Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Management and Diet
2.2. Feed Chemical Composition
2.3. Slaughtering and Carcass Traits
2.4. Physical Analysis
2.5. Chemical and Fatty Acid Analyses and Lipid Oxidation
- Δ9 desaturase 16 index = 100 [(C16:1cis9)/(C16:1cis9 + C16:0)];
- Δ9 desaturase 18 index = 100 [(C18:1cis9)/(C18:1cis9 + C18:0)];
- Elongase index = 100 [(C18:0 + C18:1cis9)/(C16:0 + C16:1cis9 + C18:0 + C18:1cis9)].
- AI = [(C12:0 + 4 × C14:0 + C16:0)] ÷ [ΣMUFA + Σn−6 + Σn−3];
- TI = [(C14:0 + C16:0 + C18:0)] ÷ [(0.5 × ΣMUFA + 0.5 × Σn−6 + 3 × Σn−3 + Σn−3)/Σn−6];
2.6. Collagen Analysis
- Total collagen = hydroxyproline ∗ 7.25/1000/(weight/250)
- Soluble collagen = hydroxyproline ∗ 7.25/1000/(weight/400)
2.7. Statistical Analysis
3. Results and Discussion
3.1. In Vivo Performance and Slaughtering Data
3.2. Physical and Chemical Parameters of Meat
3.3. Collagen Analysis
3.4. Fatty Acid Profile of Meat
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyazoglu, J.; Hatziminaoglou, I.; Morand-Fehr, P. The role of the goat in society: Past, present and perspectives for the future. Small Rumin. Res. 2005, 60, 13–23. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Borgogno, M.; Corazzin, M.; Saccà, E.; Bovolenta, S.; Piasentier, E. Influence of familiarity with goat meat on liking and preference for capretto and chevon. Meat Sci. 2015, 106, 69–77. [Google Scholar] [CrossRef]
- Dhanda, J.S.; Taylor, D.G.; McCosker, J.E.; Murray, P.J. The influence of goat genotype on the production of capretto and chevon carcass. 1. Growth and carcass characteristics. Meat Sci. 1999, 52, 355–361. [Google Scholar] [CrossRef]
- Todaro, M.; Corrao, A.; Alicara, M.L.; Schinelli, R.; Giaccone, P.; Priolo, A. Effects of litter size and sex on meat quality traits of kid meat. Small Rumin. Res. 2004, 54, 191–196. [Google Scholar] [CrossRef]
- Warmington, B.G.; Kirton, A.H. Genetic and non-genetic influences on growth and carcass traits of goats. Small Rumin. Res. 1990, 3, 147–165. [Google Scholar] [CrossRef]
- Casey, N.H.; Webb, E.C. Managing goat production for meat quality. Small Rumin. Res. 2010, 89, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Goetsch, A.L.; Merkel, R.C.; Gipson, T.A. Factors affecting goat meat production and quality. Small Rumin. Res. 2011, 101, 173–181. [Google Scholar] [CrossRef]
- Xazela, N.M.; Chimonyo, M.; Muchenje, V.; Marume, U. Effect of sunflower cake supplementation on meat quality of indigenous goat genotypes of South Africa. Meat Sci. 2012, 90, 204–208. [Google Scholar] [CrossRef]
- Ozcan, M.; Yalcintan, H.; Tölü, C.; Ekiz, B.; Yilmaz, A.; Savas, T. Carcass and meat quality of Gokceada Goat kids reared under extensive and semi-intensive production systems. Meat Sci. 2014, 96, 496–502. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; Lestingi, A.; Colonna, M.A.; De Marzo, D.; Toteda, F. Effect of diet lipid source (linseed vs. soybean) and gender on performance, meat quality and intramuscular fatty acid composition in fattening lambs. Small Rumin. Res. 2018, 159, 11–17. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; De Marzo, D.; Ragni, M.; Lestingi, A.; Toteda, F. Use of alternative protein sources for finishing lambs. 2. Effects on chemical and physical characteristics and fatty acid composition of meat. Progr. Nutr. 2015, 17, 165–173. [Google Scholar]
- Selvaggi, M.; Fedrica, I.; Pinto, F.; Dario, C. Analysis of A Sequence Nucleotide Polymorphism of STAT5A Gene in Garganica Goat Breed. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 323. [Google Scholar] [CrossRef]
- Rotondi, P.; Colonna, M.A.; Marsico, G.; Giannico, F.; Ragni, M.; Facciolongo, A.M. Dietary supplementation with Oregano and Linseed in Garganica Suckling Kids: Effects on Growth Performances and Meat Quality. Pak. J. Zool. 2018, 50, 1421–1433. [Google Scholar] [CrossRef]
- MiPAAF. 2007. Available online: https://www.anmvioggi.it/media/files/ELENCO%20RAZZE%20MINACCIATE.pdf (accessed on 1 August 2020).
- Pesce Delfino, A.R.; Selvaggi, M.; Celano, G.V.; Dario, C. Heritability Estimates of Lactation Traits in Maltese Goat. Int. J. Biol. Biomol. Agric. Food Biotech. Eng. 2011, 5, 362–364. [Google Scholar]
- Noè, L.; Gaviraghi, A.; D’Angelo, A.; Bonanno, A.; Di Trana, A.; Sepe, L. Le razze caprine d’Italia. In L’alimentazione Della Capra da Latte; Pulina, G., Ed.; Avenue Media: Bologna, Italy, 2005; pp. 381–435. [Google Scholar]
- INRA. Ruminant Nutrition, Recommended Allowances and Feed Tables; Jarrige, R., Ed.; Institut National de la Recherche Agronomique, INRA: Paris, France, 1989. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2004. [Google Scholar]
- ASPA. Metodiche Per la Determinazione Delle Caratteristiche Qualitative Della Carne (Procedures for Meat Quality Evaluation); Scientific Association of Animal Production, Università di Perugia: Perugia, Italy, 1996. (In Italian) [Google Scholar]
- Šicklep, M.; Candek-Potokar, M. Pork color measurements as affected by bloom time and measurement location. J. Muscle Foods 2007, 18, 78–87. [Google Scholar] [CrossRef]
- Folch, A.J.; Lees, M.; Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Christie, W.W. Lipid Analysis-Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon Press: Oxford, UK, 1982; p. 270. [Google Scholar]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 1997, 48, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-tiobarbituricacid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Starkey, C.P.; Geesink, G.H.; Oddyc, V.H.; Hopkins, D.L. Explaining the variation in lamb longissimus shear force across and within ageing periods using protein degradation, sarcomere length and collagen characteristics. Meat Sci. 2015, 105, 32–37. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2000. [Google Scholar]
- Dhanda, J.S.; Taylor, D.G.; Murray, P.J. Carcass composition and fatty acid profiles of adipose tissue of male goats: Effects of genotype and live weight at slaughter. Small Rumin. Res. 2003, 50, 67–74. [Google Scholar] [CrossRef]
- Peña, F.; Bonvillani, A.; Freireb, B.; Juárezc, M.; Perea, J.; Gómez, G. Effects of genotype and slaughter weight on the meat quality of Criollo Cordobes and Anglo Nubian kids produced under extensive feeding conditions. Meat Sci. 2009, 83, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Peña, F.; Juárez, M.; Bonvillani, A.; García, P.; Polvillo, O.; Domenech, V. Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat. Ital. J. Anim. Sci. 2011, 10, 212–216. [Google Scholar] [CrossRef]
- Marichal, A.; Castro, N.; Capote, J.; Zamorano, M.J.; Argüello, A. Effects of live weight at slaughter (6, 10, 25 kg) on kid carcass and meat quality. Livest. Prod. Sci. 2003, 83, 247–256. [Google Scholar] [CrossRef]
- Ekiz, B.; Ozcan, M.; Yilmaz, A.; Tölü, C.; Savaş, T. Carcass measurements and meat quality characteristics of dairy suckling kids compared to an indigenous genotype. Meat Sci. 2010, 85, 245–249. [Google Scholar] [CrossRef]
- Peña, F.; Perea, J.; Garcia, A.; Acero, R. Effects of weight at slaughter and sex on the carcass characteristics of Florida suckling kids. Meat Sci. 2007, 75, 543–550. [Google Scholar] [CrossRef]
- Santos, V.A.C.; Silva, A.O.; Cardoso, J.V.F.; Silvestre, A.J.D.; Silva, S.R.; Martins, C.; Azevedo, J.M.T. Genotype and sex effects on carcass and meat quality of suckling kid protected by the PGI “Cabrito de Barroso”. Meat Sci. 2007, 75, 725–736. [Google Scholar] [CrossRef]
- Bonvillani, A.; Peña, F.; Domenech, V.; Polvillo, O.; García, P.T.; Casal, J.J. Meat quality of Criollo Cordobes goat kids produced under extensive feeding conditions. Effects of sex and age/weight at slaughter. Span. J. Agric. Res. 2010, 8, 116–125. [Google Scholar] [CrossRef]
- Todaro, M.; Corrao, A.; Barone, C.M.A.; Alicata, M.L.; Schinelli, R.; Giaccone, P. Use of weaning concentrate in the feeding of suckling kids: Effects on meat quality. Small Rumin. Res. 2006, 66, 44–50. [Google Scholar] [CrossRef]
- Lowe, T.E.; Gregory, N.G.; Fisher, A.D.; Payne, S.R. The effects of temperature elevation and water deprivation on lamb physiology welfare and meat quality. Aust. J. Agric. Res. 2002, 53, 707–714. [Google Scholar] [CrossRef]
- Herold, P.; Snell, H.; Tawfik, E.S. Growth, carcass and meat quality parameters of purebred and crossbred goat kids in extensive pasture. Arch. Anim. Breed. 2007, 50, 186–196. [Google Scholar] [CrossRef]
- Madruga, M.S.; Torres, T.S.; Carvalho, F.F.; Queiroga, R.C.; Narain, N.; Gaarutti, D.; Souza Neto, M.A.; Mattos, C.W.; Costa, R.G. Meat quality of Moxotó and Canindé goats as affected by two levels of feeding. Meat Sci. 2008, 80, 1019–1023. [Google Scholar] [CrossRef]
- Dhanda, J.S.; Taylor, D.G.; Murray, P.J.; McCosker, J.E. The influence of goat genotype on the production of Capretto and Chevon carcasses. 2. Meat quality. Meat Sci. 1999, 52, 363–367. [Google Scholar] [CrossRef]
- Ragni, M.; Tufarelli, V.; Pinto, F.; Giannico, F.; Laudadio, V.; Vicenti, A.; Colonna, M.A. Effect of Dietary Safflower Cake (Carthamus tinctorius L.) on growth performances carcass composition and meat quality traits in Garganica breed kids. Pak. J. Zool. 2015, 47, 193–199. [Google Scholar]
- Caputi Jambrenghi, A.; Colonna, M.A.; Giannico, F.; Coluccia, A.; Crocco, D.; Vonghia, G. Meat quality in suckling kids reared by different production systems. Progr. Nutr. 2009, 11, 36–46. [Google Scholar]
- Simela, L.; Webb, E.C.; Frylinck, L. Effect of sex, age, and pre-slaughter conditioning on pH, temperature, tenderness and colour of indigenous South African goats. S. Afr. J. Anim. Sci. 2004, 34, 208–211. [Google Scholar]
- Dhanda, J.S.; Taylor, D.G.; Mccosker, J.E.; Murray, P.J. The influence of goat genotype on the production of capretto and chevon carcass. 3. Dissected carcass composition. Meat Sci. 1999, 52, 369–374. [Google Scholar] [CrossRef]
- Solaiman, S.; Kerth, C.; Willian, K.; Min, B.R.; Shoemaker, C.; Jones, W.; Bransby, D. Growth performance, carcass characteristics and meat quality of boer-cross wether and buck goats grazing marshall ryegrass. Asian-Australasian J. Anim. Sci. 2011, 24, 351–357. [Google Scholar] [CrossRef]
- Guillen-Sans, R.; Guzman-Chozas, M. The Thiobarbituric Acid (TBA) Reaction in Foods: A Review. Crit. Rev. Food Sci. 1998, 38, 315–350. [Google Scholar] [CrossRef]
- Longobardi, F.; Sacco, D.; Casiello, G.; Ventrella, A.; Contessa, A.; Sacco, A. Garganica kid goat meat: Physico-chemical characterization and nutritional impacts. J. Food Comp. Anal. 2012, 28, 107–113. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, Q.; Yang, H.; Ren, A.; Kong, Z.; Tang, S.; Han, X.; He, Z.; Bamikole, M.A.; Tan, Z. Effects of maternal undernutrition during mid-gestation on the yield, quality and composition of kid meat under an extensive management system. Animals 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Sommerfeld, M. Trans unsaturated fatty acids in natural products and processed foods. Prog. Lipid Res. 1983, 22, 221–233. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Nam, S.H.; Ure, A.L. Factors affecting conjugated linoleic acid content in milk and meat. Crit. Rev. Food Sci. Nutr. 2005, 45, 463–482. [Google Scholar] [CrossRef]
- Pariza, M.W. Perspective on the safety and effectiveness of conjugated linoleic acid. Am. J. Clin. Nutr. 2004, 79, 1132S–1136S. [Google Scholar] [CrossRef] [Green Version]
- Park, Y. Conjugated linoleic acid (CLA): Good or bad trans fat? J. Food Comp. Anal. 2009, 22S, S4–S12. [Google Scholar] [CrossRef]
- Besserra, F.J.; Madruga, M.S.; Leite, A.M.; da Silva, E.M.C.; Maia, E.L. Effect of age at slaughter on chemical composition of meat of Moxotó goats and their crosses. Small Rumin. Res. 2004, 55, 177–181. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 64–688. [Google Scholar] [CrossRef]
- Harnack, K.; Andersen, G.; Somoza, V. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutr. Metab. 2009, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Werdi Pratiwi, N.M.; Murray, P.J.; Taylor, D.G.; Zhang, D. Comparison of breed, slaughter weight and castration on fatty acid profiles in the longissimus thoracic muscle from male Boer and Australian feral goats. Small Rumin. Res. 2006, 64, 94–100. [Google Scholar] [CrossRef]
- Banskalieva, V.; Sahlub, T.; Goetschc, A.L. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Lee, J.H.; Kannan, G.; Eega, K.R.; Kouakou, B.; Getz, W.R. Nutritional and quality characteristics of meat from goats and lambs finished under identical dietary regime. Small Rumin. Res. 2008, 74, 255–259. [Google Scholar] [CrossRef]
- Todaro, M.; Console, A.; Giaccone, P.; Genna, G. Indagine preliminare sulla carne del capretto di razza Girgentana: Rilievi in vita e post mortem (Preliminary investigation of Girgentana meat kid yield: In vita and post mortem data). In Proceedings of the XIV SIPAOC Congress, Vietri sul Mare, Italy, 18–21 October 2000; pp. 233–236. [Google Scholar]
- Hedrick, H.B.; Aberle, E.D.; Forrest, J.C.; Judge, M.D.; Merkel, R.A. Principles of Meat Science, 3rd ed.; Kendall and Hunt: Dubuque, IA, USA, 1994. [Google Scholar]
- Mateo, L.; Delgado, P.; Ortuño, J.; Bañón, S. Maternal grazing on stubble and Mediterranean shrubland improves meat lipid profile in light lambs fed on concentrates. Anim. Int. J. Anim. Biosci. 2018, 12, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
Ingredient Composition (g/kg as Fed Basis) | |
---|---|
Dehulled soybeans (37% crude protein) | 6.00 |
Corn | 31.00 |
Barley | 9.00 |
Wheat flour middlings | 9.00 |
Faba bean | 10.00 |
Bran | 10.00 |
Dehydrated beet pulp | 6.00 |
Soybean oil | 1.00 |
Sunflower meal | 8.00 |
Molasses | 3.00 |
Soybean hulls (12% crude protein) | 4.00 |
Vitamin mineral premix | 3.00 |
Total | 100 |
Chemical composition (% dry matter) | |
Moisture (% as fed) | 12.00 |
Crude protein | 16.80 |
Ether extract | 4.60 |
Ash | 9.10 |
Crude fiber | 15.18 |
NDF (neutral detergent fiber) | 33.85 |
ADF (acid detergent fiber) | 10.94 |
ADL (acid detergent lignin) | 2.64 |
Meat forage units (n/kg dry matter) | 1.03 |
Fatty acid composition (% of total fatty acids methyl esters) | |
C12:0 (lauric) | 0.95 |
C14:0 (myristic) | 0.95 |
C16:0 (palmitic) | 9.17 |
C18:0 (stearic) | 1.15 |
C20:0 | 0.73 |
C18:1 n9 c9 (oleic) | 17.91 |
C18:2 n6 (linoleic) | 39.17 |
C18:3 n3 (α-linolenic) | 4.55 |
C18:3 n6 | 0.36 |
C20:3 n3 | 0.65 |
C20:4 n6 (arachidonic) | 0.21 |
C22:2 n6 | 1.17 |
C22:5 n3 (DPA) | 0.54 |
C22:6 n3 (DHA) | 0.30 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
Initial body weight (kg) | 3.16 | 2.88 | 3.06 | 0.350 | 0.463 |
Live weight at slaughter (kg) | 11.00 | 12.44 | 12.18 | 2.320 | 0.592 |
Average daily gain (kg/d) | 0.13 | 0.16 | 0.15 | 0.036 | 0.459 |
Average daily feed intake (kg) | 0.62 | 0.70 | 0.64 | 0.052 | 0.549 |
Feed-conversion ratio (kg/kg) | 4.77 | 4.37 | 4.27 | 2.309 | 0.356 |
Empty body weight (kg) | 9.27 | 10.16 | 10.06 | 1.978 | 0.742 |
Skin + fleece (%) | 10.18 b | 11.18 a | 10.08 b | 0.637 | 0.033 |
Omentum (%) | 0.52 | 0.98 | 1.61 | 0.691 | 0.081 |
Head (%) | 5.99 | 6.06 | 6.48 | 0.415 | 0.175 |
Pluck (%) | 5.90 | 6.56 | 5.77 | 0.788 | 0.275 |
Net hot-dressing percentage | 67.72 a | 63.48 b | 67.27 a | 2.553 | 0.042 |
Net cold-dressing percentage | 64.22 Aa | 56.42 Bb | 62.51 ABa | 3.723 | 0.015 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
Half carcass (kg) | 4.66 | 4.80 | 4.94 | 1.192 | 0.937 |
Meat cuts (%) | |||||
Neck | 8.04 | 8.30 | 7.16 | 1.133 | 0.286 |
Steaks | 16.01 | 16.84 | 16.49 | 1.541 | 0.703 |
Brisket | 9.12 B | 10.85 A | 10.89 A | 0.517 | 0.001 |
Loin | 7.06 a | 5.78 b | 6.86 a | 0.711 | 0.031 |
Abdominal region | 4.77 | 5.86 | 5.39 | 0.669 | 0.070 |
Leg | 31.21 Aa | 30.15 ABb | 29.69 B | 0.388 | 0.001 |
Shoulder | 19.43 a | 17.80 b | 18.61 a | 0.683 | 0.045 |
Shins | 2.24 | 2.35 | 2.45 | 0.242 | 0.409 |
Perirenal fat | 1.53 | 1.36 | 1.88 | 0.786 | 0.574 |
Kidney | 0.59 | 0.71 | 0.58 | 0.129 | 0.278 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
Loin weight (kg) | 0.332 | 0.280 | 0.326 | 0.076 | 0.510 |
Lean (%) | 49.98 | 49.92 | 43.91 | 4.759 | 0.109 |
Fat (%) | 7.68 | 6.41 | 6.51 | 1.900 | 0.521 |
Bone (%) | 42.34 | 43.67 | 49.57 | 4.853 | 0.080 |
Leg weight (kg) | 1.44 | 1.58 | 1.46 | 0.394 | 0.840 |
Lean (%) | 66.29 | 64.57 | 61.62 | 4.783 | 0.330 |
Fat (%) | 3.39 | 4.66 | 5.67 | 1.818 | 0.180 |
Bone (%) | 30.32 | 30.77 | 32.70 | 4.783 | 0.712 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
pH 0 | 6.69 | 6.69 | 6.78 | 0.186 | 0.702 |
pH 24 | 5.45 | 5.41 | 5.68 | 0.173 | 0.067 |
L* | 47.82 | 48.36 | 46.49 | 3.043 | 0.618 |
a* | 6.21 Bb | 7.84 A | 7.64 a | 0.781 | 0.012 |
b* | 12.01 | 12.91 | 12.42 | 0.893 | 0.312 |
WBS (kg/cm2) | 5.15 b | 7.95 a | 7.27 a | 1.553 | 0.036 |
Moisture | 76.63 | 74.95 | 73.94 | 2.246 | 0.203 |
Crude protein | 19.36 | 19.62 | 19.19 | 0.994 | 0.794 |
Ether extract | 2.34 b | 2.89 b | 4.55 a | 1.407 | 0.045 |
Ash | 1.39 | 1.63 | 1.44 | 0.299 | 0.451 |
MDA (mg/kg meat) | 0.77 A | 0.38 B | 0.28 B | 0.206 | 0.005 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
Total collagen (μg/mg) | 44.96 | 55.96 | 58.41 | 11.654 | 0.177 |
Soluble collagen (μg/mg) (%) | 22.09 49.49 | 27.66 49.76 | 28.84 49.38 | 4.838 12.651 | 0.090 0.885 |
Insoluble collagen (μg/mg) (%) | 22.87 50.51 | 28.30 50.23 | 29.57 50.62 | 12.163 12.651 | 0.647 0.885 |
Genotype | SEM 1 | p-Value | |||
---|---|---|---|---|---|
Garganica | Maltese | Derivata di Siria | |||
Total Fatty acids (g/100 g muscle) | 2.07 | 2.31 | 3.64 | 0.650 | 0.802 |
C10:0 (capric) | 0.29 b | 0.26 b | 0.59 a | 0.196 | 0.042 |
C12:0 (lauric) | 0.97 | 0.73 | 1.03 | 0.364 | 0.413 |
C14:0 (myristic) | 2.65 Bc | 5.37 b | 7.38 Aa | 1.636 | 0.002 |
C16:0 (palmitic) | 24.72 | 21.98 | 24.79 | 2.580 | 0.187 |
C17:0 | 0.72 b | 1.10 a | 1.04 a | 0.199 | 0.021 |
C18:0 (stearic) | 14.86 | 14.09 | 11.86 | 2.565 | 0.199 |
Total SFA 2 | 44.92 b | 46.24 ab | 48.97 a | 2.204 | 0.037 |
C16:1 n7 (palmitoleic) | 1.22 | 1.74 | 1.99 | 0.780 | 0.317 |
C18:1 n9 t9 (elaidic) | 2.99 Aa | 0.47 B | 1.23 b | 1.288 | 0.026 |
C18:1 n9 c9 (oleic) | 31.84 | 34.83 | 31.06 | 3.633 | 0.261 |
Total MUFA 3 | 40.28 | 40.61 | 39.10 | 3.804 | 0.628 |
C18:2 n6 c9 c12 (linoleic) | 5.18 | 6.23 | 5.09 | 1.782 | 0.548 |
CLA c9, t11 | 0.09 B | 0.01 A | 0.02 A | 0.032 | 0.003 |
CLA t10, c12 | 0.13 A | 0.01 B | 0.02 B | 0.023 | 0.001 |
C18:3 n3 (α-linolenic) | 0.21 Bb | 0.59 a | 0.81 A | 0.202 | 0.002 |
C20:5 n3 (EPA) | 0.13 A | 0.01 B | 0.01 B | 0.027 | 0.001 |
C22:6 n3 (DHA) | 0.14 | 0.21 | 0.33 | 0.260 | 0.507 |
Total n-6 4 | 6.71 | 7.28 | 6.10 | 2.066 | 0.676 |
Total n-3 5 | 0.66 b | 0.80 ab | 1.15 a | 0.258 | 0.030 |
Total PUFA 6 | 7.96 | 8.08 | 7.25 | 2.260 | 0.824 |
Unidentified fatty acids | 6.84 | 5.07 | 4.68 | 1.832 | 0.579 |
n-6/n-3 | 10.73 A | 9.22 A | 5.26 B | 1.925 | 0.002 |
PUFA/SFA | 0.16 | 0.18 | 0.15 | 0.060 | 0.785 |
Δ9 desaturase 16 index | 4.76 | 7.08 | 7.12 | 2.268 | 0.210 |
Δ9 desaturase 18 index | 68.12 | 71.21 | 72.40 | 5.172 | 0.428 |
Elongase index | 64.10 | 67.45 | 61.69 | 3.799 | 0.094 |
Atherogenic index | 1.11 b | 1.18 b | 1.43 a | 0.171 | 0.032 |
Thrombogenic index | 1.74 | 1.57 | 1.68 | 0.195 | 0.377 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonna, M.A.; Rotondi, P.; Selvaggi, M.; Caputi Jambrenghi, A.; Ragni, M.; Tarricone, S. Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes. Sustainability 2020, 12, 6922. https://doi.org/10.3390/su12176922
Colonna MA, Rotondi P, Selvaggi M, Caputi Jambrenghi A, Ragni M, Tarricone S. Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes. Sustainability. 2020; 12(17):6922. https://doi.org/10.3390/su12176922
Chicago/Turabian StyleColonna, Maria Antonietta, Pasqua Rotondi, Maria Selvaggi, Anna Caputi Jambrenghi, Marco Ragni, and Simona Tarricone. 2020. "Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes" Sustainability 12, no. 17: 6922. https://doi.org/10.3390/su12176922
APA StyleColonna, M. A., Rotondi, P., Selvaggi, M., Caputi Jambrenghi, A., Ragni, M., & Tarricone, S. (2020). Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes. Sustainability, 12(17), 6922. https://doi.org/10.3390/su12176922