Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Milk Chemical Analysis
2.3. Buffalo Milk Dairy Products Physicochemical Analysis
2.4. Amino Acid Profile
2.5. Fatty Acid Profile
2.6. Statistical Analysis
3. Results
3.1. Milk Chemical Composition
3.2. Milk Amino Acid Composition
3.3. Milk Fatty Acid Composition
3.4. Chemical Composition of Buffalo Dairy Products
3.5. Amino Acid Composition of Buffalo Dairy Products
3.6. Fatty Acid Composition of Buffalo Dairy Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deb, G.; Nahar, T.; Duran, P.; Pressice, G. Safe and sustainable traditional production: The water buffalo in Asia. Front. Environ. Sci. 2016, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Perišić, P.; Bogdanović, V.; Mekić, C.; Ružić-Muslić, D.; Stanojević, D.; Popovac, M.; Stepić, S. The importance of buffalo in milk production and buffalo population in Serbia. Biotechnol. Anim. Husb. 2016, 32, 255–263. [Google Scholar]
- FAODAD-IS. Domestic Animal Diversity-Information System. Percentage of Data Fields Completed by Country. Available online: http://www.fao.org/dad-is/browse-by-country-and-species/en/ (accessed on 10 June 2020).
- Sabia, E.; Napolitano, F.; Claps, S.; Braghieri, A.; Piazzolla, N.; Pacelli, C. Feeding, Nutrition and Sustainability in Dairy Enterprises: The Case of Mediterranean Buffaloes (Bubalusbubalis). In The Sustainability of Agro-Food and Natural Resources Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Cham, Switzerland, 2015; pp. 57–64. [Google Scholar]
- Borghese, A.; Moioli, B. Buffalo: Mediterranean Region. In Elsevier Public HealthEmergency Collection, 2016, Update of Buffalo Mediterranean Region. Encyclopedia of Dairy Sciences, 2nd ed.; Borghese, A., Moioli, B., Eds.; Elsevier Ltd.: San Diego, CA, USA, 2011; pp. 780–784. [Google Scholar]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector-The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Kusza, S.; Sziszkosz, N.; Nagy, K.; Masala, A.; Kukovics, S.; Jávor, A. Preliminary result of genetic polymorphism of ß-lactoglobulin gene and phylogenetic study of ten Balkan and Central European indigenous sheep breeds. Acta Biochim. Pol. 2015, 62, 109–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusza, S.Z.; Cziszter, L.T.; Ilie, D.E.; Sauer, M.; Padeanu, I.; Gavojdian, D. Kompetitive Allele Specific PCR (KASP™) genotyping of 48 polymorphisms at different caprine loci in the Saanen and French Alpine goat breeds and their association with milk composition. PeerJ 2018, 6, e4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusza, S.; Ilie, D.E.; Sauer, M.; Nagy, K.; Atanasiu, T.S.; Gavojdian, D. Study of LGB gene polymorphisms of small ruminants reared in Eastern Europe. Czech J. Anim. Sci. 2018, 63, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Food Agriculture Organization (FAO). 8 Sustainable Dairy Goals Achieving the Sustainable Development Goals-the Role of the Dairy Sector Committee on World Food Security Making a Difference in Food Security and Nutrition; FAO: Rome, Italy, October 2016. [Google Scholar]
- Guo, M.; Hendricks, G. Improving buffalo milk. Improving the Safety and Quality of Milk. Improving Quality in Milk Products. Woodhead Publ. Ser. Food Sci. Technol. Nutr. 2010, 2, 402–416. [Google Scholar]
- Ahmad, S.; Anjum, F.M.; Huma, N.; Sameen, A.; Zahoor, T. Composition and physicochemical characteristic of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J. Anim. Plant Sci. 2013, 23, 62–74. [Google Scholar]
- Pudja, P.; Djerovski, J.; Radovanović, M. An autochthonous Serbian product-Kajmak Characteristics and production procedures. Dairy Sci. Technol. 2008, 88, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.I.; Nadeem, M.; Imran, M.; Asif, M.; Khan, K.M.; Din, A.; Ullah, R. Triglyceride, fatty acid profile and antioxidant characteristics of low melting point fractions of buffalo milkfat. Lipids Health Dis. 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khedkar, C.D.; Kalyankar, S.D.; Deosarkar, S.S. Buffalo Milk. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 522–528. [Google Scholar]
- Park, W.Y.; Haenlein, W.F.G. Buffalo milk: Utilization for Dairy Products. Handbook of Milk of Non-Bovine Mammals. In Technology & Engineering; Wiley & Sons: New York, NY, USA, 2008; pp. 195–274. [Google Scholar]
- Mane, B.G.; Chatli, M.K. Buffalo Milk: Saviour of Farmers and Consumers for Livelihood and Providing Nutrition. Agric. Rural Dev. 2015, 2, 5–11. [Google Scholar]
- Khanal, R.C.; Olson, K.C. Factors Affecting Conjugated Linoleic Acid (CLA) Content in Milk, Meat, and Egg: A Review. Pak. J. Nutr. 2004, 2, 82–98. [Google Scholar]
- Hanuš, O.; Samková, E.; Krížová, L.; Hasonová, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review. Molecules 2018, 23, 1636. [Google Scholar]
- ISO (International Organization for Standardization) 9622:2013 (IDF 141:2013). Available online: https://www.iso.org/standard/56874.html (accessed on 14 August 2020).
- AOAC (Association of Official Agricultural Chemists) 972.16. Fat, Lactose, Protein and Solids in Milk, 1972, (app. 1996). Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=38 (accessed on 14 August 2020).
- Popović Vranješ, A. Special Cheesemaking; The University of NoviSad, Faculty of Agriculture, Department of Animal Science, Komazec Press: Inđija, Serbia, 2015; pp. 641–660. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC, 17th ed.; 33: Methods 926.08, 2000.18, 933.05, 2001.14, 935.42, 920.124; AOAC International: Gaithersburg, MD, USA, 2005; Volume II. [Google Scholar]
- IDF. International IDF Standard 222:2008; Cheese and processed cheese products; Determination of Fat Content-Van Gulik method; IDF: Brussels, Belgium, 2008. [Google Scholar]
- Henderson, W.J.; Ricker, D.R.; Bidlingmeyer, A.B.; Woodward, C. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acid analysis using Zorbax Eclipse-AAA Columns and the Agilent 1100 HPLC. Agil. Technol. 2000, 1100, 1–10. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Serbian Regulation. Ordinance on the Quality of Dairy Products and Starter Cultures; No. 34/2014; Official Gazetteof the Republic of Serbia: Belgrade, Serbia, 2014.
- Hessle, A.; Bertilsson, J.; Stenberg, B.; Kumm, I.K.; Sonesson, U. Combining environmentally and economically sustainable dairy and beef production in Sweden. Agric. Syst. 2017, 156, 105–114. [Google Scholar] [CrossRef]
- Petrović, M.P.; Petrovic, V.C.; Muslic, D.R.; Maksimovic, N.; Cekic, B.; Ilic, Z.; Kurcubic, V. Strategy for Sustainable Development and Utilization of Sheep and Goat Resources in Serbia. KnE Life Sci. 2017, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Paskaš, S.; Miočinović, J.; Lopičić-Vasić, T.; Mugoša, I.; Pajić, M.; Becskei, Z. Consumer attitudes towards goat milk and milk products in Vojvodina. Mjekarstvo 2020, 70, 171–183. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The overall and fat composition of milk of various species. Mljekarstvo 2015, 65, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Tiezzi, F.; Cecchinato, A.; De Marchi, M.; Gallo, L.; Bittante, G. Characterization of buffalo productionof the northeast of Italy. Ital. J. Anim. Sci. 2009, 8, 160–162. [Google Scholar] [CrossRef] [Green Version]
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Vassallo, A.; Dalfino, G.; Zumbo, A. The Influence of Two Different Breeding Systems on Quality and Clotting Properties of Milk from Dairy Buffaloes Reared in Sicily (Italy). Ital. J. Anim. Sci. 2015, 14, 3669. [Google Scholar] [CrossRef]
- Barłowska, J.; Szwajkowska, M.; Litwi´nczuk, Z.; Krol, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Eenenneem, A.V.; Medrano, J.F. Milk protein polymorphisms in California dairy cattle. J. Dairy Sci. 1991, 74, 1730–1742. [Google Scholar] [CrossRef]
- Di Francia, A.; Masucci, F.; DiSerracapriola, M.T.; Gioffré, F.; Proto, V. Nutritional factors influencing milk urea in buffaloes. Ital. J. Anim. Sci. 2003, 2, 225–227. [Google Scholar]
- Santillo, A.; Caroprese, M.; Marino, R.; Sevi, A.; Albenzio, M. Quality of buffalo milk as affected by dietary protein level and flaxseed supplementation. J. Dairy Sci. 2016, 99, 7725–7732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Zou, C.; Lin, B.; Chen, Y.; Liang, X.; Liu, J. A Comparison of Milk Protein, Amino Acid and Fatty Acid Profiles of River Buffalo and Their F1 and F2 Hybrids with Swamp Buffalo in China. Pak. J. Zool. 2015, 47, 1459–1465. [Google Scholar]
- Bustamante, C.; Campos, R.; Sanchez, H. Production and composition of buffalo milk supplemented with agro-industrial byproducts of the African palm. Rev. Fac. Nac. de Agron. 2017, 70, 8077–8082. [Google Scholar] [CrossRef]
- Pegolo, S.; Stocco, G.; Mele, M.; Schiavon, S.; Bittante, G.; Cecchinato, A. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography. J. Dairy Sci. 2017, 100, 2564–2576. [Google Scholar] [CrossRef] [Green Version]
- Samkova, E.; Spicka, J.; Pesek, M.; Pelikanova, T.; Hanus, O. Animal factors affecting the fatty acid composition of cow milk fat: A review. S. Afr. J. Anim. Sci. 2012, 42, 83–100. [Google Scholar]
- Gordon, H.M. Milk Lipids. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 65–79. [Google Scholar]
- Varricchio, M.L.; Di Francia, A.; Masucci, F.; Romano, R.; Proto, V. Fatty acid composition of Mediterranean buffalo milk fat. Ital. J. Anim. Sci. 2007, 6, 509–511. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Addeo, F.; Alloisio, V.; Chianese, L.; Alloisio, V. Tradition and innovation in the water buffalo dairy products. Ital. J. Anim. Sci. 2007, 6, 51–57. [Google Scholar] [CrossRef]
- Enb, A.; Abou-Donia, A.M.; Abd-Rabou, S.N.; Abou-Arab, K.A.A.; El-Senaity, H.M. Chemical Composition of Raw Milk and Heavy Metals Behavior During Processing of Milk Products. Global Vet. 2009, 3, 268–275. [Google Scholar]
- Abdeldaiem, M.A.; Jin, Q.; Liu, R.; Wang, X. Effects of pH values on the properties of buffalo and cow butter-based low-fat spreads. Grasasy Aceites 2014, 65, 038. [Google Scholar] [CrossRef] [Green Version]
- Dozet, N.; Maćej, O.; Jovanović, S. Autohonous milk products basis for specific, original milk products development in modern conditions. Biotechnol. Anim. Husb. 2004, 20, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Poltronieri, P.; Cappello, M.S.; D’urso, F.D. Bioactive peptides with health benefit and their differential content in whey of different origin. In Whey Types, Composition and Health Implications; Benitez, R.M., Ortero, G.M., Eds.; Nova Publisher: Hauppauge, NY, USA, 2012; pp. 153–168. [Google Scholar]
- Kwak, H.S.; Ganesan, P.; Mijan, A.M. Butter, Ghee, and Cream Products. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 390–411. [Google Scholar]
- Popović, B.T.; Arsić, Č.A.; Debeljak-Martačić, D.J.; Petrović, P.G.; Gurinović, A.M.; Vučić, M.V.; Glibetić, D.M. Traditional food in Serbia: Sources, recipes and fatty acids profiles. Food Feed Res. 2014, 41, 153–157. [Google Scholar]
- Martini, M.; Altomonte, I.; Silva Sant’Ana, M.A.; Salari, F. Nutritional composition of four commercial cheeses made with buffalo milk. J. Food Nutr. Res. 2016, 55, 256–262. [Google Scholar]
- Rafiee-Yarandi, H.; Ghorbani, G.R.; Alikhani, M.; Sadeghi-Sefidmazgi, A.; Drackley, J.K. A comparison ofthe effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows. J. Dairy Sci. 2016, 99, 5422–5435. [Google Scholar] [CrossRef] [Green Version]
- Bobe, G.; Hammond, E.G.; Freeman, A.E.; Lindberg, G.L.; Beitz, D.C. Texture of Butter from Cows with Different Milk Fatty Acid Compositions. J. Dairy Sci. 2003, 86, 3122–3127. [Google Scholar] [CrossRef]
Parameters | ± SD | CV (%) | Min–Max |
---|---|---|---|
Dry matter (%) | 16.60 ± 1.12 | 6.75 | 14.91–17.80 |
Solid nonfat (%) | 10.48 ± 0.52 | 4.96 | 9.97–11.51 |
Fat (%) | 6.02 ± 1.27 | 21.10 | 4.26–7.16 |
Protein (%) | 4.61 ± 0.52 | 11.28 | 4.12–5.62 |
Lactose (%) | 5.36 ± 0.16 | 2.98 | 5.10–5.63 |
Ash (%) | 0.60 ± 0.14 | 23.33 | 0.37–0.80 |
MU (mg/dL) | 35.80 ± 0.88 | 2.46 | 33.90–36.70 |
F/P | 1.34 ± 0.38 | 28.36 | 0.77–1.72 |
Energy value (kcal/100 mL) | 96.90 ± 10.52 | 10.86 | 81.81–106.62 |
Milk density (g/cm³) | 1.037 ± 0.002 | 0.19 | 1.036–1.042 |
Essential Amino Acid (EAA) | ± SD | CV (%) | Min–Max | Non-Essential Amino Acid (NEAA) | ± SD | CV (%) | Min–Max |
---|---|---|---|---|---|---|---|
Histidine | 0.15 ± 0.02 | 13.33 | 0.13–0.17 | Asparatic acid | 0.32 ± 0.02 | 5.71 | 0.29–0.33 |
Threonine | 0.14 ± 0.01 | 7.14 | 0.12–0.15 | Glutamic acid | 1.01 ± 0.01 | 0.99 | 0.99–1.02 |
Valine | 0.26 ± 0.01 | 3.85 | 0.25–0.27 | Serine | 0.09 ± 0.02 | 22.22 | 0.07–0.11 |
Methionine | 0.05 ± 0.004 | 8.00 | 0.05–0.06 | Glycine | 0.08 ± 0.003 | 3.75 | 0.08–0.09 |
Phenylalanine | 0.21 ± 0.01 | 4.76 | 0.19–0.23 | Arginine | 0.11 ± 0.01 | 9.09 | 0.10–0.12 |
Isoleucine | 0.24 ± 0.01 | 4.17 | 0.23–0.25 | Alanine | 0.14 ± 0.01 | 7.41 | 0.13–0.16 |
Leucine | 0.41 ± 0.01 | 2.44 | 0.39–0.42 | Tyrosine | 0.11 ± 0.04 | 36.36 | 0.08–0.16 |
Lysine | 0.33 ± 0.02 | 6.06 | 0.30–0.35 | Total | 1.86 | ||
Total | 1.79 |
Parameters | ± SD | CV (%) | Min–Max |
---|---|---|---|
MUFA | 25.43 ± 4.38 | 17.22 | 19.01–32.09 |
SSCFA | 2.36 ± 0.78 | 33.05 | 1.21–3.31 |
SMCFA | 13.32 ± 3.66 | 27.48 | 8.04–17.52 |
SLCFA | 45.99 ± 4.33 | 9.41 | 40.98–53.58 |
SFA | 61.68 ± 5.81 | 9.42 | 52.23–70.35 |
PUFA | 2.23 ± 0.36 | 16.14 | 1.7–2.67 |
PUFA/SFA | 0.04 ± 0.01 | 25.00 | 0.02–0.05 |
Total omega-6 fatty acids (n-6) | 1.78 ± 0.22 | 12.36 | 1.37–2.06 |
Total omega-3 fatty acids (n-3) | 0.77 ± 0.20 | 25.97 | 0.45–1.00 |
n-6/n-3 | 2.42 ± 0.59 | 24.38 | 1.85–3.69 |
Atherogenicity index (AI) | 2.72 ± 1.05 | 38.60 | 1.56–4.71 |
Thrombogenicity index (TI) | 3.02 ± 0.76 | 25.24 | 2.03–4.47 |
Parameters | Cheese | Butter | Kajmak | |||
---|---|---|---|---|---|---|
± SD | CV (%) | ± SD | CV (%) | ± SD | CV (%) | |
Moisture (%) | 46.0 ± 1.20 | 2.61 | 14.2 ± 0.28 | 1.97 | 34.0 ± 1.30 | 3.82 |
Dry matter (%) | 54.0 ± 1.20 | 2.22 | 85.8 ± 0.28 | 0.33 | 66.0 ± 1.30 | 1.97 |
Protein (%) | 27.0 ± 1.62 | 6.0 | 0.9 ± 0.08 | 8.89 | 5.7 ± 0.34 | 5.96 |
Fat (%) | 23.5 ± 3.41 | 14.51 | 83.0 ± 1.67 | 2.01 | 50.8 ± 2.56 | 5.04 |
FDM (%) | 43.5 ± 5.22 | 12.0 | 96.7± 3.93 | 4.06 | 77.1 ± 5.39 | 6.99 |
MFFB (%) | 60.1 ± 1.11 | 1.85 | 84.0 ± 8.12 | 9.67 | 69.3 ± 6.26 | 9.03 |
SNF | 30.5 ± 2.21 | 7.24 | 2.9 ± 1.85 | 63.79 | 15.2 ± 3.86 | 25.39 |
pH | 5.4 ± 0.12 | 2.22 | 6.7 ± 0.08 | 1.19 | 6.6 ± 0.12 | 1.82 |
°SH | 60.0 ± 2.78 | 4.63 | 14.0 ± 0.44 | 3.14 | 14.0 ± 1.20 | 8.57 |
Parameters | Cheese | Butter | Kajmak |
---|---|---|---|
± SD | ± SD | ± SD | |
Essential Amino Acid (EAA) | |||
Histidine | 0.75 ± 0.05 | ND | ND |
Threonine | 1.13 ± 0.01 a | 0.02 ± 0.004 c | 0.13 ± 0.02 b |
Valine | 2.45 ± 0.17 a | ND | 0.16 ± 0.04 b |
Methionine | 1.68 ± 0.08 a | ND | 0.10 ± 0.01 b |
Phenylalanine | 1.81 ± 0.04 a | ND | 0.12 ± 001 b |
Isoleucine | 2.03 ± 0.03 a | 0.04 ± 0.004 c | 0.13 ± 0.02 b |
Leucine | 3.90 ± 0.09 a | 0.06 ± 0.007 c | 0.26 ± 0.03 b |
Lysine | 4.42 ± 0.18 a | 0.09 ± 0.07 b | 0.26 ± 0.03 b |
Total | 18.17 | 0.21 | 1.16 |
Non-Essential Amino Acid (NEAA) | |||
Aspartic acid | 1.46 ± 0.14 a | ND | 0.23 ± 0.05 b |
Glutamic acid | 5.09 ± 0.20 a | 0.19 ± 0.01 c | 0.74 ± 0.05 b |
Serine | 0.99 ± 0.16 a | 0.04 ± 0.01 b | 0.17 ± 0.01 b |
Glycine | 0.42 ± 0.01 a | 0.01 ± 0.002 c | 0.07 ± 0.01 b |
Arginine | 0.90 ± 0.01 a | 0.01 ± 0.001 c | 0.20 ± 0.01 b |
Alanine | 0.42 ± 0.01 | ND | ND |
Tyrosine | 1.97 ± 0.20 a | ND | 0.11 ± 0.01 b |
Total | 11.25 | 0.25 | 1.52 |
Parameters | Cheese | Butter | Kajmak |
---|---|---|---|
± SD | ± SD | ± SD | |
MUFA | 26.85 ± 2.82 a | 24.06 ± 0.17 a | 26.89 ± 1.56 a |
SSCFA | 2.53 ± 0.02 c | 3.5 ± 0.22 b | 5.41 ± 0.23 a |
SMCFA | 13.35 ± 0.51 b | 14.88 ± 1.08 b | 21.48 ± 0.65 a |
SLCFA | 45.90 ± 2.62 b | 46.46 ± 2.48 b | 30.09 ± 0.73 a |
SFA | 61.78 ± 3.15 a | 64.84 ± 3.78 a | 57.52 ± 1.51 a |
PUFA | 3.78 ± 0.21 a | 2.66 ± 0.10 b | 3.68 ± 0.31 a |
PUFA/SFA | 0.06 ± 0.01 a | 0.04 ± 0.001 b | 0.06 ± 0.005 a |
Total omega-6 fatty acids (n-6) | 3.77 ± 0.21 a | 1.92 ± 0.05 c | 2.65 ± 0.26 b |
Total omega-3 fatty acids (n-3) | 0.31 ± 0.03 c | 0.74 ± 0.05 b | 1.30 ± 0.08 a |
n-6/n-3 | 12.16 ± 0.54 a | 2.60 ± 0.11 b | 2.04 ± 0.07 b |
Atherogenicity index (AI) | 2.31± 0.34 b | 3.01 ± 0.16 a | 1.84 ± 0.06 b |
Thrombogenicity index (TI) | 2.99 ± 0.37 a | 3.12 ± 0.11 a | 1.82 ± 0.08 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becskei, Z.; Savić, M.; Ćirković, D.; Rašeta, M.; Puvača, N.; Pajić, M.; Đorđević, S.; Paskaš, S. Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability 2020, 12, 6616. https://doi.org/10.3390/su12166616
Becskei Z, Savić M, Ćirković D, Rašeta M, Puvača N, Pajić M, Đorđević S, Paskaš S. Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability. 2020; 12(16):6616. https://doi.org/10.3390/su12166616
Chicago/Turabian StyleBecskei, Zsolt, Mila Savić, Dragan Ćirković, Mladen Rašeta, Nikola Puvača, Marija Pajić, Sonja Đorđević, and Snežana Paskaš. 2020. "Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System" Sustainability 12, no. 16: 6616. https://doi.org/10.3390/su12166616
APA StyleBecskei, Z., Savić, M., Ćirković, D., Rašeta, M., Puvača, N., Pajić, M., Đorđević, S., & Paskaš, S. (2020). Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability, 12(16), 6616. https://doi.org/10.3390/su12166616