Innovation-Driven or Challenge-Driven Participation in International Energy Innovation Networks? Empirical Evidence from the H2020 Programme
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Social Network Analysis: The Structural Features of the H2020–ENERGY Network
3.2. Core and Peripheral Regions in H2020–ENERGY
3.3. Econometric Analysis: Is Node Centrality Associated with Innovativeness or Energy Demand/Vulnerability?
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Econometric Models | ||
---|---|---|
Dependent Variables | Indicator | Description |
Participation H2020–ENERGY | Degree H2020–ENERGY | Degree Centrality (EU Regions): Number of connections established by each organisation in the FP7-NMP. Source: CORDIS. |
Eigenvector centrality H2020–ENERGY | Eigenvector FP7–ENERGY | Eigenvector Centrality (EU Regions): Measuring the “influence” of nodes in the network. Eigenvector shows how well-connected actors are to the parts of the network with the greatest connectivity. Source: CORDIS. |
Betweenness centrality H2020–ENERGY | Betweenness H2020–ENERGY | Betweenness Centrality (EU Regions): Number of shortest paths between i and k that actor j resides on. Betweenness measures the probability that an actor would be along all the possible paths connecting the nodes of the network. Source: CORDIS. |
Structural Holes H2020–ENERGY | Structural Holes (Effective Size) H2020–ENERGY | Structural Hole (EU Regions): “Empty space" between contacts in a university’s network. Effective size: Number of non-redundant contacts in a focal actor’s network [45]. Source: CORDIS. |
Independent Variables | Indicator | Description |
RIS | Regional Innovation Scoreboard 2019 | Four ordinal variables based on the ranking in the Regional Innovation Scoreboard 2019: Modest; Moderate; Strong; Leader. Source: Regional Innovation Scoreboard 2019. |
HCDD | Heating Degree Days + Cooling Degree Days | Difference between the daily temperature mean and 65 °F. Four ordinal variables: 0–0.125; 0.126–0.250; 0.251–0.375; >0.375. Source: Eurostat. |
EVI | Energy Vulnerability Index | Binary variables: 0 = Not vulnerable; 1 = Vulnerable. Indicators: Industry—Level of employment from coal mining + indirect jobs; Level of employment from coal plant generation; share of manufacturing in sectors with high unity expenditure on energy; Long-term unemployment (12 months and more) by NUTS 2 regions, as a percentage of active population. Households—Average energy expenditure level as a share of total expenditure; Half the median expenditure on energy; Twice the median expenditure on energy; Share of households in arrears on utility bills at least once in the past 12 months; Share of households in arrears on utility bills more than once in the past 12 months; Share of households unable to keep adequately warm; Disposable income per inhabitant on a purchasing power standard basis. Source: [36] |
Control Variables | Indicator | Description |
PM10 Emissions | Particulate matter | Particulate matter (less than 10 micrometers in diameter). Main sources of human origin: commercial, residential and households (39%), industrial processes and product use (20%), agriculture (15%), road transport (11%), energy use in industry (6%), energy production and distribution (4%), waste (3%) and non-road transport (2%). Source: European Commission. |
Population | Resident population | Population on 1 January 2019. Source: Eurostat. |
GDP per capita | Real GDP per capita | Ratio of real GDP to the average population. Source: Eurostat. |
Institutions | Quality of government | Quality of Government Index by the Quality of Government Institute (University of Gothenburg) [11]. Source: Regional Competitiveness Index. |
Country | Country fixed effects | Fixed effects/dummy variables. Reference country: Belgium (first country listed in the RIS). |
Other variables (Robustness Check) | ||
Control Variables | Indicator | Description |
RIS | Regional Innovation Scoreboard 2019 | Continuous variable—average scores of some selected RIS indicators (i.e., product or process innovators, patent applications, employment in high-technology industries and knowledge-intensive services, and sales of new-to-market and new-to-firm innovations. |
GVA per capita | Gross Value Added per capita | Output value at basic prices less intermediate consumption valued at purchasers’ prices. Source: Eurostat. |
Education | Level of education and lifelong learning | Percentage of people educated at a college or university level/ Development after formal education. Source: Regional Competitiveness Index 2019. |
References
- Strategy for Long-Term EU Greenhouse Gas Emissions Reduction (Communication). Available online: https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/strategy-long-term-eu-greenhouse-gas-emissions-reduction-communication (accessed on 11 May 2020).
- Tödtling, F.; Trippl, M.; Frangenheim, A. Policy options for green regional development: Applying a production and application perspective. PEGIS Work. Pap./Univ. Vienna 2019, 16, 1–27. [Google Scholar]
- Capasso, M.; Hansen, T.; Heiberg, J.; Klitkou, A.; Steen, M. Green growth–A synthesis of scientific findings. Technol. Soc. Chang. 2019, 146, 390–402. [Google Scholar] [CrossRef]
- Berkhout, F.; Marcotullio, P.; Hanaoka, T. Understanding energy transitions. Sustain. Sci. 2012, 7, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Secure, Clean and Efficient Energy. Available online: https://ec.europa.eu/programmes/horizon2020/en/h2020-section/secure-clean-and-efficient-energy (accessed on 11 May 2020).
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 2017, 1, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.S.; Schneider, M.; Rogge, K.S.; Schuetz, M.J.A.; Hoffmann, V.H. The effects of climate policy on the rate and direction of innovation: A survey of the EU ETS and the electricity sector. Environ. Innov. Soc. Tr. 2012, 2, 23–48. [Google Scholar] [CrossRef]
- Rogge, K.S.; Reichardt, K. Policy mixes for sustainability transitions: An extended concept and framework for analysis. Res. Policy 2016, 45, 1620–1635. [Google Scholar] [CrossRef]
- Calignano, G.; Fitjar, R.D.; Hjertvikrem, N. Innovation networks and green restructuring: Which path development can EU Framework Programmes stimulate in Norway? Nor. Geogr. Tidsskr. Nor. J. Geogr. 2019, 73, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Trippl, M.; Grillitsch, M.; Isaksen, A. Exogenous sources of regional industrial change: Attraction and absorption of non-local knowledge for new path development. Prog. Hum. Geogr. 2018, 42, 687–705. [Google Scholar] [CrossRef]
- Charron, N.; Dijkstra, L.; Lapuente, V. Regional governance matters: Quality of government within European Union member states. Reg. Stud. 2014, 48, 68–90. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Di Cataldo, M. Quality of government and innovative performance in the regions of Europe. J. Econ. Geogr. 2015, 15, 673–706. [Google Scholar] [CrossRef]
- Asheim, B.; Isaksen, A.; Trippl, M. Regional Innovation Systems–An Advanced Introduction; Edward Elgar: Cheltenham, UK, 2019. [Google Scholar]
- Heating and Cooling Degree Days. Available online: https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2/assessment (accessed on 11 May 2020).
- Trippl, M.; Baumgartinger-Seiringer, S.; Frangenheim, A.; Isaksen, A.; Rypestol, J.O. Unravelling green regional industrial path development: Regional preconditions, asset modification and agency. Geoforum 2020, 111, 189–197. [Google Scholar] [CrossRef]
- Kline, S.J.; Rosenberg, N. An Overview of Innovation. In The Positive Sum Strategy: Harnessing Technology for Economic Growth; Landau, R., Rosenberg, N., Eds.; National Academy Press: Washington, DC, USA, 1986; pp. 275–305. [Google Scholar]
- Weber, K.M.; Truffer, B. Moving innovation systems research to the next level: Towards an integrative agenda. Oxf. Rev. Econ. Policy 2017, 33, 101–121. [Google Scholar] [CrossRef]
- Powell, W.W.; Grodal, S. Networks of innovators. In The Oxford Handbook of Innovation; Fagerberg, I., Mowery, D.C., Nelson, R.R., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 56–85. [Google Scholar]
- Binz, C.; Truffer, B. Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts. Res. Policy 2017, 46, 1284–1298. [Google Scholar] [CrossRef] [Green Version]
- Calignano, G. Nanotechnology as a proxy to capture regional economic development? New findings from the European Union Framework Programmes. Nanotechnol. Rev. 2017, 6, 159–170. [Google Scholar] [CrossRef]
- Breschi, S.; Malerba, F. ERA and the role of networks. In European Science and Technology Policy: Towards Integration or Fragmentation? Langhe, H., Muldur, U., Soete, L., Eds.; Edward Elgar: Cheltenham, UK, 2009; pp. 160–174. [Google Scholar]
- Roediger-Schluga, T.; Barber, M.J. R&D collaboration networks in the European Framework Programmes: Data processing, network construction and selected results. Int. J. Foresight Innov. Policy 2008, 4, 321–347. [Google Scholar]
- Balland, P.A.; Suire, R.; Vicente, J. Structural and geographical patterns of knowledge networks in emerging technological standards: Evidence from the European GNSS industry. Econ. Innov. New Technol. 2013, 22, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Hoekman, J.; Scherngell, T.; Frenken, K.; Tijssen, R. Acquisition of European research funds and its effect on international scientific collaboration. J. Econ. Geogr. 2013, 13, 23–52. [Google Scholar] [CrossRef] [Green Version]
- Calignano, G.; Quarta, C.A. The persistence of regional disparities in Italy through the lens of the European Union nanotechnology network. Reg. Stud. Reg. Sci. 2015, 2, 470–479. [Google Scholar] [CrossRef]
- Calignano, G.; Hassink, R. Increasing innovativeness of SMEs in peripheral areas through international networks? The case of Southern Italy. REGION 2016, 3, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Dotti, N.F.; Spithoven, A. Economic drivers and specialization patterns in the spatial distribution of Framework Programme’s participation. Pap. Reg. Sci. 2018, 97, 863–882. [Google Scholar] [CrossRef] [Green Version]
- Hanneman, R.A.; Riddle, M. Introduction to Social Network Methods; University of California: Riverside, CA, USA, 2005. [Google Scholar]
- Trippl, M.; Asheim, B.; Miörner, J. Identification of regions with less-developed research and innovation systems. In Innovation Drivers and Regional Innovation Strategies; Parrilli, M.D., Fitjar, R.D., Rodríguez-Pose, A., Eds.; Routledge: Abingdon, UK, 2016; pp. 23–44. [Google Scholar]
- Asheim, B. Learning regions—A strategy for economic development in less developed regions? In Handbook on the Geographies of Regions and Territories; Paasi, A., Harrison, J., Jones, M., Eds.; Edward Elgar: Cheltenham, UK; Northampton, UK, 2018; pp. 130–140. [Google Scholar]
- Lopes, J.; Farinha, J.; Ferreira, J.; Silveira, P. Smart specialization policies: Innovative performance models from European regions. Eur. Plan. Stud. 2018, 26, 2114–2124. [Google Scholar] [CrossRef]
- Trippl, M.; Zukauskaite, E.; Healy, A. Shaping smart specialization: The role of place-specific factors in advanced, intermediate and less-developed European regions. Reg. Stud. 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Edquist, C.; Zabala-Iturriagagoitia, J.M.; Barbero, J.; Zofío, J.L. On the meaning of innovation performance: Is the synthetic indicator of the Innovation Union Scoreboard flawed? Res. Eval. 2018, 27, 96–211. [Google Scholar] [CrossRef]
- Bernstein, M. Working for the energy sector–Be excited about the future! In Developing Managerial Capabilities in the Energy Sector: What Talent is Needed? Gamble, T., Ed.; Council on Business and Society: Cergy, France, 2015; pp. 3–7. [Google Scholar]
- Tantau, A.D.; Fratila, L.C. Entrepreneurship and Business Development in Renewable Energy Field; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Pye, S.; Dobbins, A.; Matosović, M.; Lekavičius, V. Energy vulnerability and low carbon transitions in Europe. REEEM Proj. 2019, 4, 1b. [Google Scholar]
- Easterly, W. Economic stagnation, fixed factors, and policy thresholds. J. Monet. Econ. 1994, 33, 525–577. [Google Scholar] [CrossRef] [Green Version]
- Loikkanen, H.; Susiluoto, I. An Evaluation of Economic Efficiency of Finnish Regions by DEA and Tobit Models, 42nd ed.; Congress of the European Regional Science Association: Dortmund, Germany, 2002. [Google Scholar]
- Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks; Sage Publications: Los Angeles, CA, USA, 2013. [Google Scholar]
- Hansen, D.; Shneiderman, B.; Smith, M.; Himelboim, I. Analyzing Social Media Networks with NodeXL, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2020. [Google Scholar]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet 6 for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Borgatti, S.P.; Everett, M.G. Models of core/periphery structures. Soc. Netw. 1999, 21, 375–395. [Google Scholar] [CrossRef]
- Cohesion Policy. Available online: https://ec.europa.eu/regional_policy/en/policy/what/glossary/c/cohesion-policy (accessed on 11 May 2020).
- European Research Area (ERA). Policy Initiatives and Practices of a Unified Common European Research Area, Partnership Details and Progress Reports. Available online: https://ec.europa.eu/info/research-and-innovation/strategy/era_en (accessed on 11 May 2020).
- Burt, R.S. Structural Holes; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
Overall Density | Ties | St. Dev. | Avg. Degree | Centralisation (Degree) | |
---|---|---|---|---|---|
Density | 0.141 | 6834 | 0.348 | 30.923 | 0.670 |
Ranking | Country | Participations | Participations per 10,000 Inhabitants |
---|---|---|---|
1 | Germany | 274 | 0.033 |
2 | Spain | 231 | 0.028 |
3 | United Kingdom | 184 | 0.022 |
4 | Italy | 150 | 0.018 |
5 | France | 144 | 0.017 |
6 | Netherlands | 117 | 0.014 |
7 | Belgium | 94 | 0.011 |
8 | Austria | 68 | 0.008 |
9 | Sweden | 58 | 0.007 |
10 | Denmark | 57 | 0.007 |
Degree | Score | Eigenvector | Score | Betweenness | Score | Structural Holes | Score |
---|---|---|---|---|---|---|---|
Oberbayern (DE) | 177 | Oberbayern (DE) | 0.173 | Oberbayern (DE) | 31 | Oberbayern (DE) | 0.825 |
Madrid (ES) | 125 | Madrid (ES) | 0.166 | Bruxelles (BE) | 3.093 | Madrid (ES) | 0.699 |
Bruxelles (BE) | 120 | Île de France (FR) | 0.162 | Madrid (ES) | 2.998 | Bruxelles (BE) | 0.664 |
Île de France (FR) | 119 | Bruxelles (BE) | 0.160 | Île de France (FR) | 2.360 | Île de France (FR) | 0.648 |
Cataluña (ES) | 109 | London (UK) | 0.153 | Cataluña (ES) | 1.966 | Cataluña (ES) | 0.630 |
London (UK) | 105 | Cataluña (ES) | 0.152 | Attiki (EL) | 1.685 | Attiki (EL) | 0.606 |
Zuid-Holland (NL) | 101 | Zuid-Holland (NL) | 0.148 | Lazio (IT) | 1.632 | Lazio (IT) | 0.605 |
Vlaams Gewest (BE) | 99 | Vlaams Gewest (BE) | 0.147 | Zuid-Holland (NL) | 1.610 | London (UK) | 0.599 |
Attiki (EL) | 95 | País Vasco (ES) | 0.142 | Vlaams Gewest (BE) | 1.385 | Ostösterreich (AT) | 0.591 |
País Vasco (ES) | 95 | Stockholm (SE) | 0.139 | Ostösterreich (AT) | 1.340 | Zuid-Holland (NL) | 0.589 |
Hovedstaden (DK) | 93 | Hovedstaden (DK) | 0.138 | London (UK) | 1.325 | Vlaams Gewest (BE) | 0.579 |
Lazio (IT) | 93 | Lombardia (IT) | 0.137 | Karlsruhe (DE) | 1.202 | País Vasco (ES) | 0.571 |
Lombardia (IT) | 91 | Attiki (EL) | 0.135 | Hovedstaden (DK) | 1.135 | Hovedstaden (DK) | 0.570 |
Stockholm (SE) | 90 | Lazio (IT) | 0.133 | Lombardia (IT) | 1.074 | Karlsruhe (DE) | 0.562 |
Ostösterreich (AT) | 87 | Karlsruhe (DE) | 0.133 | Stuttgart (DE) | 1.062 | Lombardia (IT) | 0.562 |
Degree | Eigenvector | Betweenness | Structural Holes | |
---|---|---|---|---|
RIS (4 categories) | 0.464 ** | 0.553 ** | 0.553 ** | 0.530 ** |
RIS (10 categories) | 0.515 ** | 0.603 ** | 0.574 ** | 0.574 ** |
RIS (Selected indicators/Continuous variable) | 0.462 ** | 0.534 ** | 0.534 ** | 0.451 ** |
HCDD (4 categories) | 0.232 ** | 0.287 ** | 0.287 ** | 0.298 ** |
HCDD (Continuous variable) | 0.237 ** | 0.260 ** | 0.260 ** | 0.287 ** |
EVI (Dichotomous variable) | −0.296 ** | −0.363 ** | −0.363 ** | −0.355 ** |
RIS | ||||
---|---|---|---|---|
Modest | Moderate | Strong | Leader | |
Modest | 0.013 | 0.025 | 0.024 | 0.089 |
Moderate | 0.091 | 0.116 | 0.231 | |
Strong | 0.199 | 0.348 | ||
Leader | 0.618 | |||
Ties within each group | Modest | Moderate | Strong | Leader |
10 | 794 | 960 | 502 | |
HCDD | ||||
0–0.125 | 0.126–0.250 | 0.251–0.375 | >0.375 | |
0–0.125 | 0.044 | 0.066 | 0.079 | 0.123 |
0.126–0.250 | 0.131 | 0.170 | 0.204 | |
0.251–0.375 | 0.209 | 0.249 | ||
>0.375 | 0.313 | |||
Ties within each group | 0–0.125 | 0.126–0.250 | 0.251–0.375 | >0.375 |
134 | 804 | 432 | 488 | |
EVI | ||||
0 | 1 | |||
0 | 0.221 | 0.087 | ||
1 | 0.087 | 0.044 | ||
Ties within each group | 0 | 1 | ||
4682 | 246 |
Regions (Overall) | ||||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | Total | |
RIS | 28 (12.6%) | 94 (42.6%) | 70 (31.7%) | 29 (13.1%) | 221 (100%) | |
HCDD | 56 (25.3%) | 79 (35.7%) | 46 (20.8%) | 40 (18.1%) | 221 (100%) | |
EVI | 146 (66.1%) | 75 (33.9%) | 221 (100%) | |||
Core Members | ||||||
1 | 2 | 3 | 4 | Total | ||
RIS | 0 | 18 (29.5%) | 21 (34.4%) | 22 (36.1%) | 61 (100%) | |
HCDD | 3 (4.9%) | 21 (34.4%) | 17 (27.8%) | 20 (32.9%) | 61 (100%) | |
EVI | 56 (91.8%) | 5 (8.2%) | 61 (100%) |
Model 1 (Degree) | Model 2 (Eigenv.) | Model 3 (Between.) | Model 4 (Struc. Holes) | Model 5 (Degree) | Model 6 (Eigen.) | Model 7 (Between.) | Model 8 (Struc. Holes) | |
---|---|---|---|---|---|---|---|---|
Intercept | −0.559 (10.7471) | 3.737 (9.9874) | 5.518 (9.9944) | −0.016 (10.2617) | −5.817 (10.3639) | −2.306 (9.6616) | −0.534 (9.6673) | −8.399 (9.9611) |
RIS | 0.355 * (0.2768) | 0.388 ** (0.1234) | 0.388 ** (0.1235) | 0.573 ** (0.1377) | 0.341 * (0.1373) | 0.377 ** (0.1241) | 0.378 ** (0.1242) | 0.560 ** (0.1388) |
EVI | −0.507 (0.2768) | −0.512* (0.2504) | −0.513 * (0.2506) | −0.716 * (0.2784) | ||||
HCDD | −0.110 (0.0913) | −0.054 (0.0827) | −0.054 (0.0827) | −0.088 (0.0910) | ||||
PM10 Emissions | −5.863 ** (1.1975) | −5.014 ** (1.0365) | −5.050 ** (1.0387) | −4.342 ** (1.0648) | −5.885 ** (1.1948) | −5.048 ** (1.0447) | −5.085 ** (1.0469) | −4.376 ** (1.0747) |
Population | 2.578 ** (0.4378) | 2.363 ** (0.3965) | 2.363 ** (0.3968) | 3.427 ** (0.4126) | 2.507 ** (0.4364) | 2.243 ** (0.3971) | 2.243 ** (0.3974) | 3.283 ** (0.4141) |
GDP per Capita | 1.397 ** (0.5255) | 1.274 ** (0.4737) | 1.273 ** (0.4564) | 2.036 ** (0.4907) | 2.135 ** (0.5831) | 1.802 ** (0.5263) | 1.803 ** (0.5266) | 2.772 ** (0.5610) |
Institutions | 2.882 (1.6704) | 2.085 (1.5196) | 2.090 (1.5208) | 1.490 (1.6396) | 2.444 (1.7392) | 1.970 (1.5854) | 1.974 (1.5866) | 1.236 (1.7303) |
Country Fixed Effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Likelihood Chi-Square | 190.5 ** | 202.7 ** | 202.8 ** | 308.4 ** | 188.6 ** | 199.0 ** | 199.1 ** | 302.8 ** |
Model 1 (Degree) | Model 2 (Eigenv.) | Model 3 (Between.) | Model 4 (Struc. Holes) | Model 5 (Degree) | Model 6 (Eigen.) | Model 7 (Between.) | Model 8 (Struc. Holes) | |
---|---|---|---|---|---|---|---|---|
Intercept | −5.705 (9.8407) | −1.997 (9.1849) | −0.224 (9.1912) | −8.280 (9.1833) | −12.045 (9.3112) | −7.899 (8.7288) | −6.133 (8.7345) | −16.258 (8.6518) |
RIS | 0.210 ** (0.0616) | 0.175 ** (0.0555) | 0.176 ** (0.0556) | 0.219 ** (0.0602) | 0.205 ** (0.0619) | 0.172 ** (0.0559) | 0.172 ** (0.0559) | 0.216 ** (0.0605) |
EVI | −0.49 (0.2730) | −0.452 (0.2470) | −0.452 (0.2473) | −0.573 * (0.2748) | ||||
HCDD | 0.035 (0.4596) | 0.044 (0.4203) | 0.043 (0.4207) | 0.476 (0.4487) | ||||
PM10 Emissions | −4.803 ** (0.4276) | −4.322 ** (1.0392) | −4.357 ** (1.0416) | −3.525 ** (1.0740) | −4.723 ** (1.2317) | −4.247 ** (1.0554) | −4.282 ** (1.0579) | −3.425 ** (1.0936) |
Population | 2.214 ** (0.3311) | 2.061 ** (0.3850) | 2.060 ** (0.3853) | 3.093 ** (0.3951) | 2.054 ** (0.4370) | 1.915 ** (0.3940) | 1.914 ** (0.3943) | 2.801 ** (0.4067) |
GVA per Capita | −0.076 (0.2848) | 0.000 (0.2531) | −0.001 (0.2534) | −0.221 (0.3291) | −0.073 (0.2867) | −0.002 (0.2551) | −0.002 (0.2553) | −0.253 (0.3322) |
Education | 0.977 (0.5713) | 1.132 * (0.5113) | 1.132 * (0.5117) | 2.197 ** (0.5658) | 1.301 * (0.5571) | 1.413 * (0.5009) | 1.413 * (0.5013) | 2.434 ** (0.5554) |
Country Fixed Effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Likelihood Chi-Square | 197.6 ** | 209.6 ** | 209.6 ** | 321.5 ** | 194.4 ** | 206.2 ** | 206.3 ** | 318.3 ** |
Model 1 (Degree) | |
---|---|
Intercept | −0.183 ** (0.0559) |
RIS | 0.340 ** (0.0955) |
EVI | 0.030 (0.0281) |
HCDD | 0.118 (0.0638) |
PM10 Emissions | −2.686 ** (0.7431) |
Population | 0.243 ** (0.0835) |
GDP per Capita | 0.226 * (0.0963) |
Education | 0.167 ** (0.0609) |
Sigma | 0.139 (0.0075) |
Log-Likelihood | 67.9 |
Chi-Square | 7.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calignano, G.; Trippl, M. Innovation-Driven or Challenge-Driven Participation in International Energy Innovation Networks? Empirical Evidence from the H2020 Programme. Sustainability 2020, 12, 4696. https://doi.org/10.3390/su12114696
Calignano G, Trippl M. Innovation-Driven or Challenge-Driven Participation in International Energy Innovation Networks? Empirical Evidence from the H2020 Programme. Sustainability. 2020; 12(11):4696. https://doi.org/10.3390/su12114696
Chicago/Turabian StyleCalignano, Giuseppe, and Michaela Trippl. 2020. "Innovation-Driven or Challenge-Driven Participation in International Energy Innovation Networks? Empirical Evidence from the H2020 Programme" Sustainability 12, no. 11: 4696. https://doi.org/10.3390/su12114696
APA StyleCalignano, G., & Trippl, M. (2020). Innovation-Driven or Challenge-Driven Participation in International Energy Innovation Networks? Empirical Evidence from the H2020 Programme. Sustainability, 12(11), 4696. https://doi.org/10.3390/su12114696