Investor Happiness and Predictability of the Realized Volatility of Oil Price
Abstract
1. Introduction
2. Methods
3. Data
4. Empirical Results
5. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bahloul, W.; Balcilar, M.; Cunado, J.; Gupta, R. The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test. J. Multinatl. Financ. Manag. 2018, 45, 52–71. [Google Scholar] [CrossRef]
- Bonato, M. Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed? J. Int. Financ. Mark. Inst. Money 2019, 62, 184–202. [Google Scholar] [CrossRef]
- Asai, M.; Gupta, R.; McAleer, M. Forecasting Volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks. Int. J. Forecast. 2020. [Google Scholar] [CrossRef]
- Asai, M.; Gupta, R.; McAleer, M. The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures. Energies 2019, 12, 3379. [Google Scholar] [CrossRef]
- Demirer, R.; Gupta, R.; Suleman, T.; Wohar, M.E. Time-varying rare disaster risks, oil returns and volatility. Energy Econ. 2018, 75, 239–248. [Google Scholar] [CrossRef]
- Elder, J.; Serletis, A. Oil price uncertainty. J. Money Credit Bank. 2010, 42, 1137–1159. [Google Scholar] [CrossRef]
- Van Eyden, R.; Difeto, M.; Gupta, R.; Wohar, M.E. Oil price volatility and economic growth: Evidence from advanced OECD countries using over one century of data. Appl. Energy 2019, 233, 612–621. [Google Scholar] [CrossRef]
- Henriques, I.; Sadorsky, P. Can environmental sustainability be used to manage energy price risk? Energy Econ. 2010, 32, 1131–1138. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, C.Q.; Yang, X.G.; Ren, Y.S. Time-Varying Volatility Feedback of Energy Prices: Evidence from Crude Oil, Petroleum Products, and Natural Gas Using a TVP-SVM Model. Sustainability 2018, 10, 4705. [Google Scholar] [CrossRef]
- Zhao, L.T.; Liu, L.N.; Wang, Z.J.; He, L.Y. Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach. Sustainability 2019, 11, 3892. [Google Scholar] [CrossRef]
- Gkillas, K.; Gupta, R.; Wohar, M.E. Oil shocks and volatility jumps. Rev. Quant. Financ. Account. 2020, 54, 247–272. [Google Scholar] [CrossRef]
- Lux, T.; Segnon, M.; Gupta, R. Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data. Energy Econ. 2016, 56, 117–133. [Google Scholar] [CrossRef]
- McAleer, M.; Medeiros, M.C. Realized volatility: A review. Econom. Rev. 2008, 27, 10–45. [Google Scholar] [CrossRef]
- Haugom, E.; Langeland, H.; Molnár, P.; Westgaard, S. Forecasting volatility of the US oil market. J. Bank. Financ. 2014, 47, 1–14. [Google Scholar] [CrossRef]
- Sévi, B. Forecasting the volatility of crude oil futures using intraday data. Eur. J. Oper. Res. 2014, 235, 643–659. [Google Scholar] [CrossRef]
- Prokopczuk, M.; Symeonidis, L.; Wese Simen, C. Do jumps matter for volatility forecasting? Evidence from energy markets. J. Futur. Mark. 2015, 36, 758–792. [Google Scholar] [CrossRef]
- Degiannakis, S.; Filis, G. Forecasting oil price realized volatility using information channels from other asset classes. J. Int. Money Financ. 2017, 76, 28–49. [Google Scholar] [CrossRef]
- Liu, J.; Ma, F.; Yang, K.; Zhang, Y. Forecasting the oil futures price volatility: Large jumps and small jumps. Energy Econ. 2018, 72, 321–330. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, F.; Zhang, Y. Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets. Energy Econ. 2019, 81, 52–62. [Google Scholar] [CrossRef]
- Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting realized oil-price volatility: The Role of financial stress and asymmetric loss. J. Int. Money Financ. 2020, 104, 102137. [Google Scholar] [CrossRef]
- Corsi, F. A simple approximate long-memory model of realized volatility. J. Financ. Econ. 2009, 7, 174–196. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 1998, 39, 885–905. [Google Scholar] [CrossRef]
- Phan, D.H.B.; Sharma, S.S.; Narayan, P.K. Intraday volatility interaction between the crude oil and equity markets. J. Int. Financ. Mark. Inst. Money 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Chatrath, A.; Miao, H.; Ramchander, S.; Wang, T. The forecasting efficacy of risk-neutral moments for crude oil volatility. J. Forecast. 2015, 34, 177–190. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Shen, D.; Teglio, A. Daily happiness and stock returns: Some international evidence. Phys. A 2016, 460, 201–209. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Li, X.; Shen, D. Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests. J. Behav. Exp. Financ. 2018, 18, 50–53. [Google Scholar] [CrossRef]
- You, W.; Guo, Y.; Cheng, P. Twitter’s daily happiness sentiment and the predictability of stock returns. Financ. Res. Lett. 2017, 23, 58–64. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A. The impact of Twitter sentiment on renewable energy stocks. Energy Econ. 2018, 76, 153–169. [Google Scholar] [CrossRef]
- Hong, H.; Yogo, M. What does futures market interest tell us about the macroeconomy and asset prices? J. Financ. Econ. 2012, 105, 473–490. [Google Scholar] [CrossRef]
- Singleton, K.J. Investor flows and the 2008 boom/bust in oil prices. Manag. Sci. 2014, 60, 300–318. [Google Scholar] [CrossRef]
- Olson, E.; Vivian, A.J.; Wohar, M.E. Do commodities make effective hedges for equity investors? Res. Int. Bus. Financ. 2017, 1274–1288. [Google Scholar] [CrossRef]
- Olson, E.; Vivian, A.J.; Wohar, M.E. What is a better cross-hedge for energy: Equities or other commodities? Glob. Financ. J. 2019, 42, 100417. [Google Scholar] [CrossRef]
- Qadan, M.; Nama, H. Investor sentiment and the price of oil. Energy Econ. 2018, 69, 42–58. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Li, S.-H. The impact of investor sentiment on crude oil market risks: Evidence from the wavelet approach. Quant. Financ. 2019, 19, 1357–1371. [Google Scholar] [CrossRef]
- Guo, J.-F.; Ji, Q. How does market concern derived from the Internet affect oil prices? Appl. Energy 2013, 112, 1536–1543. [Google Scholar] [CrossRef]
- Ji, Q.; Guo, J.-F. Oil price volatility and oil-related events: An Internet concern study perspective. Appl. Energy 2015, 137, 256–264. [Google Scholar] [CrossRef]
- Campbell, J.Y. Viewpoint: Estimating the equity premium. Can. J. Econ. 2008, 41, 1–21. [Google Scholar] [CrossRef]
- Andersen, T.G.; Dobrev, D.; Schaumburg, E. Jump-robust volatility estimation using nearest neighbor truncation. J. Econom. 2012, 169, 75–93. [Google Scholar] [CrossRef]
- Müller, U.A.; Dacorogna, M.M.; Davé, R.D.; Olsen, R.B.; Pictet, O.V. Volatilities of different time resolutions—Analyzing the dynamics of market components. J. Empir. Financ. 1997, 4, 213–239. [Google Scholar] [CrossRef]
- Amaya, D.; Christoffersen, P.; Jacobs, K.; Vasquez, A. Does realized skewness predict the cross-section of equity returns? J. Financ. Econ. 2015, 118, 135–167. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T.; Huang, X. A reduced form framework for modeling volatility of speculative prices based on realized variation measures. J. Econom. 2011, 160, 176–189. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E. and Shephard, N. Power and bipower variation with stochastic volatility and jumps. J. Financ. Econom. 2004, 2, 1–37. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Shephard, N. Econometrics of Testing for Jumps in Financial Economics using Bipower Variation. J. Financ. Econom. 2006, 4, 1–30. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.Q. An empirical examination of jump risk in asset pricing and volatility forecasting in China’s equity and bond markets. Pac. Basin Financ. J. 2012, 20, 857–880. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Bollerslev, T.; Ghysels, E. Periodic autoregressive conditional heteroscedasticity. J. Bus. Econ. Stat. 1996, 14, 139–151. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, R version 3.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 20 March 2020).
- Hyndman, R.J. Forecast: Forecasting Functions for Time Series and Linear Models; R Package Version 8.0; 2017; Available online: http://github.com/robjhyndman/forecast (accessed on 20 March 2020).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Liu, L.Y.; Patton, A.J.; Sheppard, K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J. Econom. 2015, 187, 293–311. [Google Scholar] [CrossRef]
- Bathia, D.; Bredin, D. An examination of investor sentiment effect in G7 stock market returns. Eur. J. Financ. 2013, 19, 909–937. [Google Scholar] [CrossRef]
- Bathia, D.; Bredin, D.; Nitzsche, D. International sentiment spillovers in equity returns. Int. J. Financ. Econ. 2016, 21, 332–359. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment and the cross-section of stock returns. J. Financ. 2006, 61, 1645–1680. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment in the stock market. J. Econ. Perspect. 2007, 21, 129–152. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. The Sum of All FEARS Investor Sentiment and Asset Prices. Rev. Financ. Stud. 2015, 28, 1–32. [Google Scholar] [CrossRef]
- García, D. Sentiment during recessions. J. Financ. 2013, 68, 1267–1300. [Google Scholar] [CrossRef]
- Mei, D.; Liu, J.; Ma, F.; Chen, W. Forecasting stock market volatility: Do realized skewness and kurtosi? Help. Phys. A 2017, 481, 153–159. [Google Scholar] [CrossRef]
- Giacomini, R.; Rossi., B. Forecast comparisons in unstable environments. J. Appl. Econom. 2010, 25, 595–620. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Kinnebrouk, S.; Shephard, N. Measuring downside risk: Realised semivariance. In Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle; Bollerslev, T., Russell, J., Watson, M., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 117–136. [Google Scholar]
- Deeney, P.; Cummins, M.; Dowling, M.; Bermingham, A. Sentiment in oil markets. Int. Rev. Financ. Anal. 2015, 39, 179–185. [Google Scholar] [CrossRef]
Statistic | MRV | HA |
---|---|---|
Min | 0.001 | 5.840 |
Mean | 0.424 | 6.026 |
Median | 0.222 | 6.033 |
Max | 4.997 | 6.357 |
Results.Table | Intercept | MRV | MRV | MRV | HA | RKU | RSK | Adj. R2 |
---|---|---|---|---|---|---|---|---|
HAR-RV | 2.8153 | 4.0303 | 8.8586 | 1.7208 | – | – | – | 0.6354 |
p-value | 0.0049 | 0.0001 | 0.0000 | 0.0853 | – | – | – | – |
HAR-RV-HA | 4.2709 | 3.7583 | 8.9359 | 1.9765 | −4.2584 | – | – | 0.6390 |
p-value | 0.0000 | 0.0002 | 0.0000 | 0.0481 | 0.0000 | – | – | – |
HAR-RV-HA-RKU | 4.5456 | 3.9123 | 8.5785 | 1.8141 | −4.5257 | −1.3242 | – | 0.6390 |
p-value | 0.0000 | 0.0001 | 0.0000 | 0.0697 | 0.0000 | 0.1854 | – | – |
HAR-RV-HA-RSK | 4.2172 | 3.7246 | 8.9613 | 1.9992 | −4.2049 | – | −1.4846 | 0.6391 |
p-value | 0.0000 | 0.0002 | 0.0000 | 0.0456 | 0.0000 | – | 0.1377 | – |
HAR-RV-HA-RKU-RSK | 4.4645 | 3.8698 | 8.6267 | 1.8390 | −4.4448 | −1.0451 | −1.2514 | 0.6391 |
p-value | 0.0000 | 0.0001 | 0.0000 | 0.0659 | 0.0000 | 0.2960 | 0.2108 | – |
HAR-RV | 1.4702 | 3.9532 | 5.4185 | 2.8944 | – | – | – | 0.8431 |
p-value | 0.1415 | 0.0001 | 0.0000 | 0.0038 | – | – | – | – |
HAR-RV-HA | −0.2349 | 3.8698 | 5.4262 | 2.7933 | 0.2532 | – | – | 0.8431 |
p-value | 0.8143 | 0.0001 | 0.0000 | 0.0052 | 0.8001 | – | – | – |
HAR-RV-HA-RKU | −0.2244 | 4.0214 | 4.8399 | 2.6085 | 0.2416 | −0.1102 | – | 0.8430 |
p-value | 0.8225 | 0.0001 | 0.0000 | 0.0091 | 0.8091 | 0.9122 | – | – |
HAR-RV-HA-RSK | −0.2348 | 3.8914 | 5.4489 | 2.8141 | 0.253 | – | −0.0847 | 0.8430 |
p-value | 0.8144 | 0.0001 | 0.0000 | 0.0049 | 0.8003 | – | 0.9325 | – |
HAR-RV-HA-RKU-RSK | −0.2235 | 4.0578 | 4.8533 | 2.6302 | 0.2406 | −0.0956 | −0.0679 | 0.8429 |
p-value | 0.8231 | 0.0000 | 0.0000 | 0.0085 | 0.8099 | 0.9239 | 0.9459 | – |
HAR-RV | 1.2423 | 4.9368 | 2.7946 | 1.9409 | – | – | – | 0.8410 |
p-value | 0.2141 | 0.0000 | 0.0052 | 0.0523 | – | – | – | – |
HAR-RV-HA | −1.0653 | 4.9981 | 3.0358 | 2.0031 | 1.0739 | – | – | 0.8416 |
p-value | 0.2868 | 0.0000 | 0.0024 | 0.0452 | 0.2829 | – | – | – |
HAR-RV-HA-RKU | −1.1839 | 4.8468 | 2.6076 | 1.8103 | 1.1898 | 0.9923 | – | 0.8415 |
p-value | 0.2365 | 0.0000 | 0.0091 | 0.0702 | 0.2341 | 0.3210 | – | – |
HAR-RV-HA-RSK | −1.0820 | 4.9983 | 3.0343 | 2.0029 | 1.0908 | – | −1.0739 | 0.8416 |
p-value | 0.2793 | 0.0000 | 0.0024 | 0.0452 | 0.2753 | – | 0.2829 | – |
HAR-RV-HA-RKU-RSK | −1.1341 | 4.8989 | 2.6945 | 1.8347 | 1.1397 | 1.2809 | −1.2352 | 0.8416 |
p-value | 0.2567 | 0.0000 | 0.0071 | 0.0666 | 0.2544 | 0.2002 | 0.2167 | – |
Rolling Window | |||
---|---|---|---|
L1 loss | |||
1000 | 0.0269 | 0.5714 | 0.2693 |
1200 | 0.0007 | 0.4707 | 0.3105 |
1400 | 0.0000 | 0.9985 | 0.9274 |
L2 loss | |||
1000 | 0.0327 | 0.7654 | 0.6027 |
1200 | 0.0049 | 0.8196 | 0.6977 |
1400 | 0.0015 | 0.9641 | 0.9762 |
Specification Window | |||
---|---|---|---|
HAR-RV-RKU vs. HAR-RV-RKU-HA | 0.0055 | 0.8292 | 0.7168 |
HAR-RV-RSK vs. HAR-RV-RSK-HA | 0.0045 | 0.8188 | 0.6888 |
HAR-RV-JUMP vs. HAR-RV-JUMP-HA | 0.0055 | 0.8171 | 0.6962 |
Rolling Window | |||
---|---|---|---|
RVG | |||
1000 | 0.0711 | 0.7816 | 0.4886 |
1200 | 0.0015 | 0.8577 | 0.6647 |
1400 | 0.0005 | 0.9646 | 0.9708 |
RVB | |||
1000 | 0.0615 | 0.7825 | 0.5795 |
1200 | 0.0519 | 0.8274 | 0.6431 |
1400 | 0.0095 | 0.9687 | 0.9663 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonato, M.; Gkillas, K.; Gupta, R.; Pierdzioch, C. Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability 2020, 12, 4309. https://doi.org/10.3390/su12104309
Bonato M, Gkillas K, Gupta R, Pierdzioch C. Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability. 2020; 12(10):4309. https://doi.org/10.3390/su12104309
Chicago/Turabian StyleBonato, Matteo, Konstantinos Gkillas, Rangan Gupta, and Christian Pierdzioch. 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price" Sustainability 12, no. 10: 4309. https://doi.org/10.3390/su12104309
APA StyleBonato, M., Gkillas, K., Gupta, R., & Pierdzioch, C. (2020). Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability, 12(10), 4309. https://doi.org/10.3390/su12104309