Willingness-to-Pay for District Heating from Renewables of Private Households in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaire and Sampling
2.2. Discrete-Choice Experiment
2.3. Cluster Analysis
3. Results
3.1. Cluster Analysis
3.2. Discrete-Choice Experiment
3.2.1. Interaction Effects
3.2.2. Interactions between Attribute Preferences
3.2.3. Scale Heterogeneity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RHS | Residential Heating Systems |
WTP | Willingness-to-Pay |
GHG | Greenhouse Gas |
CHP | Combined Heat and Power |
DCE | Discrete-Choice Experiment |
RPL | Random Parameter Logit Model |
GMNL | Generalized Multinominal Logit Model |
KMO | Kaiser–Mayer–Olkin Measure |
References
- AGEB. Anwendungsbilanzen. Stand 10/2016. 2016. Available online: https://www.ag-energiebilanzen.de (accessed on 24 April 2020).
- Bundesministerium für Wirtschaft und Energie. Energiedaten: Gesamtausgabe. 2018. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html (accessed on 24 September 2019).
- BDEW. Beheizungsstruktur im Wohnungsneubau in Deutschland. 2017. Available online: https://www.bdew.de (accessed on 24 April 2020).
- European Commission. An EU Strategy on Heating and Cooling; COM (2016)51; The European Comission: Brussels, Belgium, 2016. [Google Scholar]
- Eriksson, L.; Morandin, M.; Harvey, S. A feasibility study of improved heat recovery and excess heat export at a Swedish chemical complex site. Int. J. Energy Res. 2018, 42, 1580–1593. [Google Scholar] [CrossRef]
- Rezaie, B.; Rosen, M.A. District heating and cooling: Review of technology and potential enhancements. Appl. Energy 2012, 93, 2–10. [Google Scholar] [CrossRef]
- Persson, U.; Werner, S. Heat distribution and the future competitiveness of district heating. Appl. Energy 2011, 88, 568–576. [Google Scholar] [CrossRef]
- Paiho, S.; Reda, F. Towards next generation district heating in Finland. Renew. Sustain. Energy Rev. 2016, 65, 915–924. [Google Scholar] [CrossRef]
- Sayegh, M.A.; Danielewicz, J.; Nannou, T.; Miniewicz, M.; Jadwiszczak, P.; Piekarska, K.; Jouhara, H. Trends of European research and development in district heating technologies. Renew. Sustain. Energy Rev. 2017, 68, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Lake, A.; Rezaie, B.; Beyerlein, S. Review of district heating and cooling systems for a sustainable future. Renew. Sustain. Energy Rev. 2017, 67, 417–425. [Google Scholar] [CrossRef]
- Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Melin, S. A multicriteria approach to evaluate district heating system options. Appl. Energy 2010, 87, 1134–1140. [Google Scholar] [CrossRef]
- Lund, H.; Möller, B.; Mathiesen, B.V.; Dyrelund, A. The role of district heating in future renewable energy systems. Energy 2010, 35, 1381–1390. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014, 65, 475–489. [Google Scholar] [CrossRef]
- Brocklebank, I.; Styring, P.; Beck, S. Heat mapping for district heating. Energy Procedia 2018, 151, 47–51. [Google Scholar] [CrossRef]
- Kontu, K.; Rinne, S.; Olkkonen, V.; Lahdelma, R.; Salminen, P. Multicriteria evaluation of heating choices for a new sustainable residential area. Energy Build. 2015, 93, 169–179. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lim, S.-Y.; Yoo, S.-H. Public preferences for district heating system over individual heating system: A view from national energy efficiency. Energy Effic. 2019, 12, 723–734. [Google Scholar] [CrossRef]
- Lichtenwoehrer, P.; Erker, S.; Zach, F.; Stoeglehner, G. Future compatibility of district heating in urban areas—A case study analysis in the context of integrated spatial and energy planning. Energy Sustain. Soc. 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Lygnerud, K. Challenges for business change in district heating. Energy Sustain. Soc. 2018, 8, 10. [Google Scholar] [CrossRef]
- Sameti, M.; Haghighat, F. Optimization approaches in district heating and cooling thermal network. Energy Build. 2017, 140, 121–130. [Google Scholar] [CrossRef]
- Erker, S.; Lichtenwoehrer, P.; Zach, F.; Stoeglehner, G. Interdisciplinary decision support model for grid-bound heat supply systems in urban areas. Energy Sustain. Soc. 2019, 9, 22. [Google Scholar] [CrossRef]
- Lottner, V.; Schulz, M.E.; Hahne, E. Solar-Assisted District Heating Plants: Status of the German Programme Solarthermie-2000. Sol. Energy 2000, 69, 449–459. [Google Scholar] [CrossRef]
- Günther, M.; Greller, M.; Fallahnejad, M. Evaluation of Long-Term Scenarios for Power Generation and District Heating at Stadtwerke München. Informatik Spektrum 2015, 38, 97–102. [Google Scholar] [CrossRef]
- BDEW. Erneuerbare Energien und das EEG: Zahlen, Fakten, Grafiken (2016). 2016. Available online: https://www.bdew.de/energie/erneuerbare-energien-und-das-eeg-zahlen-fakten-grafiken/ (accessed on 24 September 2019).
- Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- Arbeitsgemeinschaft Verbrauchs- und Medienanalyse. Konsumenten punktgenau erreichen. Basisinformationen für fundierte Mediaentscheidungen. VuMA Touchpoints 2018. Available online: https://www.vuma.de/fileadmin/user_upload/PDF/berichtsbaende/VuMA_Berichtsband_2018.pdf (accessed on 24 September 2019).
- Vaage, K. Heating technology and energy use: A discrete/continuous choice approach to Norwegian household energy demand. Energy Econ. 2000, 22, 649–666. [Google Scholar] [CrossRef]
- Braun, F.G. Determinants of households’ space heating type: A discrete choice analysis for German households. Energy Policy 2010, 38, 5493–5503. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132. [Google Scholar] [CrossRef]
- Thurstone, L.L. A law of comparative judgement. Psychol. Rev. 1927, 34, 273–286. [Google Scholar] [CrossRef]
- ChoiceMetrics. Ngene 1.1.1. User Manual & Reference Guide; ChoiceMetrics: Sydney, Australia, 2012. [Google Scholar]
- Train, K.; Weeks, M. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. In Applications of Simulation Methods in Environmental and Resource Economics: The Economics of Non-Market Goods and Resources, 6th ed.; Scarpa, R., Alberini, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 1–16. [Google Scholar]
- Fiebig, D.G.; Keane, M.P.; Louviere, J.; Wasi, N. The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity. Mark. Sci. 2010, 29, 393–421. [Google Scholar] [CrossRef]
- Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics. And Sex and Drugs and Rock ’n’ Roll, 4th ed.; Sage Publications Inc: Los Angeles, CA, USA, 2013. [Google Scholar]
- CO2online. Heizspiegel Deutschland. 2019. Available online: https://www.heizspiegel.de (accessed on 24 April 2020).
- Fränkle, C. Heizkostenvergleich nach VDI 2067: Musterrechnung. Available online: https://www.agfw.de/energiewirtschaft-recht-politik/wirtschaft-und-markt/markt-preise/heizkostenvergleich/ (accessed on 24 April 2020).
- Hille, S.; Weber, S.; Brosch, T. Consumers’ preferences for electricity-saving programs: Evidence from a choice-based conjoint study. J. Clean. Prod. 2019, 220, 800–815. [Google Scholar] [CrossRef] [Green Version]
- Blesl, M.; Eikmeier, B. Die 70/70-Strategie: Konzept und Ergebnisse. Available online: https://www.agfw.de/energiekonzepte/7070-4040-strategie/ (accessed on 24 April 2020).
- AGFW e.V. EnEff:Wärme- Kassel Zum Feldlager. GeosolareNahwärmeversorgung für die Siedlung ‘Zum Feldlager’; AGFW Heftreihe Forschung und Entwicklung—Heft; 2018. Universität Kassel: Kassel, Germany.
- Moczko, D. Die neue Erneuerbare-Energien-Richtlinie und die Fernwärme. Available online: https://www.energie.de/euroheatpower/news-detailansicht/nsctrl/detail/News/die-neue-erneuerbare-energien-richtlinie-und-die-fernwaerme-201961/ (accessed on 24 April 2020).
- Europäische Kommission. Länderbericht Deutschland 2020. Available online: https://ec.europa.eu/info/sites/info/files/2020-european_semester_country-report-germany_de.pdf (accessed on 24 April 2020).
- Blesl, M.; Koziol, M.; Ludwig, M.C.; Rapp, H.; Tenberg, B.; Vautz, S.; Wolf, S. 40/40-Strategie: Unser Konzept für die Wärmewende. Available online: https://www.agfw.de/energiekonzepte/7070-4040-strategie/ (accessed on 24 April 2020).
- Roth, T.; Grimm, S.; Rutz, D. Upgrading the Performance of District Heating Network: Best Practice Examples on Upgrading Projects. Available online: https://www.upgrade-dh.eu/images/Publications%20and%20Reports/D2.1_2019-04-30_Upgrade%20DH_final_AGFW.PDF (accessed on 24 April 2020).
- Solar District Heating. Stuttgart. 2020. Available online: https://www.solar-district-heating.eu/de/aktuelles/presse/# (accessed on 24 April 2020).
- Bundesministerium für Wirtschaft und Energie. Innovationen für die Energiewende: 7. Energieforschungsprogramm der Bundesregierung. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/7-energieforschungsprogramm-der-bundesregierung.pdf?__blob=publicationFile&v=14 (accessed on 24 April 2020).
- Carlsson, F.; Kataria, M.; Lampi, E. Dealing with Ignored Attributes in Choice Experiments on Valuation of Sweden’s Environmental Quality Objectives. Environ. Resource Econ. 2010, 47, 65–89. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Characteristic | Sample | Germany |
---|---|---|
Gender | (n = 482) | (Genesis 2018) |
Male | 49.2% | 49.35% |
Female | 50.8% | 50.65% |
Income | ||
< 1,300€ | 21.1% | 22.9% |
1,300–2,600€ | 37.0% | 39.2% |
2,600–3,600€ | 23.5% | 17.6% |
3,600–5000€ | 12.5% | 12.6% |
> 5000€ | 5.9% | 7.8% |
Age | ||
18–30 | 22.4% | 18,4% |
31–45 | 26.6% | 21,9% |
46–65 | 42.9% | 35,6% |
> 65 | 8.1% | 24,1% |
Place of residence | ||
Small Town (pop. <5000) | 16.2% | 14.2 |
Small City (5,000–20,000) | 19.9% | 26.4 |
Medium City (20,000–100,000) | 22.8% | 27.5 |
Big City (> 100,000), centre | 18.7% | 31.9 |
Big City (> 100,000), periphery | 22.4% |
Attribute | Characteristic 1 | Characteristic 2 | Characteristic 3 | Characteristic 4 |
---|---|---|---|---|
Heating system | District heating from fossil fuels | District heating from renewables | Ground heat/heat pump | Gas condensing boiler |
Annual operation costs/m2 | 6 € | 8 € | 10 € | 12 € |
Investment costs in € * | 4 k | 6 k | 8 k | 10 k |
Primary energy factor | 0.0 | 0.7 | 0.8 | 1.1 |
CO2-emission in kg CO2/ m2/a | 0.4 | 13 | 14 | 20 |
Price risk | low | middle | high |
Alternative 1 | Alternative 2 | Alternative 3 | |
---|---|---|---|
Characteristic | District heating renewables | District heating fossil fuels | Heat pump |
Annual operation costs/m2 | 12 € | 12 € | 6 € |
Investment costs | 6000 € | 6000 € | 8000 € |
Primary energy factor | 0,0 | 0,7 | 0,8 |
CO2 emissions in kg CO2/m2/year | 0,4 | 14 | 13 |
Price risk | low | low | high |
Factor Loading | ||||
---|---|---|---|---|
Item | 1 Price and Financial Security | 2 Local Provider | 3 Sustainability | Communality |
Reasonably priced heating system | 0.84 | 0.11 | 0.10 | 0.72 |
Reasonably priced initial outlay | 0.78 | 0.20 | 0.12 | 0.66 |
High security of supply | 0.75 | 0.13 | 0.33 | 0.69 |
Low fluctuations in prices | 0.70 | 0.35 | 0.10 | 0.61 |
Transparent accounting | 0.70 | 0.20 | 0.31 | 0.63 |
High trust in provider | 0.52 | 0.45 | 0.38 | 0.61 |
Local contact person | 0.25 | 0.82 | 0.04 | 0.73 |
Local provider | 0.01 | 0.75 | 0.33 | 0.68 |
Direct contact to the provider | 0.33 | 0.70 | 0.17 | 0.62 |
Long-term partnership | 0.28 | 0.68 | 0.23 | 0.55 |
Low pollution | 0.17 | 0.21 | 0.86 | 0.80 |
High share of renewable Energy | 0.18 | 0.23 | 0.83 | 0.77 |
Future efficiency of energy source | 0.46 | 0.21 | 0.62 | 0.64 |
Eigenvalue | 6.13 | 1.46 | 1.14 | |
Variance explained in % | 47.13 | 11.20 | 8.78 | |
α | 0.83 | 0.78 | 0.79 |
Parameters and Interactions | WTP in €/m2/a (coeff.) | Std. Error | z-Value |
---|---|---|---|
mean estimates random parameters | |||
district heating from fossil fuels | 5.43 *** | 0.46 | 11.89 |
district heating from renewables | 10.32 *** | 0.44 | 23.45 |
ground heat/heat pump | 3.29 *** | 0.32 | 10.29 |
investments costs * 10.000 | −3.45 *** | 0.48 | −7.13 |
sd. mean estimates random parameters | |||
district heating from fossil fuels | 3.03 *** | 0.32 | 9.49 |
district heating from renewables | 3.29 *** | 0.23 | 14.23 |
ground heat/heat pump | 2.10 *** | 0.24 | 8.89 |
investments costs * 10.000 | 2.08 *** | 0.56 | 3.69 |
mean estimates interaction ‘ecos’ | |||
district heating from fossil fuels × ecos | −1.71 ** | 0.59 | −2.91 |
district heating from renewables × ecos | 1.41 *** | 0.37 | 3.78 |
ground heat/heat pump × ecos | 0.26 | 0.34 | 0.77 |
mean estimates interaction ‘price sensitives’ | |||
district heating from fossil fuels × price sensitives | −3.03 *** | 0.68 | −4.43 |
district heating from renewables × price sensitives | −3.34 *** | 0.36 | −9.18 |
ground heat/heat pump × price sensitives | −1.03 ** | 0.37 | −2.79 |
mean estimates interaction ‘locals’ | |||
district heating from fossil fuels × locals | −0.37 | 0.31 | −0.79 |
district heating from renewables × locals | 0.31 | 0.47 | 0.93 |
ground heat/heat pump × locals | −1.05 *** | 0.31 | −3.39 |
mean estimates interaction ‘house owner’ | |||
district heating from fossil fuels × house owner | −2.38 *** | 0.47 | −5.07 |
district heating from renewables × house owner | −2.53 *** | 0.28 | −8.92 |
ground heat/heat pump × house owner | −0.73 ** | 0.26 | −2.82 |
mean estimates interaction ‘plan’ | |||
district heating from fossil fuels × plan | 1.58 ** | 0.60 | 2.63 |
district heating from renewables × plan | −0.38 | 0.37 | −1.04 |
ground heat/heat pump × plan | −1.17 ** | 0.36 | −3.26 |
sd. mean estimates correlated random parameters | |||
district heating from fossil fuels/district heating from r. | 1.02 ** | 0.32 | 3.23 |
district heating from fossil fuels/ground heat | 0.99 *** | 0.22 | 4.59 |
district heating from fossil fuels/investment costs | −6.10 *** | 0.42 | −14.53 |
district heating from r./ground heat | 3.26 *** | 0.24 | 13.83 |
district heating from r./investment costs | −6.27 *** | 0.32 | −19.46 |
ground heat./investment costs | 0.75 | 3.11 | 0.24 |
scale (mean) | −3.83 *** | 0.08 | -5.12 |
scale heter (τ) | 0.90 *** | 0.07 | 14.02 |
observations | 5,784 | ||
Log likelihood | −4,077.20 |
Parameters | d.c. from Fossil Fuels | d.c. from Renewables | Ground Heat | Investments Costs |
---|---|---|---|---|
d.c. from fossil fuels | 1.00 | 0.85 | 0.44 | −0.89 |
d.c. from renewables | 0.85 | 1.00 | 0.58 | −0.89 |
ground heat | 0.44 | 0.58 | 1.00 | −0.24 |
investments costs | −0.89 | −0.89 | −0.24 | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krikser, T.; Profeta, A.; Grimm, S.; Huther, H. Willingness-to-Pay for District Heating from Renewables of Private Households in Germany. Sustainability 2020, 12, 4129. https://doi.org/10.3390/su12104129
Krikser T, Profeta A, Grimm S, Huther H. Willingness-to-Pay for District Heating from Renewables of Private Households in Germany. Sustainability. 2020; 12(10):4129. https://doi.org/10.3390/su12104129
Chicago/Turabian StyleKrikser, Thomas, Adriano Profeta, Sebastian Grimm, and Heiko Huther. 2020. "Willingness-to-Pay for District Heating from Renewables of Private Households in Germany" Sustainability 12, no. 10: 4129. https://doi.org/10.3390/su12104129
APA StyleKrikser, T., Profeta, A., Grimm, S., & Huther, H. (2020). Willingness-to-Pay for District Heating from Renewables of Private Households in Germany. Sustainability, 12(10), 4129. https://doi.org/10.3390/su12104129