The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Analysis of Land Use Transfer Characteristics
2.3.2. Estimating the Value of Ecosystem Services
2.3.3. Ecological Contribution Rate of Land Use Change
2.3.4. Sensitivity Analysis of Ecological Service Value
3. Results
3.1. Analysis of Land Use Change
3.2. Analysis of Ecosystem Service Value
3.3. Sensitivity Analysis of Ecosystem Services Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, C.; Ke, L.; Pan, H.; Zhan, S.; Liu, K.; Ma, R. Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis. Sci. Bull. 2018, 63, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Güneralp, B.; Seto, K.C. Environmental impacts of urban growth from an integrated dynamic perspective: A case study of Shenzhen, South China. Glob. Environ. Chang. 2008, 18, 720–735. [Google Scholar] [CrossRef]
- Li, M.; Finlayson, B.; Webber, M.; Barnett, J.; Webber, S.; Rogers, S.; Chen, Z.; Wei, T.; Chen, J.; Wu, X.; et al. Estimating urban water demand under conditions of rapid growth: The case of Shanghai. Reg. Environ. Chang. 2017, 17, 1153–1161. [Google Scholar] [CrossRef]
- Liu, S. Strategic interpretation and strategic planning of Xiong’an New Area. Academics 2017, 229, 316–320. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Sitier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Petter, M.; Mooney, S.; Maynard, S.M.; Davidson, A.; Cox, M.; Horosak, I. A Methodology to Map Ecosystem Functions to Support Ecosystem Services Assessments. Ecol. Soc. 2013, 18, 31. [Google Scholar] [CrossRef] [Green Version]
- Parthum, B.; Pindilli, E.; Hogan, D. Benefits of the fire mitigation ecosystem service in The Great Dismal Swamp National Wildlife Refuge, Virginia, USA. J. Environ. Manag. 2017, 203, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Farber, S.C.; Maxwell, J. Valuation and management of wetland ecosystems. Ecol. Econ. 1989, 1, 335–361. [Google Scholar] [CrossRef]
- De Groot, R.S. Environmental Functions as a Unifying Concept for Ecology and Economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- Aylward, B.; Barbier, E.B. Valuing environmental functions in developing countries. Biodivers. Conserv. 1992, 1, 34–50. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.V.; O’Neill, R.; Paruelo, J.G.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zheng, L.; Lu, C.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 5, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of ecosystem service value method based on unit area value equivalent factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity increases and decreases ecosystem stability. Nature 2018, 563, 109–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholes, R.J. Climate change and ecosystem services. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 537–550. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, D.; Li, L.; Jia, M.; Dong, Z.; Miao, Z.; Ren, C.; Song, C. Quantifying changes in multiple ecosystem services during 1992-2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Xue, M.; Ma, S. Optimized Land-Use Scheme Based on Ecosystem Service Value: Case Study of Taiyuan, China. J. Urban Plan. Dev. 2018, 144, 04018016. [Google Scholar] [CrossRef]
- Ye, Y.; Bryan, B.A.; Zhang, J.e.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, Z.; Zhao, X.; Liu, B.; Wang, X.; Wen, Q.; Zuo, L.; Liu, F.; Xu, J.; Hu, S. Have Changes to Unused Land in China Improved or Exacerbated Its Environmental Quality in the Past Three Decades? Sustainability 2016, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, J.; Wang, J.; Qiu, J. Value assessment of ecosystem services in nature reserves in Ningxia, China: A response to ecological restoration. PLoS ONE 2014, 9, e89174. [Google Scholar] [CrossRef]
- Yuan, K.; Li, F.; Yang, H.; Wang, Y. The Influence of Land Use Change on Ecosystem Service Value in Shangzhou District. Int. J. Environ. Res. Public Health 2019, 16, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterling, W.E. Why regional studies are needed in the development of full- scale integrated assessment modelling of global change processes. Glob. Environ. Chang. 1997, 7, 337–356. [Google Scholar] [CrossRef]
- Li, J.; Feng, P.; Chen, F. Effects of land use change on flood characteristics in mountainous area of Daqinghe watershed, China. Nat. Hazards 2013, 70, 593–607. [Google Scholar] [CrossRef]
- Deng, X.; Ren, W.; Feng, P. Design flood recalculation under land surface change. Nat. Hazards 2015, 80, 1153–1169. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, X.; Liu, F.; Shan, R.; Zhang, W. Spatio-temporal variation of land use and ecosystem service values and their impact factors in an urbanized agricultural basin since the reform and opening of China. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef]
- Xu, M.; Li, Y.; Wang, K.; Cao, Y.; Yu, H.; Li, X.; Li, L.; Jing, F.; Li, J.; Xie, F. Grassland resource distribution and vegetation characteristics in Hebei Province. Acta Prataculturae Sin. 2009, 18, 1–11. [Google Scholar]
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef] [Green Version]
- Yirsaw, E. Effect of Temporal Land Use/Land Cover Changes on Ecosystem Services Value in Coastal Area of China: The Case of Su-Xi-Chang Region. Appl. Ecol. Environ. Res. 2016, 14, 409–422. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Zorrilla-Miras, P.; García Del Amo, D.; Montes, C. Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. Reg. Environ. Chang. 2013, 14, 237–251. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.; Huang, J.; Yang, W. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Chuai, X.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Qian, D.; Yan, C.; Xiu, L.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Xu, N.; Guo, L.; Xue, D.; Sun, S. Land use structure and the dynamic evolution of ecosystem service value in Gannan region, China. Acta Ecol. Sin. 2019, 39, 1969–1978. [Google Scholar]
- Xu, N.; Su, S.; Xue, D.; Guo, L. Ecosystem service value and its spatial response to human interference on the basis of terrain gradient in Gannan region, China. Acta Ecol. Sin. 2019, 39, 97–107. [Google Scholar]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Dai, E.; Wang, Y.; Ma, L.; Li, S.; Zhang, H.; Xin, L.; Xue, E.; Gao, J.; Zhu, L.; Wang, Y. Land use change and resource ecological effects of typical mountainous areas in China. Chin. J. Nat. 2018, 40, 33–40. [Google Scholar]
- Yang, Y.; Song, G.; Lu, S. Study on the ecological protection redline (EPR) demarcation process and the ecosystem service value (ESV) of the EPR zone: A case study on the city of Qiqihaer in China. Ecol. Indic. 2020, 109, 105754. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, J.; Cao, S. Net value of grassland ecosystem services in mainland China. Land Use Policy 2018, 79, 94–101. [Google Scholar] [CrossRef]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Tappeiner, U.; Tasser, E.; Rammer, W. What drives the future supply of regulating ecosystem services in a mountain forest landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef]
- Bent, G.C. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. For. Ecol. Manag. 2001, 143, 115–129. [Google Scholar] [CrossRef]
- Ferreira, S.; Ghimire, R. Forest cover, socioeconomics, and reported flood frequency in developing countries. Water Resour. Res. 2012, 48, W08529. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Zhang, Y.; Shen, J.; Qin, D.; Li, S. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: A case study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Duan, H.; Wu, Q.; Yang, Y.; LI, T. Land Use Change and Driving Force Analysis of Bayin River Basin in the Past 10 Years. Res. Soil Water Conserv. 2020, 27, 172–177. [Google Scholar]
- Ren, H.; Zhang, J.; Zhu, W.; Wang, L.; Zhang, L.; Zhu, L. Impact of land use change on habitat in the Qihe River Basin of Taihang Mountains. Prog. Geogr. 2018, 37, 1693–1704. [Google Scholar]
- Fernandes, M.R.; Aguiar, F.C.; Martins, M.J.; Rivaes, R.; Ferreira, M.T. Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena 2020, 188, 104466. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Zhu, L. Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region. J. Nat. Resour. 2019, 34, 325–337. [Google Scholar]
- Peng, J.; Li, H.; Liu, Y.; Hu, Y.; Yang, S. Identification and optimization of ecological security pattern in Xiong’an New Area. Acta Geogr. Sin. 2018, 73, 701–710. [Google Scholar]
- Tian, Y.; Wang, Z.; Zhao, J.; Jiang, X.; Guo, R. A Geographical Analysis of the Poverty Causes in China’s Contiguous Destitute Areas. Sustainability 2018, 10, 1895. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Qiao, M.; He, X.; Liu, W.; Yang, Z. Ecological protection and resettlement of Ejina Oasis in the lower reaches of the Heihe River Basin. J. Econ. Water Resour. 2002, 6, 62–65. [Google Scholar]
- Yu, Y.; Wang, K.; Cheng, H.; Xu, L.; Fu, W.; Zhang, W. Farmer’s perception and response towards environmental migration and restoration plans based on participatory rural appraisal: A case study of emigration region in the karst Southwetern China. Acta Ecol. Sin. 2009, 29, 1170–1180. [Google Scholar]
- Takahasi, Y. Dams, environment and regional development in Japan. Int. J. Water Resour. Dev. 2004, 20, 35–45. [Google Scholar] [CrossRef]
- Yalcin, E.; Tigrek, S. Hydropower production without sacrificing environment: A case study of Ilisu Dam and Hasankeyf. Int. J. Water Resour. Dev. 2015, 32, 247–266. [Google Scholar] [CrossRef]
Ecosystem Service Functions | Arable Land | Woodland | Grassland | Waters | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
Provisioning services | Food production | 2035.18 | 502.81 | 694.36 | 1915.46 | 0.00 | 0.00 |
Raw material production | 957.73 | 1149.28 | 1005.62 | 550.70 | 0.00 | 0.00 | |
Water supply | 47.89 | 598.58 | 550.70 | 19,849.00 | 0.00 | 0.00 | |
Regulating services | Gas regulation | 1604.20 | 3735.15 | 3543.61 | 1843.63 | 0.00 | 47.89 |
Climate regulation | 861.96 | 11,133.63 | 9385.77 | 5483.02 | 0.00 | 0.00 | |
Purification environment | 239.43 | 3328.12 | 3088.69 | 13,288.53 | 0.00 | 239.43 | |
Hydrological regulation | 646.47 | 7997.06 | 6871.73 | 244,796.30 | 0.00 | 71.83 | |
Supporting services | Soil conservation | 2466.16 | 4525.28 | 4333.74 | 2226.73 | 0.00 | 47.89 |
Maintain nutrient cycle | 287.32 | 359.15 | 335.21 | 167.60 | 0.00 | 0.00 | |
Biodiversity | 311.26 | 4142.19 | 3926.70 | 6105.54 | 0.00 | 47.89 | |
Cultural services | Aesthetic landscape | 143.66 | 1819.69 | 1723.92 | 4525.28 | 0.00 | 23.94 |
Total | 9601.26 | 39,290.96 | 35,460.03 | 300,751.79 | 0.00 | 478.87 |
Years | Land Use Types | |||||
---|---|---|---|---|---|---|
Arable Land | Woodland | Grassland | Waters | Construction Land | Unused Land | |
1980 | 1155.22 | 2479.69 | 3525.39 | 97.02 | 59.65 | 1.59 |
1990 | 1157.27 | 2461.20 | 3540.77 | 95.85 | 61.87 | 1.61 |
2000 | 1159.90 | 2459.76 | 3535.18 | 95.29 | 66.84 | 1.59 |
2005 | 1152.31 | 2463.95 | 3534.16 | 88.91 | 77.61 | 1.62 |
2010 | 1127.75 | 2476.12 | 3471.18 | 97.54 | 144.28 | 1.70 |
2015 | 1120.85 | 2474.88 | 3459.56 | 98.35 | 164.03 | 0.89 |
1980 | 2015 | ||||||
---|---|---|---|---|---|---|---|
Arable Land | Woodland | Grassland | Waters | Construction Land | Unused Land | The Area of Transferred Out | |
Arable land | 1098.51 | 4.38 | 8.19 | 0.94 | 43.19 | 0.00 | 56.71 |
Woodland | 1.92 | 2433.41 | 30.91 | 1.13 | 12.33 | 0.00 | 46.28 |
Grassland | 13.68 | 36.20 | 3419.75 | 3.50 | 52.16 | 0.11 | 105.65 |
Waters | 2.51 | 0.00 | 0.11 | 92.78 | 1.61 | 0.00 | 4.24 |
Construction land | 4.23 | 0.07 | 0.60 | 0.00 | 54.74 | 0.00 | 4.91 |
Unused land | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.78 | 0.81 |
The area of transferred in | 22.34 | 41.46 | 39.82 | 5.57 | 109.29 | 0.11 | 218.59 |
Ecosystem Service Functions | Value | ||||||
---|---|---|---|---|---|---|---|
1980 | 1990 | 2000 | 2005 | 2010 | 2015 | ||
Provisioning services | Food production | 623.16 | 623.49 | 623.46 | 620.83 | 613.72 | 611.61 |
Raw material production | 755.49 | 755.04 | 754.53 | 753.83 | 747.02 | 745.10 | |
Water supply | 540.67 | 538.10 | 536.61 | 524.12 | 538.37 | 539.24 | |
Regulating services | Gas regulation | 2378.68 | 2377.33 | 2375.13 | 2373.94 | 2353.82 | 2348.28 |
Climate regulation | 6222.42 | 6215.80 | 6208.87 | 6208.43 | 6165.48 | 6153.05 | |
Purification environment | 2070.77 | 2067.86 | 2064.98 | 2057.41 | 2052.87 | 2049.77 | |
Hydrological regulation | 6855.20 | 6822.45 | 6803.96 | 6650.11 | 6826.03 | 6836.56 | |
Supporting services | Soil conservation | 2956.45 | 2954.99 | 2952.44 | 2950.60 | 2924.68 | 2917.56 |
Maintain nutrient cycle | 242.05 | 241.94 | 241.77 | 241.56 | 239.32 | 238.70 | |
Biodiversity | 2506.65 | 2504.38 | 2501.33 | 2498.54 | 2483.35 | 2478.55 | |
Cultural services | Aesthetic landscape | 1119.48 | 1118.26 | 1116.82 | 1114.42 | 1109.32 | 1107.36 |
Total | 26,271.02 | 26,219.64 | 26,179.91 | 25,993.79 | 26,054.00 | 26,025.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cao, J.; Zhu, C.; Yang, H. The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area. Sustainability 2020, 12, 5707. https://doi.org/10.3390/su12145707
Wang Z, Cao J, Zhu C, Yang H. The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area. Sustainability. 2020; 12(14):5707. https://doi.org/10.3390/su12145707
Chicago/Turabian StyleWang, Zhiyin, Jiansheng Cao, Chunyu Zhu, and Hui Yang. 2020. "The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area" Sustainability 12, no. 14: 5707. https://doi.org/10.3390/su12145707
APA StyleWang, Z., Cao, J., Zhu, C., & Yang, H. (2020). The Impact of Land Use Change on Ecosystem Service Value in the Upstream of Xiong’an New Area. Sustainability, 12(14), 5707. https://doi.org/10.3390/su12145707