | [150] | London, UK | Ensemble learning technique | SO2 |
2019 | [151] | Rio de Janeiro, Brazil | ANN | PM2.5 | 2019 | [152] | London, UK | Ensemble data mining | NO2 |
2019 | [153] | Shiraz, Iran | NARX-NN | CO | 2019 | [154] | Tamil Nadu, India | Bagging ensemble | O3 |
2019 | [155] | Bangi, Malaysia | ANN | O3 | 2019 | [156] | Northern China | Stacking ensemble | PM2.5 |
2020 | [157] | Kanpur, India | MLP-NN | O3 | 2019 | [158] | Southern China | BP-NN ensembles | PM2.5 |
2020 | [159] | USA, UK, and Italy | ANN | O3 | 2020 | [160] | Tehran, Iran | Nonlinear ensemble model | AQI |
2020 | [161] | Five regions, Taiwan | BP-NN | PM2.5 | 2020 | [162] | Beijing, Tianjin, and Hebei of China | Stacking-driven ensemble model | PM2.5 |
2020 | [163] | Nan, Thailand | MLP-NN | PM10 | Hybrid and Other Models | ||||
Deep Learning Models | 2002 | [67] | Downtown, Hong Kong | Hybrid (PCA-RBF-NN) | PM10 | ||||
2015 | [88] | Central Italy | R-NN | O3 | 2007 | [42] | Oporto, Portugal | Hybrid (PCA-FFNN) | O3 |
2016 | [132] | Beijing City, China | Deep learning | PM2.5 | 2008 | [43] | Szeged, Hungary | PCA-SVM and PCA-ANN | NOx |
2017 | [38] | Aarhus city, Denmark | Deep learning | O3 | 2008 | [164] | Kuwait | Hybrid (PCR, ANN, and PCA assisted ANN) | O3 |
2017 | [23] | Pescara, Italy | R-NN | PM10 and PM2.5 | 2011 | [41] | Greece and Finland | Hybrid (PCA-ANN) | PM10 and PM2.5 |
2018 | [165] | China | Deep learning | PM10 | 2011 | [82] | Nantou, Taiwan | Hybrid | PM10 and NOx |
2018 | [166] | Kuwait | Deep learning | O3 | 2011 | [45] | Dilovasi, Turkey | Hybrid (PCA-MLP-NN) | O3 |
2019 | [39] | Taipei City, Taiwan. | LSTM | PM2.5, PM10, and NOx | 2012 | [47] | California and Texas, USA | HMM technique with Gamma distribution | O3 |
2019 | [167] | Beijing, China. | Deep learning | PM2.5 | 2012 | [46] | Rub’ Al Khali, Saudi Arabia | GMDH technique | O3 |
2019 | [168] | Guangdong, China | Deep learning | PM2.5 | 2012 | [169] | Tehran, Iran | Type-2 fuzzy | CO |
2019 | [170] | Tehran, Iran | Deep learning | PM2.5 | 2013 | [171] | Delhi, India | PCA-ANN | AQI |
2019 | [73] | Beijing, China | Deep neural network | PM2.5, NO2, and SO2 | 2013 | [172] | Gansu, China | Hybrid | O3 |
2020 | [161] | Five regions, Taiwan | CNN and LSTM | PM2.5 | 2015 | [173] | Düzce Province, Turkey | Hybrid (PCA-ANN) | PM10 |
SVM Models | 2015 | [85] | Guangzhou, China | Hybrid | PM2.5 | ||||
2002 | [174] | Hong Kong | SVM | RSP | 2015 | [81] | Salamanca, Mexico | Hybrid | PM10 |
2003 | [175] | Mong Kok, Hong Kong | SVM and PCA-RBF-NN | RSP | 2015 | [176] | China | Hybrid (wavelet-based MLP-NN) | PM2.5 |
2005 | [177] | Hong Kong | SVM and RBF-NN | NOx and RSP | 2015 | [178] | Delhi, India | PSO-ANFIS | SO2 and O3 |
2014 | [29] | Rio de Janeiro, Brazil | SVM and ANN | O3 | 2015 | [179] | Taiyuan, China | Hybrid ANN and hybrid SVM | PM10 and SO2 |
2014 | [180] | Tehran, Iran | RBF-SVM | O3 | 2015 | [181] | Agra, India | PCA-ANN | NO2 |
2014 | [182] | India | SVM | O3 | 2016 | [183] | Nan’an, China | Hybrid (wavelet-based BP-NN) | PM10, SO2, and NO2 |
2016 | [132] | Beijing City, China | SVM | PM2.5 | 2016 | [184] | London, UK | Hybrid (PCA-ANN) | PM10 and PM2.5 |
2017 | [185] | Beijing, Tianjin, and Shijiazhuang of China | Multi-dimensional collaborative SVR | AQI | 2017 | [83] | Tunisia | Hybrid (RF and SVM) | PM10 |
2018 | [28] | Spain | SVM | PM10 | 2017 | [44] | Central London, UK | PCA-MLP-NN | NO2 |
2018 | [30] | Singapore | SVM and BP-NN | CO2 and TVOC | 2017 | [68] | Taicang, China | Hybrid (PCA-GA-ANN) | AQI |
2018 | [186] | Beijing, China | Space-time SVM and global SVM. | PM2.5 | 2017 | [187] | Kunming and Yuxi, China | Hybrid (CI-FPA-SVM) | PM2.5 and PM10 |
2019 | [188] | Beijing, China | SVR | AQI and NOx | 2017 | [189] | Hebei Province, China | Hybrid method (PCA-CS-SVM) | PM2.5 |
2020 | [163] | Nan, Thailand | SVR | PM10 | 2017 | [190] | Shangdianzi, China | Hybrid | PM2.5 |
Evolutionary NN and SVM Models | 2018 | [191] | Kolkata, India | Type-2 fuzzy | AQI | ||||
2003 | [192] | Downtown, Hong Kong | PSO-ANN | CO, NOx, RSP | 2018 | [193] | Datong, Taiwan | ANFIS-WELM, ANFIS, WELM, GA-BPNN | CO, NO, PM2.5, and PM10 |
2004 | [194] | Northern Greece | GA-FF-NN | PM10 | 2018 | [195] | Egypt | Hybrid | PM10 |
2004 | [196] | Helsinki, Finland | GA-MLP-NN | NO2 | 2018 | [197] | CZT, China | Hybrid Grey–Markov | PM10 |
2006 | [31] | Athens, Greece | GA-ANN | PM10 | 2019 | [198] | Taipei, Taiwan | Hybrid (multi-output and multi-tasking SVM) | PM2.5 |
2013 | [199] | European countries | GA-GR-NN | PM10 | 2019 | [200] | Varanasi, India | Hybrid (PCA and ANN) | PM10 |
2014 | [201] | New Zealand | GA-ANN | NO2 | 2019 | [71] | Yancheng, China | Hybrid | PM2.5 |
2015 | [202] | Helsinki, Finland | GA-NN | PM10 and PM2.5 | 2019 | [72] | Hangzhou, China | Hybrid (RF and R-NN) | SO2, NO2, CO, PM2.5, PM10, and O3 |
2016 | [203] | Aghdasiyeh, Iran | GA-BP-NN | PM10 | 2019 | [204] | Jing-Jin-Ji, China | Hybrid model | PM2.5 |
2017 | [205] | India | GWO-SVM | AQI | 2019 | [76] | China | Hybrid | Indoor AQ |
2018 | [206] | China | GA-BP-NN | PM2.5 | 2019 | [48] | Wrocław, Poland | RFP technique | NO2 |
2019 | [84] | Beijing, China | PSO-SVM | PM2.5 | 2019 | [80] | Beijing and Yibin, China | Hybrid | PM2.5 |
2019 | [207] | Beijing, China | PSO-SVM and GA-SVM | AQI | 2019 | [208] | China | Hybrid (wavelet-based ARIMA, ANN, and SVM) | PM2.5 |
2019 | [209] | Coc Sau, Vietnam | PSO-SVM | PM10 | 2019 | [210] | China | CEEMD-CSA-GWO-SVR | NO2 and SO2 |
2019 | [211] | Beijing, China | QPSO, PSO, GA, and GS-based SVM | NO2 and PM2.5 | 2020 | [212] | China | SCA-ELM | AQI |
2020 | [163] | Nan province, Thailand | GA-MLP-NN and GA-SVM | PM10 | 2020 | [124] | Delhi, India | Wavelet-ANFIS-PSO and wavelet-ANFIS-GA | PM2.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Shafiullah, M.; Rahman, S.M.; Khondaker, A.N.; Amao, A.; Zahir, M.H. Soft Computing Applications in Air Quality Modeling: Past, Present, and Future. Sustainability 2020, 12, 4045. https://doi.org/10.3390/su12104045
Rahman MM, Shafiullah M, Rahman SM, Khondaker AN, Amao A, Zahir MH. Soft Computing Applications in Air Quality Modeling: Past, Present, and Future. Sustainability. 2020; 12(10):4045. https://doi.org/10.3390/su12104045
Chicago/Turabian StyleRahman, Muhammad Muhitur, Md Shafiullah, Syed Masiur Rahman, Abu Nasser Khondaker, Abduljamiu Amao, and Md. Hasan Zahir. 2020. "Soft Computing Applications in Air Quality Modeling: Past, Present, and Future" Sustainability 12, no. 10: 4045. https://doi.org/10.3390/su12104045
APA StyleRahman, M. M., Shafiullah, M., Rahman, S. M., Khondaker, A. N., Amao, A., & Zahir, M. H. (2020). Soft Computing Applications in Air Quality Modeling: Past, Present, and Future. Sustainability, 12(10), 4045. https://doi.org/10.3390/su12104045