A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robot Manipulator
2.2. Mobile Robot
2.3. Mobile Manipulator
Workspace Restriction
2.4. Building Elements
2.5. Motion Control
2.6. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gramazio, F.; Kohler, M. Made by Robots: Challenging Architecture at a Larger Scale; John Wiley & Sons: London, UK, 2014. [Google Scholar]
- Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan, M.J.; Leong, K.F. 3D printing trends in building and construction industry: A review. Virtual Phys. Prototyp. 2017, 12, 261–276. [Google Scholar] [CrossRef]
- Bock, T. The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 2015, 59, 113–121. [Google Scholar] [CrossRef]
- Valente, M.; Sibai, A.; Sambucci, M. Extrusion-Based Additive Manufacturing of Concrete Products: Revolutionizing and Remodeling the Construction Industry. J. Compos. Sci. 2019, 3, 88. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, L.; Peng, C. A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges. Sustainability 2020, 12, 1427. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2014; Volume 17. [Google Scholar]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Dritsas, S.; Soh, G.S. Building robotics design for construction. Constr. Robot. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Tibaut, A.; Rebolj, D.; Perc, M.N. Interoperability requirements for automated manufacturing systems in construction. J. Intell. Manuf. 2016, 27, 251–262. [Google Scholar] [CrossRef]
- Khoshnevis, B.; Hwang, D.; Yao, K.T.; Yeh, Z. Mega-scale fabrication by contour crafting. Int. J. Ind. Syst. Eng. 2006, 1, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Le, T.; Webster, J.; Buswell, R.; Austin, A.; Gibb, A.; Thorpe, T. Fabricating construction components using layered manufacturing technology. In Proceedings of the Global Innovation in Construction Conference, Loughborough, UK, 13–16 September 2009; pp. 512–520. [Google Scholar]
- Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Mueller, R.P.; Howe, S.; Kochmann, D.; Ali, H.; Andersen, C.; Burgoyne, H.; Chambers, W.; Clinton, R.; De Kestellier, X.; Ebelt, K.; et al. Automated additive construction (AAC) for Earth and space using in-situ resources. In Proceedings of the Fifteenth Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments (Earth & Space 2016), Orlando, FL, USA, 11–15 April 2016; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- Zareiyan, B.; Khoshnevis, B. Interlayer adhesion and strength of structures in Contour Crafting-Effects of aggregate size, extrusion rate, and layer thickness. Autom. Constr. 2017, 81, 112–121. [Google Scholar] [CrossRef]
- Marchment, T.; Sanjayan, J. Mesh reinforcing method for 3D Concrete Printing. Autom. Constr. 2020, 109, 102992. [Google Scholar] [CrossRef]
- Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Mater. Des. 2016, 100, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials 2019, 12, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolini, A.; Kollmannsberger, S.; Rank, E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019, 30, 100894. [Google Scholar] [CrossRef]
- Furet, B.; Poullain, P.; Garnier, S. 3D printing for construction based on a complex wall of polymer-foam and concrete. Addit. Manuf. 2019, 28, 58–64. [Google Scholar] [CrossRef]
- Li, V.C.; Bos, F.P.; Yu, K.; McGee, W.; Ng, T.Y.; Figueiredo, S.C.; Nefs, K.; Mechtcherine, V.; Nerella, V.N.; Pan, J.; et al. On the emergence of 3D printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC). Cem. Concr. Res. 2020, 132, 106038. [Google Scholar] [CrossRef]
- Dharmawan, A.G.; Sedore, B.W.C.; Foong, S.; Soh, G.S. An agile robotic system mounted on scaffold structures for on-site construction work. Constr. Robot. 2017, 1, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Bard, J.; Cupkova, D.; Washburn, N.; Zeglin, G. Robotic concrete surface finishing: A moldless approach to creating thermally tuned surface geometry for architectural building components using Profile-3D-Printing. Constr. Robot. 2018, 2, 53–65. [Google Scholar] [CrossRef]
- Dörfler, K.; Hack, N.; Sandy, T.; Giftthaler, M.; Lussi, M.; Walzer, A.N.; Buchli, J.; Gramazio, F.; Kohler, M. Mobile robotic fabrication beyond factory conditions: Case study Mesh Mould wall of the DFAB HOUSE. Constr. Robot. 2019, 3, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, D.; Titchkosky, N.; Bickerton, C.; Watt, R.; Wozniak-O’Connor, D.; Candido, C.; Cabrera, D.; Page, M.; Bohnenberger, S. Towards onsite, modular robotic carbon-fibre winding for an integrated ceiling structure. Constr. Robot. 2019, 3, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Davtalab, O.; Kazemian, A.; Khoshnevis, B. Perspectives on a BIM-integrated software platform for robotic construction through Contour Crafting. Autom. Constr. 2018, 89, 13–23. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Perrot, A.; Amziane, S. 3D Printing in Concrete: General Considerations and Technologies. 3D Print. Concr State Art Chall. Digit. Constr. Revolut. 2019, 1–40. [Google Scholar] [CrossRef]
- Kasperzyk, C.; Kim, M.K.; Brilakis, I. Automated re-prefabrication system for buildings using robotics. Autom. Constr. 2017, 83, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Perrot, A.; Rangeard, D.; Pierre, A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater. Struct. 2016, 49, 1213–1220. [Google Scholar] [CrossRef]
- de Soto, B.G.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy. Appl. Sci. 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, C.M.; Guida, D. Forward and Inverse Dynamics of a Unicycle-Like Mobile Robot. Machines 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rocamora, A.; García-Alvarado, R.; Casanova-Medina, E.; González-Böhme, L.F.; Auat-Cheein, F. Parametric Programming of 3D Printed Curved Walls for Cost-Efficient Building Design. J. Constr. Eng. Manag. 2020, 146, 04020039. [Google Scholar] [CrossRef]
- Giftthaler, M.; Sandy, T.; Dörfler, K.; Brooks, I.; Buckingham, M.; Rey, G.; Kohler, M.; Gramazio, F.; Buchli, J. Mobile robotic fabrication at 1: 1 scale: The in situ fabricator. Constr. Robot. 2017, 1, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Kebria, P.M.; Al-Wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 4229–4234. [Google Scholar]
- Vallejo-Alarcón, M.; Castro-Linares, R.; Velasco-Villa, M. Unicycle-type robot & quadrotor leader-follower formation backstepping control. IFAC-PapersOnLine 2015, 48, 51–56. [Google Scholar]
- Moreno, J.; Clotet, E.; Lupiañez, R.; Tresanchez, M.; Martínez, D.; Pallejà, T.; Casanovas, J.; Palacín, J. Design, implementation and validation of the three-wheel holonomic motion system of the assistant personal robot (APR). Sensors 2016, 16, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zell, A. Motion control of an omnidirectional mobile robot. In Informatics in Control, Automation and Robotics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 181–193. [Google Scholar]
- Kamel, M.A.; Zhang, Y. Decentralized leader-follower formation control with obstacle avoidance of multiple unicycle mobile robots. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 406–411. [Google Scholar]
- Song, Z.; Ren, H.; Zhang, J.; Ge, S.S. Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Trans. Autom. Sci. Eng. 2015, 13, 1207–1214. [Google Scholar] [CrossRef]
- Raj, J.; Raghuwaiya, K.; Vanualailai, J.; Sharma, B. Navigation of Car-Like Robots in Three-Dimensional Space. In Proceedings of the 2018 5th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 10–12 December 2018; pp. 271–275. [Google Scholar]
- Patle, B.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Rathinam, S.; Manyam, S.G.; Zhang, Y. Near-Optimal Path Planning for a Car-Like Robot Visiting a Set of Waypoints With Field of View Constraints. IEEE Robot. Autom. Lett. 2019, 4, 391–398. [Google Scholar] [CrossRef]
- Sun, Z.; Dai, L.; Liu, K.; Xia, Y.; Johansson, K.H. Robust MPC for tracking constrained unicycle robots with additive disturbances. Automatica 2018, 90, 172–184. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Niemelä, M.; Ebrahimzadeh Sepasgozar, S.; Lai, T.; Su, W.; Reddy, K.; Shirowzhan, S.; Sepasgozar, S.; Marroquin, F. Three-Dimensional Printing Using Recycled High-Density Polyethylene: Technological Challenges and Future Directions for Construction. Buildings 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Tomé, A.; Vizotto, I.; Valença, J.; Júlio, E. Innovative Method for Automatic Shape Generation and 3D Printing of Reduced-Scale Models of Ultra-Thin Concrete Shells. Infrastructures 2018, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Bogue, R. 3D printing: The dawn of a new era in manufacturing? Assem. Autom. 2013, 33, 307–311. [Google Scholar] [CrossRef]
- Kietzmann, J.; Pitt, L.; Berthon, P. Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing. Bus. Horiz. 2015, 58, 209–215. [Google Scholar] [CrossRef]
- Izard, J.B.; Dubor, A.; Hervé, P.E.; Cabay, E.; Culla, D.; Rodriguez, M.; Barrado, M. Large-scale 3D printing with cable-driven parallel robots. Constr. Robot. 2017, 1, 69–76. [Google Scholar] [CrossRef]
- Universal Robots. 2020. Available online: https://www.universal-robots.com/es/ (accessed on 20 April 2020).
- Scaglia, G.; Montoya, L.Q.; Mut, V.; di Sciascio, F. Numerical methods based controller design for mobile robots. Robotica 2009, 27, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Scaglia, G.; Serrano, E.; Rosales, A.; Albertos, P. Linear interpolation based controller design for trajectory tracking under uncertainties: Application to mobile robots. Control Eng. Pract. 2015, 45, 123–132. [Google Scholar] [CrossRef]
- Deepyaman, M.; Ayan, A.; Mithun, C.; Amit, K.; Ramdoss, J. Tuning PID and PIλ Dμ controllers using the integral time absolute error criteria. In Proceedings of the 4th International Conference on Information and Automation for Sustainability ICIAFS, Colombo, Sri Lanka, 12–14 December 2008; pp. 457–462. [Google Scholar]
- Bos, F.P.; Ahmed, Z.Y.; Wolfs, R.J.; Salet, T.A. 3D printing concrete with reinforcement. In High Tech Concrete: Where Technology and Engineering Meet; Springer: Cham, Switzerland, 2018; pp. 2484–2493. [Google Scholar]
Feature | Value |
---|---|
Weight | 18.4 kg |
Payload | 5 kg |
Reach | 850 mm |
Joint Ranges | ±2 |
Speed | rad/s |
I/O power supply | 24 V 2 A |
Communication | TCP/IP 100 Mbit:IEEE 802.3u, 100BASE-TX |
Programing | Polyscope graphical user interface |
Temperature | The robot can work in a temperature range of 0–50 degrees |
Mobile Manipulator | Kinematic Model |
---|---|
Unicycle | |
Car-like | |
Omniderectional |
Size | 1 (m) | 2 (m) | 5 (m) |
Circular | |||
Helical | |||
Size | (m) | (m) | (m) |
Mesh | |||
Square |
Size | Profile | ||||||
---|---|---|---|---|---|---|---|
1 m | Unicycle | 0.407 | 0.368 | 0.776 | 0.334 | 0.389 | 0.723 |
Car-like | 0.329 | 0.361 | 0.691 | 0.365 | 0.383 | 0.748 | |
Omnidirectional | 0.263 | 0.270 | 0.533 | 0.301 | 0.228 | 0.529 | |
2 m | Unicycle | 0.283 | 0.368 | 0.651 | 0.333 | 0.406 | 0.739 |
Car-like | 0.442 | 0.376 | 0.818 | 0.376 | 0.378 | 0.755 | |
Omnidirectional | 0.276 | 0.257 | 0.533 | 0.291 | 0.216 | 0.506 | |
5 m | Unicycle | 0.420 | 0.352 | 0.772 | 0.319 | 0.411 | 0.731 |
Car-like | 0.318 | 0.371 | 0.689 | 0.403 | 0.410 | 0.813 | |
Omnidirectional | 0.261 | 0.277 | 0.538 | 0.278 | 0.178 | 0.457 |
Size | Profile | ||||||
---|---|---|---|---|---|---|---|
1 × 1 m | Unicycle | 0.338 | 0.390 | 0.728 | 0.434 | 0.408 | 0.843 |
Car-like | 0.345 | 0.341 | 0.686 | 0.297 | 0.402 | 0.699 | |
Omnidirectional | 0.312 | 0.269 | 0.581 | 0.268 | 0.189 | 0.458 | |
2 × 2 m | Unicycle | 0.378 | 0.391 | 0.770 | 0.440 | 0.415 | 0.855 |
Car-like | 0.232 | 0.381 | 0.613 | 0.318 | 0.418 | 0.736 | |
Omnidirectional | 0.389 | 0.228 | 0.618 | 0.242 | 0.167 | 0.409 | |
5 × 5 m | Unicycle | 0.454 | 0.396 | 0.850 | 0.374 | 0.435 | 0.801 |
Car-like | 0.323 | 0.450 | 0.773 | 0.327 | 0.441 | 0.767 | |
Omnidirectional | 0.223 | 0.154 | 0.377 | 0.299 | 0.1241 | 0.423 |
Mobile Platform | Complexity | Available | Power Consumption | Controllability | Applications |
---|---|---|---|---|---|
Unicycle | Medium | Small application (laboratories, small spaces and low load) | High | Low (decoupled control variables) | Mainly used for experimental applications. |
Car-like | High | Medium application (Industrial loads) | High | High (non-linear model) | Platform used in industrial applications. |
Omnidirectional | High | Small application (proof of concept by size constraint) | Low | Medium (its complexity depends on the number of wheels and the type). | Robot used in laboratory tests. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, R.G.; Alvarado, R.G.; Martínez-Rocamora, A.; Auat Cheein, F. A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry. Sustainability 2020, 12, 4378. https://doi.org/10.3390/su12114378
Rivera RG, Alvarado RG, Martínez-Rocamora A, Auat Cheein F. A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry. Sustainability. 2020; 12(11):4378. https://doi.org/10.3390/su12114378
Chicago/Turabian StyleRivera, Robert Guamán, Rodrigo García Alvarado, Alejandro Martínez-Rocamora, and Fernando Auat Cheein. 2020. "A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry" Sustainability 12, no. 11: 4378. https://doi.org/10.3390/su12114378
APA StyleRivera, R. G., Alvarado, R. G., Martínez-Rocamora, A., & Auat Cheein, F. (2020). A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry. Sustainability, 12(11), 4378. https://doi.org/10.3390/su12114378