Energy–Climate–Economy–Population Nexus: An Empirical Analysis in Kenya, Senegal, and Eswatini
Abstract
:1. Introduction
2. Brief Background on Kenya, Senegal and Eswatini
2.1. Kenya
2.2. Senegal
2.3. Eswatini
3. Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 24 October 2015).
- Owusu, P.; Asumadu, S.S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the relationship between energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research Working Paper Series; National Bureau Of Economic Research: Cambridge, MA, USA, November 1991; No. 3914. [Google Scholar] [CrossRef]
- Etokakpan, M.U.; Solarin, S.A.; Yorucu, V.; Bekun, F.V.; Sarkodie, S.A. Modeling natural gas consumption, capital formation, globalization, CO2 emissions and economic growth nexus in Malaysia: Fresh evidence from combined cointegration and causality analysis. Energy Strategy Rev. 2020, 31, 100526. [Google Scholar] [CrossRef]
- Usman, O.; Iorember, P.T.; Olanipekun, I.O. Revisiting the environmental Kuznets curve (EKC) hypothesis in India: The effects of energy consumption and democracy. Environ. Sci. Pollut. Res. 2019, 26, 13390–13400. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I. A literature survey on energy–growth nexus. Energy Policy 2010, 38, 340–349. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef]
- Damette, O.; Seghir, M. Energy as a driver of growth in oil exporting countries? Energy Econ. 2013, 37, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Baranzini, A.; Weber, S.; Bareit, M.; Mathys, N.A. The causal relationship between energy use and economic growthin Switzerland. Energy Econ. 2013, 36, 464–470. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, E.C. Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia. Appl. Energy 2013, 104, 297–305. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- CIA. Central Intelligence Agency (CIA). 2019. Available online: https://buff.ly/3jU1GcD (accessed on 24 November 2019).
- Energypedia. Africa Energy Outlook 2019 World Energy Outlook Special Report. 2019. Available online: https://buff.ly/3jSPIQl (accessed on 23 November 2019).
- EIA. International Energy Statistics. 2015. Available online: https://www.eia.gov/ (accessed on 15 November 2015).
- USAID. Power Africa in Senegal. 2020. Available online: https://buff.ly/3gei5Gp (accessed on 14 July 2020).
- Dafrallah, T.; Ackom, E. Analysis of national Jatropha biodiesel programme in Senegal. Aims Energy 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- NDS. National Development Strategy for Eswatini. 1997. Available online: https://buff.ly/2DnMkMt (accessed on 13 November 2019).
- UNDP. Human Development Reports. 2019. Available online: http://hdr.undp.org/en/countries/profiles/ (accessed on 14 July 2020).
- IEA. Explore Energy Data by Category, Indicator, Country or Region. 2019. Available online: https://buff.ly/33cnk62 (accessed on 14 July 2020).
- World Bank. World Development Indicators. 2020. Available online: http://data.worldbank.org/country (accessed on 24 February 2020).
- EIA. International Energy Statistics. 2017. Available online: https://www.eia.gov/ (accessed on 16 March 2017).
- Blanco, A.S.; Gerlagh, R.; Suh, S.; Barrett, J.A.; de Coninck, H.; Diaz Morejon, C.F.; Mathur, R.; Nakicenovic, N.; Ahenkorah, A.O.; Pan, J.; et al. Drivers, Trends and Mitigation; Edenhofer, O., Ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedroni, P. Purchasing Power Parity Tests in Cointegrated Panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels and the Case of Purchasing Power Parity; Manuscript; Department of Economics, Indiana University: Bloomington, IN, USA, 1996. [Google Scholar]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Hainmueller, J.; Hazlett, C. Kernel regularized least squares: Reducing misspecification bias with a flexible and interpretable machine learning approach. Political Anal. 2014, 22, 143–168. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; CESifo Working Paper, No. 1229; Center for Economic Studies and ifo Institute (CESifo): Munich, Germany, 2004. [Google Scholar]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 2012, 32, 21–28. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the Environmental Kuznets Curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. The Causal Effect of Carbon Dioxide Emissions, Electricity Consumption, Economic Growth and Industrialization in Sierra Leone. Energy Source Part B Econ. Plan. Policy 2017, 12, 32–39. [Google Scholar] [CrossRef]
- Asumadu, S.A.; Owusu, P.A. Recent Evidence of the Relationship between Carbon Dioxide Emissions, Energy use, GDP and Population in Ghana: A Linear Regression Approach. Energy Source Part B Econ. Plan. Policy 2017, 12, 495–503. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’neill, B.C.; Dalton, M.; Fuchs, R.; Jiang, L.; Pachauri, S.; Zigova, K. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 17521–17526. [Google Scholar] [CrossRef] [Green Version]
- Sarkodie, S.; Owusu, P. A Multivariate Analysis of Carbon Dioxide Emissions, Electricity Consumption, Economic Growth, Financial Development, Industrialization and Urbanization in Senegal. Energy Source Part B Econ. Plan. Policy 2017, 12, 77–84. [Google Scholar] [CrossRef]
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling global environmental pressure and economic growth: Scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
Country | Kenya | Senegal | Eswatini | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | Value | Reference Year (s) | Source | Value | Reference Year (s) | Source | Value | Reference Year (s) | Source |
Population | Million | 48.4 | 2018 (est.) | CIA [14] | 15 | 2018 (est.) | CIA [14] | 1.09 | 2018 (est.) | CIA [14] |
Population growth rate | % | 1.6 | 2018 (est.) | CIA [14] | 2.4 | 2018 (est.) | CIA [14] | 0.8 | 2018 (est.) | CIA [14] |
Urbanization | % of total population | 27.5 | 2019 | CIA [14] | 47.7 | 2019 | CIA [14] | 24 | 2019 | CIA [14] |
GDP | Billion USD | 79.2 | 2017 (est.) | CIA [14] | 21.1 | 2017 (est.) | CIA [14] | 4.4 | 2017 (est.) | CIA [14] |
GDP real growth rate | % | 4.9 | 2017 (est.) | CIA [14] | 7.2 | 2017 (est.) | CIA [14] | 1.6 | 2017 (est.) | CIA [14] |
GDP Per capita (PPP) | USD | 3500 | 2017 (est.) | CIA [14] | 3500 | 2017 (est.) | CIA [14] | 10,100 | 2017 (est.) | CIA [14] |
GDP-composition, by sector of origin | ||||||||||
agriculture | % | 34.5 | 2017 (est.) | CIA [14] | 16.9 | 2017 (est.) | CIA [14] | 6.5 | 2017 (est.) | CIA [14] |
industry | % | 17.8 | 2017 (est.) | CIA [14] | 24.3 | 2017 (est.) | CIA [14] | 45 | 2017 (est.) | CIA [14] |
services | % | 47.5 | 2017 (est.) | CIA [14] | 58.8 | 2017 (est.) | CIA [14] | 48.6 | 2017 (est.) | CIA [14] |
Human development index | - | 0.579 (ranked 147 of 189 countries) | 2018 | UNDP [20] | 0.514 (ranked 166 of 189 countries) | 2018 | UNDP [20] | 0.608 (ranked 138 of 189 countries) | 2018 | UNDP [20] |
Electricity access | ||||||||||
population without electricity | million | 13 | 2017 | CIA [14] | 6 | 2017 | CIA [14] | - | - | - |
electrification-total population | % | 56 | 2016 | CIA [14] | 65 | 2017 | CIA [14] | 65.8 | 2016 | CIA [14] |
electrification-urban areas | % | 77.6 | 2016 | CIA [14] | 90 | 2017 | CIA [14] | 82.8 | 2016 | CIA [14] |
electrification-rural areas | % | 39.3 | 2016 | CIA [14] | 43 | 2017 | CIA [14] | 61.2 | 2016 | CIA [14] |
Energy Production | Quadrillion Btu | 0.075 | 2017 | IEA [21] | 0.0069 | 2017 | IEA [21] | 0.0065 | 2017 | IEA [21] |
Electricity-Consumption | billion kWh | 7.8 | 2016 | CIA [14] | 3.5 | 2016 | CIA [14] | 1.4 | 2016 (est.) | CIA [14] |
Electricity-installed generating capacity | million kW | 2.4 | 2016 (est.) | CIA [14] | 1.0 | 2016 (est.) | CIA [14] | 0.3 | 2016 (est.) | CIA [14] |
Electricity-from fossil fuels | % of total installed capacity | 33 | 2016 (est.) | CIA [14] | 82 | 2016 (est.) | CIA [14] | 39 | 2016 (est.) | CIA [14] |
Electricity-from hydroelectric plants | % of total installed capacity | 34 | 2017 (est.) | CIA [14] | 7 | 2017 (est.) | CIA [14] | 20 | 2016 (est.) | CIA [14] |
Electricity-from other renewables | % of total installed capacity | 33 | 2017 (est.) | CIA [14] | 11 | 2017 (est.) | CIA [14] | 41 | 2016 (est.) | CIA [14] |
CO2 emissions from consumption of energy | million tonnes | 18 | 2017 (est.) | CIA [14] | 8.6 | 2017 (est.) | CIA [14] | 1.1 | 2017 (est.) | CIA [14] |
Statistic | CO2 | GDP | PEC | POP |
---|---|---|---|---|
Mean | 4307.898 | 8.55E+09 | 0.0743 | 13,144,562 |
Median | 3698.17 | 5.10E+09 | 0.0550 | 9,085,303 |
Maximum | 13,457.89 | 5.51E+10 | 0.2470 | 44,826,849 |
Minimum | 132.012 | 3.61E+08 | 0.0077 | 603,372 |
Std. Dev. | 3491.428 | 1.04E+10 | 0.0633 | 12,935,509 |
Skewness | 0.789782 | 2.596235 | 0.9352 | 0.889964 |
Kurtosis | 2.815526 | 9.967597 | 3.0433 | 2.605364 |
Variable | CD | CIPS Level | CIPS 1st Diff | CADF Level | CADF 1st Diff |
---|---|---|---|---|---|
lnCO2 | 7.470 † | −1.864 | −5.973 *** | 0.438 | −4.795 *** |
lnPEC | 8.200 † | −1.290 | −5.790 *** | 1.593 | −3.486 *** |
lnGDP | 8.840 † | −1.896 | −4.754 *** | −0.175 | −3.966 *** |
lnPOP | 8.880 † | −0.037 | −3.960 *** | 6.110 | −2.507 *** |
Panel | A | B | C | D |
---|---|---|---|---|
Modified Dickey–Fuller t | −3.129 *** | −3.129 *** | −5.236 *** | −1.286 * |
Dickey–Fuller t | −2.644 *** | −2.644 *** | −5.913 *** | −1.501 * |
Augmented Dickey–Fuller t | −1.006 | −1.006 | −1.963 ** | −0.939 |
Unadjusted modified Dickey–Fuller t | −5.486 *** | −5.486 *** | −14.642 *** | −4.018 *** |
Unadjusted Dickey–Fuller t | −3.253 *** | −3.253 *** | −8.035 *** | −2.575 *** |
DOLS | FMOLS | ||||||
---|---|---|---|---|---|---|---|
Variable | Coefficient | t-Statistic | Prob. | Variable | Coefficient | t-Statistic | Prob. |
GDP | 1.3013 (0.3408) | 3.8185 | 0.0002 *** | GDP | 1.5527 (0.3211) | 4.8358 | 0.0000 *** |
GDP2 | −1.0459 (0.2682) | −3.9003 | 0.0002 *** | GDP2 | −1.2476 (0.2524) | −4.9428 | 0.0000 *** |
PEC | 0.6162 (0.1270) | 4.8504 | 0.0000 *** | PEC | 0.5621 (0.1200) | 4.6826 | 0.0000 *** |
R2 | 0.9239 | R2 | 0.9216 |
lnCO2 | Coef. | Std. Err. | z | P > z |
---|---|---|---|---|
LR | ||||
lnPEC | −0.2855 | 0.2694 | -1.0600 | 0.2890 |
lnGDP | 0.2145 | 0.1143 | 1.8800 | 0.0610 * |
lnPOP | 1.3672 | 0.3802 | 3.6000 | 0.0000 *** |
SR | ||||
Kenya | ||||
ECT(-1) | −0.4028 | 0.1059 | −3.8000 | 0.0000 *** |
lnPEC | 0.0517 | 0.2309 | 0.2200 | 0.8230 |
lnGDP | −0.0447 | 0.1240 | −0.3600 | 0.7190 |
lnPOP | −131.6134 | 63.2806 | −2.0800 | 0.0380 ** |
_cons | −8.1012 | 2.6299 | −3.0800 | 0.0020 *** |
Senegal | ||||
ECT(-1) | −0.5178 | 0.1286 | −4.0300 | 0.0000 *** |
lnPEC | 0.4385 | 0.1577 | 2.7800 | 0.0050 *** |
lnGDP | 0.0201 | 0.1032 | 0.1900 | 0.8460 |
lnPOP | 58.3176 | 32.4960 | 1.7900 | 0.0730 * |
_cons | −9.9219 | 3.6142 | −2.7500 | 0.0060 *** |
Eswatini | ||||
ECT(-1) | −0.2325 | 0.1106 | −2.1000 | 0.0360 ** |
lnPEC | 1.2801 | 0.3097 | 4.1300 | 0.0000 *** |
lnGDP | 0.5122 | 0.2329 | 2.2000 | 0.0280 ** |
lnPOP | 22.6474 | 16.0772 | 1.4100 | 0.1590 |
_cons | −4.1624 | 2.3686 | −1.7600 | 0.0790 * |
Panel | A | B | C | D |
---|---|---|---|---|
lnCO2 | — | — | 0.242 *** (0.047) | 0.411 *** (0.074) |
lnPEC | 0.262 *** (0.033) | 0.295 *** (0.037) | — | 0.517 *** (0.051) |
lnGDP | 0.133 *** (0.024) | 0.229 *** (0.045) | 0.236 *** (0.041) | — |
lnGDP2 | 0.054 *** (0.015) | — | — | — |
lnPOP | 0.140 *** (0.024) | 0.130 *** (0.028) | 0.322 *** (0.030) | 0.123 *** (0.040) |
Diagnostics | ||||
Number of obs | 102 | 102 | 102 | 102 |
R2 | 0.950 | 0.950 | 0.968 | 0.920 |
Lambda | 0.800 | 0.800 | 0.800 | 0.800 |
Eff. df | 8.588 | 8.098 | 8.471 | 7.202 |
Looloss | 8.728 | 8.602 | 6.707 | 14.340 |
Panel | A | B | C | D |
---|---|---|---|---|
lnCO2 | ||||
5th Percentile | — | — | −0.136 *** (0.047) | −0.179 *** (0.074) |
50th Percentile | — | — | 0.290 *** (0.0470 | 0.404 *** (0.074) |
95th Percentile | — | — | 0.466 *** (0.047) | 0.852 *** (0.074) |
lnPEC | ||||
5th Percentile | −0.034 *** (0.033) | −0.036 *** (0.037) | — | 0.136 *** (0.051) |
50th Percentile | 0.244 *** (0.033) | 0.267 *** (0.037) | — | 0.529 *** (0.051) |
95th Percentile | 0.664 *** (0.033) | 0.730 *** (0.037) | — | 1.037 *** (0.051) |
lnGDP | ||||
5th Percentile | −0.206 *** (0.024) | −0.238 *** (0.045) | −0.084 *** (0.041) | — |
50th Percentile | 0.185 *** (0.024) | 0.273 *** (0.045) | 0.266 *** (0.041) | — |
95th Percentile | 0.290 *** (0.024) | 0.466 *** (0.045) | 0.493 *** (0.041) | — |
lnGDP2 | ||||
5th Percentile | −0.114 *** (0.015) | — | — | — |
50th Percentile | 0.054 *** (0.015) | — | — | — |
95th Percentile | 0.149 *** (0.015) | — | — | — |
lnPOP | ||||
5th Percentile | −0.018 *** (0.0240) | −0.027 *** (0.028) | 0.072 *** (0.030) | −0.063 *** (0.040) |
50th Percentile | 0.163 *** (0.024) | 0.141 *** (0.028) | 0.351 *** (0.030) | 0.065 *** (0.040) |
95th Percentile | 0.304 *** (0.024) | 0.289 *** (0.028) | 0.540 *** (0.030) | 0.483 *** (0.040) |
Diagnostics | ||||
Number of obs | 102 | 102 | 102 | 102 |
R2 | 0.950 | 0.950 | 0.968 | 0.920 |
Lambda | 0.800 | 0.800 | 0.800 | 0.800 |
Eff. df | 8.588 | 8.098 | 8.471 | 7.202 |
Looloss | 8.728 | 8.602 | 6.707 | 14.340 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkodie, S.A.; Ackom, E.; Bekun, F.V.; Owusu, P.A. Energy–Climate–Economy–Population Nexus: An Empirical Analysis in Kenya, Senegal, and Eswatini. Sustainability 2020, 12, 6202. https://doi.org/10.3390/su12156202
Sarkodie SA, Ackom E, Bekun FV, Owusu PA. Energy–Climate–Economy–Population Nexus: An Empirical Analysis in Kenya, Senegal, and Eswatini. Sustainability. 2020; 12(15):6202. https://doi.org/10.3390/su12156202
Chicago/Turabian StyleSarkodie, Samuel Asumadu, Emmanuel Ackom, Festus Victor Bekun, and Phebe Asantewaa Owusu. 2020. "Energy–Climate–Economy–Population Nexus: An Empirical Analysis in Kenya, Senegal, and Eswatini" Sustainability 12, no. 15: 6202. https://doi.org/10.3390/su12156202
APA StyleSarkodie, S. A., Ackom, E., Bekun, F. V., & Owusu, P. A. (2020). Energy–Climate–Economy–Population Nexus: An Empirical Analysis in Kenya, Senegal, and Eswatini. Sustainability, 12(15), 6202. https://doi.org/10.3390/su12156202