Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research
Abstract
:1. Introduction
2. Methodology
2.1. Bibliometric Analysis
2.2. Data Processing
3. Results
3.1. Evolution of the General Characteristics of Research on Irrigation Ponds for Sustainable Agriculture (IPSA)
3.2. Evolution of Research in IPSA by Subject Area
3.3. Most Relevant Journals in IPSA Research
3.4. Most Relevant Countries in IPSA Research
3.5. Most Relevant Institutions in IPSA Research
3.6. Keywords Analysis in IPSA Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Economic analysis of sustainable water use: A review of worldwide research. J. Clean Prod. 2018, 198, 1120–1132. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- Assouline, S.; Russo, D.; Silber, A.; Or, D. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour. Res. 2015, 51, 3419–3436. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles de la Fuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Muñoz, J.V.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable water use in agriculture: A review of worldwide research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zehnder, A.J.B. Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Dev. 2002, 30, 1413–1430. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation–a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Van Beek, L.P.H.; Bierkens, M.F.P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Ressour. Res. 2012, 48, W00L06. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Ménassieu, J. Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, A.N.; Spyridakis, D.S. Water supply and wastewater management aspects in Ancient Greece. Water Sci. Technol. Water Supply 2010, 10, 618–628. [Google Scholar] [CrossRef]
- De Feo, G.; Laureano, P.; Drusiani, R.; Angelakis, A.N. Water and wastewater management technologies through the centuries. Water Sci. Technol. Water Supply 2010, 10, 337–349. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Xue, L.; Saleem, M.F.; Wang, G.X.; Zou, C.M. Desertification in Pakistan: Causes, impacts and management. J. Food Agric. Environ. 2010, 8, 1203–1208. [Google Scholar]
- Céréghino, R.; Biggs, J.; Oertli, B.; Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater hábitat. Hydrobiologia 2008, 597, 1–6. [Google Scholar] [CrossRef]
- Riley, W.D.; Potter, E.C.D.; Biggs, J.; Collins, A.L.; Jarvie, H.P.; Jones, J.I.; Kelly-Quinn, M.; Ormerod, S.J.; Sear, D.A.; Wilby, R.L.; et al. Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Sci. Total Environ. 2018, 645, 1598–1616. [Google Scholar] [CrossRef]
- Casas, J.; Toja, J.; Bonachela, S.; Fuentes, F.; Gallego, I.; Juan, M.; Leon, D.; Peñalver, P.; Pérez, C.; Sánchez, P. Artificial ponds in a Mediterranean region (Andalusia, southern Spain): Agricultural and environmental issues. Water Environ. J. 2011, 25, 308–317. [Google Scholar] [CrossRef]
- Jiang, S.; Ning, S.; Cao, X.; Jin, J.; Song, F.; Yuan, X.; Zhang, L.; Xu, X.; Udmale, P. Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China. Int. J. Environ. Res. Public Health 2019, 16, 2717. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Céréghino, R.; Boix, D.; Cauchie, H.-M.; Martens, K.; Oertli, B. The ecological role of ponds in a changing world. Hydrobiologia 2014, 723, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ramsar Convention Secretariat. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People; Ramsar Convention on Wetlands: Gland, Switzerland, 2018; p. 24. [Google Scholar]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Schumann, A.H.; Vörösmarty, C.J. The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol. 2010, 384, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Gunnell, Y.; Krishnamurthy, A. Past and present status of runoff harvesting systems in dryland peninsular India: A critical review. Ambio 2003, 32, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Paz, J.O.; Feng, G.; Read, J.J.; Adeli, A.; Jenkins, J.N. A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond. Water Resour. Manag. 2017, 31, 2225–2241. [Google Scholar] [CrossRef]
- Mushtaqa, S.; Khana, S.; Hafeezb, M. Evaluating the impact of ponds in sustaining crop production: A case of Zhanghe irrigation system in China. Water Policy 2009, 11, 236–249. [Google Scholar] [CrossRef]
- Fuentes-Rodríguez, F.; Juan, M.; Gallego, I.; Lusi, M.; Fenoy, E.; León, D.; Peñalver, P.; Toja, J.; Casas, J.J. Diversity in Mediterranean farm ponds: Trade-offs and synergies between irrigation modernisation and biodiversity conservation. Freshw. Biol. 2013, 58, 63–78. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Chander, G.; Reddy, T.Y.; Kumar, S.; Padmalatha, Y.; Reddy, S.; Adinarayana, G.; Wania, S.P.; Reddy, Y.V.M.; Srinivas, K. Low-cost interventions for big impacts in dryland production systems. Arch. Agron. Soil Sci. 2019, 65, 1211–1222. [Google Scholar] [CrossRef]
- Carvajal, F.; Agüera, F.; Sánchez-Hermosilla, J. Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops. Agric. Water Manag. 2014, 131, 146–155. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, G.; Read, J.J.; Leininger, T.D.; Jenkins, J.N. Estimating the ratio of pond size to irrigated soybean land in Mississippi: A case study. Water Sci. Technol.-Water Supply 2016, 16, 1639–1647. [Google Scholar] [CrossRef]
- Rao, C.S.; Rejani, R.; Rao, C.A.R.; Rao, K.V.; Osman, M.; Reddy, K.S.; Kumar, M.; Kumar, P. Farm ponds for climate-resilient rainfed agricultura. Curr. Sci. 2017, 112, 471–477. [Google Scholar]
- Sikka, A.K.; Islam, A.; Rao, K. Climate-smart land and water management for sustainable agriculture. Irrig. Drain. 2017, 67, 72–81. [Google Scholar] [CrossRef]
- Morsy, K.M.; Morsy, A.M.; Hassan, A.E. Groundwater sustainability: Opportunity out of threat. Groundw. Sustain. Dev. 2018, 7, 277–285. [Google Scholar] [CrossRef]
- Moore, T.L.C.; Hunt, W.F. Ecosystem service provision by stormwater wetlands and ponds—a means for evaluation? Water Res. 2012, 46, 6811–6823. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Craig, I.; Green, A.; Scobie, M.; Schmidt, E. Controlling Evaporation Loss from Water Storages; Report 1000580/1; National Centre for Engineering in Agriculture: Toowoomba, Austalia, 2005.
- Liebe, J.; van de Giesen, N.; Andreini, M. Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana. Phys. Chem. Earth Parts A/B/C 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Ngigia, S.N.; Savenije, H.H.G.; Thome, J.N.; Johan Rockström, J.; de Vries, F.W.T.P. Agro-hydrological evaluation of on-farm rainwater storage systems for supplemental irrigation in Laikipia district, Kenya. Agric. Water Manag. 2005, 73, 21–41. [Google Scholar] [CrossRef]
- Krol, M.S.; de Vries, M.J.; van Oel, P.R.; de Araújo, J.C. Sustainability of small reservoirs and large scale water availability under current conditions and climate change. Water Resour. Manag. 2011, 25, 3017–3026. [Google Scholar] [CrossRef] [Green Version]
- Vico, G.; Tamburino, L.; Rigby, J.R. Designing on-farm irrigation ponds for high and stable yield for different climates and risk-coping attitudes. J. Hydrol. 2020, 584, 124634. [Google Scholar] [CrossRef]
- Garfield, E.; Sher, I.H. New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 1963, 14, 195–201. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Guo, Y.; Zhu, D.; Porter, A.L. Four dimensional science and technology planning: A new approach based on bibliometrics and technology roadmapping. Technol. Forecast. Soc. Chang. 2014, 81, 39–48. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; García-Gómez, J.J.; López-Serrano, M.J. The Sustainable Management of Metals: An Analysis of Global Research. Metals 2018, 8, 805. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Uriona-Maldonado, M.; Silva-Santos, J.L.; Santos, R.N.M. Inovação e Conhecimento Organizacional: Um mapeamento bibliométrico das publicações cientificas até 2009. In Proceedings of the XXXIV Encontro ANPAD, Rio de Janeiro, Brazil, 25–29 September 2010. [Google Scholar]
- Albort-Morant, G.; Henseler, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the field: A bibliometric analysis of green innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef] [Green Version]
- Durieux, V.; Gevenois, P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010, 55, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.K.; Huang, L.; Guo, Y.; Porter, A.L. Forecasting Innovation Pathways (FIP) for new and emerging science and technologies. Technol. Forecast. Soc. Chang. 2013, 80, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; Román-Sánchez, I.M. An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. Int. J. Environ. Res. Public Health 2020, 17, 664. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Opejin, A.K.; Aggarwal, R.M.; White, D.D.; Jones, J.L.; Maciejewski, R.; Mascaro, G.; Sarjoughian, H.S. A Bibliometric Analysis of Food-Energy-Water Nexus Literature. Sustainability 2020, 12, 1112. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Piquer-Rodríguez, M.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Worldwide research trends on sustainable land use in agriculture. Land Use Pol. 2019, 87, 104069. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining Waste and Its Sustainable Management: Advances in Worldwide Research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Galdeano-Gómez, E.; Aznar-Sánchez, J.A.; Pérez-Mesa, J.C.; Piedra-Muñoz, L. Exploring synergies among agricultural sustainability dimensions: An empirical study on farming system in Almería (Southeast Spain). Ecol. Econ. 2017, 140, 99–109. [Google Scholar] [CrossRef]
- Loukas, A.; Mylopoulos, N.; Vasiliades, L. A modeling system for the evaluation of water resources management strategies in Thessaly, Greece. Water Resour. Manag. 2007, 21, 1673–1702. [Google Scholar] [CrossRef]
- Laghari, A.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef] [Green Version]
- Paul, N.; Elango, L. Predicting future water supply-demand gap with a new reservoir, desalination plant and waste water reuse by water evaluation and planning model for Chennai megacity, India. Groundw. Sustain. Dev. 2018, 7, 8–19. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.V.; Valera, D.L. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froebrich, J. Enhanced reservoir operation- concept for improving water quality and water management in water stressed areas (a comparison and synthesis from case studies in Central Asia and North-Africa). Int. Agric. Eng. J. 2005, 14, 147–160. [Google Scholar]
- Sawunyama, T.; Senzanje, A.; Mhizha, A. Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: Case of Mzingwane catchment. Phys. Chem. Earth 2006, 31, 935–943. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Galdeano-Gómez, E.; Pérez-Mesa, J.C. Intensive Horticulture in Almería (Spain): A Counterpoint to Current European Rural Policy Strategies. J. Agrar. Chang. 2011, 11, 241–261. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Sano, E.; Steenhuis, T.; Passo, D. Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah Region. Water Resour. Manag. 2012, 26, 873–882. [Google Scholar] [CrossRef]
- Aristeidis, K.; Dimitrios, S. The effect of small earth dams and reservoirs on water management in North Greece (Kerkini municipality). Silva Balcanica 2015, 16, 71–84. [Google Scholar]
- Hong, E.M.; Choi, J.Y.; Nam, W.H.; Kim, J.T. Decision support system for the real-time operation and management of an agricultural water supply. Irrig. Drain. 2016, 65, 197–209. [Google Scholar] [CrossRef]
- Casadei, S.; Di Francesco, S.; Giannone, F.; Pierleoni, A. Small reservoirs for a sustainable water resources management. Adv. Geosci. 2019, 49, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, R.; Díaz-Madroñero, M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs. Water 2019, 11, 2432. [Google Scholar] [CrossRef] [Green Version]
- Walraevens, K.; Gebreyohannes-Tewolde, T.; Amare, K.; Hussein, A.; Berhane, G.; Baert, R.; Ronsse, S.; Kebede, S.; Van Hulle, L.; Deckers, J.; et al. Water Balance Components for Sustainability Assessment of Groundwater-Dependent Agriculture: Example of the Mendae Plain (Tigray, Ethiopia). Land Degrad. Dev. 2015, 26, 725–736. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; Smedt, F.; Walraevens, K.; Gebresilassie, S. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J. Hydrol. 2013, 499, 110–123. [Google Scholar] [CrossRef]
- Kovacs, K.; Mancini, M. Conjunctive water management to sustain agricultural economic returns and a shallow aquifer at the landscape level. J. Soil Water Conserv. 2017, 72, 158–167. [Google Scholar] [CrossRef]
- Mehta, V.; Young, C.; Bresney, S.; Spivak, D.; Winter, J. How can we support the development of robust groundwater sustainability plans? Calif. Agric. 2018, 72, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Terêncio, D.; Fernandes, L.; Machado, J.; Pacheco, F. The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities. Int. J. Environ. Res. Public Health 2019, 16, 1239. [Google Scholar] [CrossRef] [Green Version]
- Tsihrintzis, V.A.; Baltas, E. Determination of rainwater harvesting tank size. Glob. Nest. J. 2014, 16, 822–831. [Google Scholar] [CrossRef] [Green Version]
- Hussein, F.; Shariff, R. Selection of rainwater harvesting sites by using remote sensing and GIS techniques: A case study of Kirkuk, Iraq. J. Teknol. 2015, 76, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Jha, M.; Chowdary, V. Multi-criteria analysis and GIS modelling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean Prod. 2016, 142, 1436–1456. [Google Scholar] [CrossRef]
- Mugo, G.M.; Odera, P.A. Site selection for rainwater harvesting structures in Kiambu County-Kenya. Egypt. J. Remote Sens. Space Sci. 2018, 22, 155–164. [Google Scholar] [CrossRef]
- Rabbani, G.; Rahman, S.; Faulkner, L. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds): Evidence from Some Selected Areas of Coastal Bangladesh. Sustainability 2013, 5, 1510–1521. [Google Scholar] [CrossRef] [Green Version]
- Deka, N.; Bhagabati, A.K. Wetlands in a Village Environment: A Case from Brahmaputra Floodplain, Assam. Trans. Inst. Indian Geogr. 2015, 37, 35–46. [Google Scholar]
- Ojha, A.; Pattnaik, A.K.; Rout, J. Climate change impacts on natural resources and communities: A geospatial approach for management. Lakes Reserv. Res. Manag. 2018, 23, 34–42. [Google Scholar] [CrossRef]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Brainwood, M.; Burgin, S. Hotspots of biodiversity or homogeneous landscapes? Farm dams as biodiversity reserves in Australia. Biodivers. Conserv. 2009, 18, 3043–3052. [Google Scholar] [CrossRef]
- Hill, M.J.; Hassall, C.; Oertli, B.; Fahrig, L.; Robson, B.J.; Biggs, J.; Samways, M.J.; Usio, N.; Takamura, N.; Krishnaswamy, J.; et al. New policy directions for global pond conservation. Conserv. Lett. 2018, 11, e12447. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 4773–4812. [Google Scholar] [CrossRef] [Green Version]
- Habets, F.; Philippe, E.; Martin, E.; David, C.H.; Leseur, F. Small farm dams: Impact on river flows and sustainability in a context of climate change. Hydrol. Earth Syst. Sci. 2014, 18, 4207–4222. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.S.; Zhang, T.Q.; Drury, C.F.; Reynolds, W.D.; Oloya, T.; Gaynor, J.D. Water Quality and Crop Production Improvements Using a Wetland-Reservoir and Drainage/Subsurface Irrigation System. Can. Water Resour. J. 2007, 32, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth 2015, 6, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Mehan, S.; Aggarwal, R.; Gitau, M.W.; Flanagan, D.C.; Wallace, C.W.; Frankenberger, J.R. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed. Sci. Total Environ. 2019, 688, 1236–1251. [Google Scholar] [CrossRef] [PubMed]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colon-Gonzalez, F.J.; et al. Multimodel Assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Graham, N.T.; Hejazi, M.I.; Chen, M.; Davies, E.G.R.; Edmonds, J.A.; Kim, S.H.; Turner, S.W.D.; Li, X.; Vernon, C.R.; Calvin, K.; et al. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 2020, 15, 014007. [Google Scholar] [CrossRef]
- WWAP (UNESCO World Water Assessment Programme). The United Nations World Water Development Report 2019: Leaving No One Behind; UNESCO: Paris, France, 2019. [Google Scholar]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Brundtland, G.; Khalid, M.; Agnelli, S.; Al-Athel, S.; Chidzero, B.; Fadika, L.; Hauff, V.; Lang, I.; Shijun, M.; Okita, S.; et al. Our Common Future (‘Brundtland Report’); Oxford University Press: Oxford, UK, 1987; ISBN 019282080X. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2016: Water and Jobs; UNESCO: Paris, France, 2016. [Google Scholar]
- Hetzel, F.; Vaessen, V.; Himmelsbach, T.; Struckmeier, W.; Villholth, K.G. (Eds.) Groundwater and Climate Change: Challenges and Possibilities; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2008. [Google Scholar]
- Chowdhury, K.; Behera, B. Is depletion of groundwater table linked with disappearance of traditional water harvesting systems (tank irrigation)? Empirical evidence from West Bengal, India. Groundw. Sustain. Dev. 2018, 7, 185–194. [Google Scholar] [CrossRef]
- Hedley, C.B.; Knox, J.W.; Raine, S.R.; Smith, R. Water: Advanced irrigation technologies. Encycl. Agric. Food Syst. 2014, 5, 378–406. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar]
- Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Ortiz-Correa, J.S.; Resende Filho, M.; Dinar, A. Impact of access to water and sanitation services on educational attainment. Water Resour. Econ. 2016, 14, 31–43. [Google Scholar] [CrossRef] [Green Version]
- United Nations. General Assembly. Resolution Adopted by the General Assembly on 25 September 2015: 70/1. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding Against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- Ouyang, Y.; Feng, G.; Leininger, T.D.; Read, J.; Jenkins, J.N. Pond and irrigation model (PIM): A Tool for simultaneously evaluating pond water availability and crop irrigation demand. Water Resour. Manag. 2018, 32, 2969–2983. [Google Scholar] [CrossRef]
Year | Articles | Authors | Journals | Countries | Citations | Average Citations 1 |
---|---|---|---|---|---|---|
2000 | 10 | 25 | 10 | 8 | 0 | 0.0 |
2001 | 16 | 41 | 16 | 10 | 8 | 0.3 |
2002 | 12 | 23 | 12 | 8 | 4 | 0.3 |
2003 | 22 | 65 | 22 | 15 | 13 | 0.4 |
2004 | 20 | 59 | 18 | 14 | 44 | 0.9 |
2005 | 27 | 87 | 22 | 17 | 75 | 1.3 |
2006 | 34 | 107 | 30 | 21 | 142 | 2.0 |
2007 | 30 | 82 | 26 | 17 | 196 | 2.8 |
2008 | 48 | 152 | 40 | 29 | 252 | 3.4 |
2009 | 52 | 168 | 42 | 32 | 368 | 4.1 |
2010 | 28 | 104 | 25 | 21 | 496 | 5.3 |
2011 | 54 | 191 | 50 | 34 | 672 | 6.4 |
2012 | 49 | 216 | 42 | 41 | 812 | 7.7 |
2013 | 73 | 272 | 60 | 34 | 1183 | 9.0 |
2014 | 63 | 245 | 48 | 30 | 1416 | 10.6 |
2015 | 58 | 275 | 52 | 39 | 1545 | 12.1 |
2016 | 77 | 330 | 61 | 38 | 1845 | 13.5 |
2017 | 73 | 318 | 58 | 37 | 2186 | 15.1 |
2018 | 94 | 460 | 69 | 57 | 2434 | 16.3 |
2019 | 111 | 492 | 88 | 52 | 2938 | 17.5 |
Journal | Articles | SJR 1 | H Index 2 | Country | Citations | Average Citations 3 | First Article | Last Article |
---|---|---|---|---|---|---|---|---|
Water | 23 | 0.670 (Q2) | 8 | Switzerland | 143 | 6.2 | 2009 | 2019 |
Nongye Gongcheng Xuebao | 21 | 0.422 (Q2) | 6 | China | 92 | 4.4 | 2011 | 2017 |
Agricultural Water Management | 19 | 1.403 (Q1) | 11 | Netherlands | 323 | 17.1 | 2000 | 2019 |
Water Resources Management | 17 | 1.097 (Q1) | 13 | Netherlands | 404 | 23.8 | 2007 | 2019 |
Acta Ecologica Sinica | 16 | 0.197 (Q4) | 5 | China | 83 | 5.2 | 2010 | 2018 |
Sustainability | 16 | 0.549 (Q2) | 4 | Switzerland | 54 | 3.4 | 2015 | 2019 |
Journal of Hydrology | 15 | 1.830 (Q1) | 10 | Netherlands | 588 | 39.2 | 2008 | 2019 |
Environmental Earth Sciences | 13 | 0.625 (Q2) | 6 | Germany | 95 | 7.3 | 2012 | 2019 |
Environmental Monitoring and Assessment | 12 | 0.623 (Q2) | 8 | Netherlands | 116 | 9.7 | 2004 | 2019 |
Journal of Cleaner Production | 12 | 1.620 (Q1) | 7 | Netherlands | 129 | 10.8 | 2015 | 2019 |
Country | Articles | Average per Capita Articles 1 | Citations | Average Citations 2 | H Index 3 | First Article | Last Article |
---|---|---|---|---|---|---|---|
China | 186 | 0.134 | 2272 | 12.2 | 29 | 2000 | 2019 |
USA | 174 | 0.532 | 5597 | 32.2 | 33 | 2000 | 2019 |
India | 103 | 0.076 | 1283 | 12.5 | 18 | 2000 | 2019 |
UK | 58 | 0.872 | 1551 | 26.7 | 21 | 2000 | 2019 |
Germany | 50 | 0.603 | 982 | 19.6 | 16 | 2000 | 2019 |
Australia | 49 | 1.961 | 1082 | 22.1 | 16 | 2001 | 2019 |
France | 49 | 0.731 | 1512 | 30.9 | 18 | 2003 | 2019 |
Brazil | 36 | 0.172 | 540 | 15.0 | 10 | 2001 | 2019 |
Italy | 35 | 0.579 | 1852 | 52.9 | 16 | 2001 | 2019 |
Spain | 33 | 0.706 | 1269 | 38.5 | 15 | 2000 | 2019 |
Country | Percentage of Collaboration 1 | Number of Collaborators | Main Collaborators | Average Citation | |
---|---|---|---|---|---|
Collaboration 2 | Non-Collaboration 3 | ||||
China | 29.1 | 26 | USA, Australia, Netherlands, Canada, Germany | 17.6 | 10.0 |
USA | 60.3 | 45 | China, Mexico, France, Germany, Netherlands | 40.2 | 19.9 |
India | 20.4 | 14 | USA, Netherlands, France, Germany, Canada | 38.9 | 5.7 |
UK | 67.2 | 34 | USA, Italy, Australia, South Africa, China | 22.7 | 35.0 |
Germany | 60.1 | 30 | USA, China, Italy, Brazil, India | 19.5 | 19.9 |
Australia | 40.8 | 23 | China, USA, UK, Canada, France | 34.7 | 13.4 |
France | 67.4 | 36 | USA, Italy, Tunisia, India, UK | 33.9 | 24.6 |
Brazil | 38.9 | 11 | USA, Germany, Canada, France, Spain | 30.4 | 5.2 |
Italy | 51.4 | 22 | USA, UK, France, Germany, Netherlands | 90.7 | 12.9 |
Spain | 42.4 | 16 | Germany, Italy, UK, Brazil, Portugal | 32.3 | 43.0 |
Institution | Country | Articles | Citations | Average Citations 1 | H Index 2 | Percentage of Collaboration 3 | Average citation | |
---|---|---|---|---|---|---|---|---|
Collaboration 4 | Non-Collaboration 5 | |||||||
Chinese Academy of Sciences | China | 62 | 1097 | 17.7 | 16 | 33.9 | 19.5 | 16.8 |
Ministry of Education China | China | 11 | 244 | 22.2 | 6 | 18.2 | 36.5 | 19.0 |
Wageningen University and Research Centre | Netherlands | 10 | 360 | 36.1 | 6 | 80 | 29.9 | 60.5 |
Universität Bonn | Germany | 10 | 125 | 12.5 | 6 | 60 | 16.0 | 7.3 |
Universiteit Gent | Belgium | 10 | 189 | 18.9 | 5 | 80 | 23.1 | 2.0 |
China Institute of Water Resources and Hydropower Research | China | 9 | 33 | 3.7 | 4 | 11.1 | 2.0 | 3.9 |
Beijing Forestry University | China | 9 | 83 | 9.2 | 5 | 22.2 | 27.5 | 4.0 |
Beijing Normal University | China | 9 | 99 | 11.0 | 5 | 33.3 | 4.7 | 14.2 |
KU Leuven | Belgium | 9 | 386 | 42.9 | 6 | 100 | 42.9 | 0.0 |
Northwest A&F University | China | 9 | 81 | 9.0 | 4 | 22.2 | 3.0 | 10.7 |
Mekelle University | Ethiopia | 9 | 179 | 19.9 | 6 | 100 | 19.9 | 0.0 |
Southwest University | China | 9 | 33 | 3.7 | 4 | 22.2 | 7.5 | 2.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Felices, B.; Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Piquer-Rodríguez, M. Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research. Sustainability 2020, 12, 5425. https://doi.org/10.3390/su12135425
López-Felices B, Aznar-Sánchez JA, Velasco-Muñoz JF, Piquer-Rodríguez M. Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research. Sustainability. 2020; 12(13):5425. https://doi.org/10.3390/su12135425
Chicago/Turabian StyleLópez-Felices, Belén, José A. Aznar-Sánchez, Juan F. Velasco-Muñoz, and María Piquer-Rodríguez. 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research" Sustainability 12, no. 13: 5425. https://doi.org/10.3390/su12135425
APA StyleLópez-Felices, B., Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., & Piquer-Rodríguez, M. (2020). Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research. Sustainability, 12(13), 5425. https://doi.org/10.3390/su12135425