Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Data Processing
2.4. Data Analysis
3. Results
3.1. Land Cover Changes in Merauke Regency
3.2. Land Cover Losses and Gains from 1990 to 2019
3.3. Land Cover Changes and Their Impact on the Prediction of the Natural Habitat of the Sago Palm
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2020, 710, 136275. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Whittle, M.; Quegan, S.; Uryu, Y.; Stüewe, M.; Yulianto, K. Detection of tropical deforestation using ALOS-Palsar: A Sumatran case study. Remote. Sens. Environ. 2012, 124, 83–98. [Google Scholar] [CrossRef]
- Aliani, H.; Malmir, M.; Sourodi, M.; Kafaky, S.B. Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County). Environ. Earth Sci. 2019, 78, 546. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, J. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—A case study in the qinling mountains. Forests 2019, 10, 559. [Google Scholar] [CrossRef]
- Tripathy, P.; Kumar, A. Monitoring and modelling spatio-temporal urban growth of Delhi using cellular automata and geoinformatics. Cities 2019, 90, 52–63. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.; Oinam, B. Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sens. Lett. 2020, 11, 225–234. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.; Wu, Z.; Lin, M. Future forest dynamics under climate change, land use change, and harvest in subtropical forests in Southern China. Landsc. Ecol. 2019, 34, 843–863. [Google Scholar] [CrossRef]
- Saragi-Sasmito, M.F.; Murdiyarso, D.; June, T.; Sasmito, S.D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; He, Z. Evaluation of the effects of land cover change on ecosystem service values in the upper reaches of the heihe river basin, northwestern China. Sustainability 2018, 10, 4700. [Google Scholar] [CrossRef] [Green Version]
- Seki, H.A.; Shirima, D.D.; Courtney Mustaphi, C.J.; Marchant, R.; Munishi, P.K.T. The impact of land use and land cover change on biodiversity within and adjacent to Kibasira Swamp in Kilombero Valley, Tanzania. Afr. J. Ecol. 2018, 56, 518–527. [Google Scholar] [CrossRef]
- Obidzinski, K.; Takahashi, I.; Dermawan, A.; Komarudin, H.; Andrianto, A. Can large scale land acquisition for agro-development in Indonesia be managed sustainably? Land Use Policy 2013, 30, 952–965. [Google Scholar] [CrossRef]
- Acosta, P.; Curt, M.D. Understanding the expansion of oil palm cultivation: A case-study in Papua. J. Clean. Prod. 2019, 219, 199–216. [Google Scholar] [CrossRef]
- Sloan, S.; Campbell, M.J.; Alamgir, M.; Engert, J.; Ishida, F.Y.; Senn, N.; Huther, J.; Laurance, W.F. Hidden challenges for conservation and development along the Trans-Papuan economic corridor. Environ. Sci. Policy 2019, 92, 98–106. [Google Scholar] [CrossRef]
- Cabinet Secretariat of the Republic of Indonesia. Available online: https://setkab.go.id/en/president-jokowi-establishes-peat-land-restoration-agency-brg/ (accessed on 9 June 2020).
- Cabinet Secretariat of the Republic of Indonesia. Available online: https://setkab.go.id/en/president-jokowi-signs-presidential-instruction-on-forest-land-fires-mitigation/ (accessed on 8 June 2020).
- Ehara, H.; Toyoda, Y.; Johnson, D.V. (Eds.) Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods; Springer: Singapore, 2018; ISBN 978-981-10-5268-2. [Google Scholar]
- Zhu, F. Recent advances in modifications and applications of sago starch. Food Hydrocoll. 2019, 96, 412–423. [Google Scholar] [CrossRef]
- Singhal, R.S.; Kennedy, J.F.; Gopalakrishnan, S.M.; Kaczmarek, A.; Knill, C.J.; Akmar, P.F. Industrial production, processing, and utilization of sago palm-derived products. Carbohydr. Polym. 2008, 72, 1–20. [Google Scholar] [CrossRef]
- Karim, A.A.; Tie, A.P.-L.; Manan, D.M.A.; Zaidul, I.S.M. Starch from the Sago (Metroxylonsagu) palm treeproperties, prospects, and challenges as a new industrial source for food and other uses. Compr. Rev. Food Sci. Food Saf. 2008, 7, 215–228. [Google Scholar] [CrossRef]
- Yan, E.; Zhao, Y.; Lin, H.; Wang, G.; Mo, D. Improving the estimation of forest carbon density in mountainous regions using topographic correction and landsat 8 images. Remote Sens. 2019, 11, 2619. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping plantations in myanmar by fusing landsat-8, sentinel-2 and sentinel-1 data along with systematic error quantification. Remote Sens. 2019, 11, 831. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Niu, Z. Mapping and analyzing China’s wetlands using MODIS time series data. Wetl. Ecol. Manag. 2019, 27, 693–710. [Google Scholar] [CrossRef]
- Richard Allen, T.; Wang, Y.; Gore, B. Coastal wetland mapping combining multi-date SAR and LiDAR. Geocarto Int. 2013, 28, 616–631. [Google Scholar] [CrossRef]
- Flores-Casas, R.; Ortega-Huerta, M.A. Modelling land cover changes in the tropical dry forest surrounding the Chamela-Cuixmala biosphere reserve, Mexico. Int. J. Remote Sens. 2019, 40, 6948–6974. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial mangrove species mapping using pléiades-1: An evaluation of pixel-based and object-based classifications with selected machine learning algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Cando-Jácome, M.; Martínez-Graña, A. Determination of primary and secondary lahar flow paths of the fuego volcano (Guatemala) using morphometric parameters. Remote Sens. 2019, 11, 727. [Google Scholar] [CrossRef] [Green Version]
- Jakimow, B.; van der Linden, S.; Thiel, F.; Frantz, D.; Hostert, P. Visualizing and labeling dense multi-sensor earth observation time series: The EO time series viewer. Environ. Model. Softw. 2020, 125, 104631. [Google Scholar] [CrossRef]
- Elfadaly, A.; Abouarab, M.A.R.; Shabrawy, R.R.M.E.; Mostafa, W.; Wilson, P.; Morhange, C.; Silverstein, J.; Lasaponara, R. Discovering potential settlement areas around archaeological tells using the integration between historic topographic maps, optical, and radar data in the northern Nile Delta, Egypt. Remote Sens. 2019, 11, 3039. [Google Scholar] [CrossRef] [Green Version]
- Gurjar, S.K.; Tare, V. Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013–14) satellite images: A case study of Ramganga River, India. Environ. Monit. Assess. 2019, 191, 217. [Google Scholar] [CrossRef]
- Patel, S.; Shah, E.; Jayaprasad, P.; James, M.E. Changes in Antarctic coastline between 1997 and 2016 using RADARSAT and MODIS data. Int. J. Remote Sens. 2020, 41, 1389–1414. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality reduction and feature selection for object-based land cover classification based on sentinel-1 and sentinel-2 time series using Google earth engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Scott, S.L.; Desmet, P.G.; Hoffman, M.T. Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecol. Indic. 2020, 113, 106206. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H. Land–use and land-cover change detection using dynamic time warping–based time series clustering method. Can. J. Remote Sens. 2020, 46, 67–83. [Google Scholar] [CrossRef]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational monitoring and damage assessment of riverine flood-2014 in the lower chenab plain, punjab, pakistan, using remote sensing and GIS techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Fortin, J.A.; Cardille, J.A.; Perez, E. Multi-sensor detection of forest-cover change across 45 years in Mato Grosso, Brazil. Remote Sens. Environ. 2020, 238, 111266. [Google Scholar] [CrossRef]
- Kalther, J.; Itaya, A. Coastline changes and their effects on land use and cover in Subang, Indonesia. J. Coast. Conserv. 2020, 24, 16. [Google Scholar] [CrossRef]
- Anderson, K.; Fawcett, D.; Cugulliere, A.; Benford, S.; Jones, D.; Leng, R. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 2020, 26, 1608–1625. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Domke, G.M.; Woodall, C.W.; D’Amato, A.W. Contemporary forest carbon dynamics in the northern U.S. associated with land cover changes. Ecol. Indic. 2020, 110, 105901. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2019, 7, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Rigge, M.; Homer, C.; Cleeves, L.; Meyer, D.K.; Bunde, B.; Shi, H.; Xian, G.; Schell, S.; Bobo, M. Quantifying Western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 2020, 12, 412. [Google Scholar] [CrossRef] [Green Version]
- Uda, S.K.; Hein, L.; Sumarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 2017, 25, 683–701. [Google Scholar] [CrossRef] [Green Version]
- MoEF. National Forest Reference Emission Level for Deforestation and Forest Degradation: In the Context of Decision 1/CP.16 para 70 UNFCCC (Encourages Developing Country Parties to Contribute to Mitigation Actions in the Forest Sector); DG-PPI MoEF: New Delhi, India, 2015. [Google Scholar]
- Papua Province. RREG Papua Province 2017–2020; Peatland Restoration Agency: Jakarta, Indonesia, 2017; pp. 1–2. [Google Scholar]
- Sasmito, S.D.; Sillanpää, M.; Hayes, M.A.; Bachri, S.; Saragi-Sasmito, M.F.; Sidik, F.; Hanggara, B.B.; Mofu, W.Y.; Rumbiak, V.I.; Hendri; et al. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Glob. Chang. Biol. 2020, 26, 3028–3039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonatan, N.J.; Ekayuliana, A.; Dhiputra, I.M.K.; Nugroho, Y.S. The Utilization of Metroxylon Sago (Rottb.) dregs for low bioethanol as fuel households needs in Papua Province Indonesia. KLS 2017, 3, 150. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, S.K.; Rajkumar, T.; Pandi, D.K.; Ahmed, A.S.; Ani, F.N. Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Manag. 2019, 86, 80–86. [Google Scholar] [CrossRef] [PubMed]
- BPS. Papua Province in Figures 2020; BPS-Statistics of Papua Province, BPS: Jakarta, Indonesia, 2020. [Google Scholar]
- BPS. Merauke Regency in Figures 2020; BPS-Statistics of Merauke Regency, BPS: Jakarta, Indonesia, 2020. [Google Scholar]
- Leinenkugel, P.; Deck, R.; Huth, J.; Ottinger, M.; Mack, B. The potential of open geodata for automated large-scale land use and land cover classification. Remote Sens. 2019, 11, 2249. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Gomariz-Castillo, F. Isolation forests to evaluate class separability and the representativeness of training and validation areas in land cover classification. Remote Sens. 2019, 11, 3000. [Google Scholar] [CrossRef] [Green Version]
- Gilani, H.; Shrestha, H.L.; Murthy, M.S.R.; Phuntso, P.; Pradhan, S.; Bajracharya, B.; Shrestha, B. Decadal land cover change dynamics in Bhutan. J. Environ. Manag. 2015, 148, 91–100. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.-M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery: A case study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Rogan, J.; Sangermano, F. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach. ISPRS J. Photogramm. Remote Sens. 2018, 136, 134–143. [Google Scholar] [CrossRef]
- Gondwe, M.F.; Cho, M.A.; Chirwa, P.W.; Geldenhuys, C.J. Land use land cover change and the comparative impact of co-management and government-management on the forest cover in Malawi (1999–2018). J. Land Use Sci. 2019, 14, 281–305. [Google Scholar] [CrossRef]
- Entwistle, C.; Mora, M.A.; Knight, R. Estimating coastal wetland gain and losses in Galveston County and Cameron County, Texas, USA: Wetland Gains and Losses in 2 Texas Coastal Counties. Integr. Environ. Assess. Manag. 2018, 14, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.L.; Pérez-Maqueo, O.; Vázquez, G.; Castillo-Campos, G.; García-Franco, J.; Mehltreter, K.; Equihua, M.; Landgrave, R. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecol. Manag. 2009, 258, 1856–1863. [Google Scholar] [CrossRef]
- Mathan, M.; Krishnaveni, M. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices—A case study of Chennai Metropolitan Area, India. Environ. Monit. Assess. 2020, 192, 15. [Google Scholar] [CrossRef]
- Holusa, J.; Lubojacky, J.; Knizek, M. Distribution of the double-spined spruce bark beetle Ipsduplicatus in the Czech Republic: Spreading in 1997–2009. Phytoparasitica 2010, 38, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Purwestri, R.C.; Hájek, M.; Šodková, M.; Sane, M.; Kašpar, J. Bioeconomy in the National Forest Strategy: A comparison study in Germany and the Czech Republic. Forests 2020, 11, 608. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) Global Forest Resources Assessment 2015: Desk Reference. 2017. Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/ (accessed on 9 August 2019).
- Martin, K.; Norris, A.; Drever, M. Effects of bark beetle outbreaks on avian biodiversity in the British Columbia interior: Implications for critical habitat management. JEM 2006, 7, 10–24. [Google Scholar]
- Bentz, B.; Logan, J.; MacMahon, J.; Allen, C.D.; Ayres, M.; Berg, E.; Carroll, A.; Hansen, M.; Hicke, J.; Joyce, L.; et al. Bark beetle outbreaks in western North America: Causes and consequences. In Bark Beetle Symposium; Snowbird, Utah; November, 2005; University of Utah Press: Salt Lake City, UT, USA, 2009. [Google Scholar]
- Zhang, X.; Treitz, P.M.; Chen, D.; Quan, C.; Shi, L.; Li, X. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 201–214. [Google Scholar] [CrossRef]
- Chew, T.A.; Isa AH, B.M.; Mohayidin, M.G.B. Sago (MetroxylonsaguRottboll, the forgotten palm. J. Sustain. Agric. 1999, 14, 5–17. [Google Scholar] [CrossRef]
- Kamlun, K.U.; Bürger Arndt, R.; Phua, M.-H. Monitoring deforestation in Malaysia between 1985 and 2013: Insight from South-Western Sabah and its protected peat swamp area. Land Use Policy 2016, 57, 418–430. [Google Scholar] [CrossRef]
- Salosa, S.T. Challenge of Sago (MetroxylonSp) as Papua Food Identity. KSS 2016, 1, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Vetrita, Y.; Cochrane, M.A. Fire frequency and related land-use and land-cover changes in indonesia’s peatlands. Remote Sens. 2019, 12, 5. [Google Scholar] [CrossRef] [Green Version]
No. | Class | Abbreviation | Definition | Category | IPCC 1 |
---|---|---|---|---|---|
1. | Primary dryland forest | P.D.F. | The natural tropical forest grows on dryland habitat including lowland, upland, and mountain forests, with no signs of human or logging activities. | Natural forest | Forest |
2. | Secondary dryland forest | S.D.F. | The natural tropical forest grows on dryland habitat including lowland, upland, and spotting of logging. | Natural forest | Forest |
3. | Primary mangrove forest | P.M.F. | Inundated forest with access to sea/brackish water and dominated by species of mangrove and nipa that has no signs of logging activities. | Natural forest | Forest |
4. | Secondary mangrove forest | S.M.F. | Inundated forest with access to sea/brackish water and dominated by species of mangrove and nipa that exhibit signs of logging activities, indicated by patterns and spotting of logging. | Natural forest | Forest |
5. | Primary swamp forest | P.S.F. | The natural tropical forest grows in wet habitat including brackish swamp, sago, and peat swamp. | Natural forest | Forest |
6. | Secondary swamp forest | S.S.F. | The natural tropical forest grows in wet habitat including brackish swamp, sago, and peat swamp, with signs of human intervention or logging activities. | Natural forest | Forest |
7. | Plantation forest | P.F. | Planted forest including areas of reforestation, industrial plantation forest, and community plantation forest. | Plantation forest | Forest |
8. | Estate cropland | E.C. | Estate areas that have been planted, mostly with perennial crops or other agriculture trees commodities. | Non-forest | Cropland |
9. | Pure dry agriculture | P.D.A. | All land cover associated with agriculture activities on dry/nonwet land such as moors, mixed garden, and agriculture fields. | Non-forest | Cropland |
10 | Mixed dry agriculture | M.D.A. | All land cover associated with agriculture activities on dry land that is mixed with shrubs, thickets, and logs over the forest. This cover type often results in shifting cultivation and its rotation, including on carts. | Non-forest | Cropland |
11 | Dry shrub | D.S. | Highly degraded log over areas on dryland habitat that is undergoing succession but have not yet hit a stable forest ecosystem, having natural scattered trees or shrubs. | Non-forest | Grassland |
12 | Paddy field | P.F. | Agriculture areas on nondry habitats, especially for paddies that typically exhibit dyke patterns, rained, seasonal, and irrigated paddy fields. | Non-forest | Cropland |
13 | Wet shrub | W.S. | Highly degraded log over areas on nondryland habitat of wet habitat that have not yet reached a stable forest ecosystem, having natural separated trees or shrubs. | Non-forest | Grassland |
14 | Savanna and grasses | S.G. | Areas with grasses and scattered trees and shrubs, could be in wet or nonwet habitats. Typical of the natural ecosystem on Sulawesi Tenggara, NTT, and the south part of Papua. | Non-forest | Grassland |
15 | Open swamp | O.S | Open swamp with less vegetation. | Non-forest | Wetland |
16 | Open water | O.W. | Water body including ocean, rivers, lakes, ponds. | Non-forest | Wetland |
17 | Fishpond | F.P. | Areas exhibiting aquaculture activities such as fish, shrimp, or salt ponds. | Non-forest | Wetland |
18 | Port and harbor | P.H. | Ports and harbors big enough to be independently delineated as independent objects. | Non-forest | Other land |
19 | Transmigration areas | T.A | Unique settlement, association with houses, agroforestry, and garden in and around. | Non-forest | Settlement |
20 | Settlement areas | S.A. | Including rural, urban, industrial, and other typical appearances of settlement. | Non-forest | Settlement |
21 | Mining areas | M.A | Mining areas such as open-pit mining, tailing ground. | Non-forest | Other land |
22 | Bare ground | B.G | Barren land with no vegetation cover yet, open exposure areas, craters, sandbanks, sediments, and area post-fire that has not shown regrowth yet. | Non-forest | Other land |
23 | Clouds and no-data | C.Oo | Clouds, cloud shadows with size up to 4 cm 2 at 100.000 scales. | Non-forest | No data |
Property | Landsat 5 | Landsat 7 | Landsat 8 |
---|---|---|---|
Spatial resolution | 30 m for visible and I.R., | 30 m for visible and Infrared (I.R.) | 30 m for visible and I.R. |
120 m for thermal | 15 m for Panchromatic (Pan) and 60 m for thermal | 15 m for (Pan) and 100 m for thermal | |
Spectral resolution | 7 bands (visible, I.R., thermal band) | 8 bands (visible, I.R., Pan, and thermal band) | 11 bands (visible, I.R., Pan, and thermal) |
Radiometric resolution | 8 bit | 8 bit | 16 bit |
Temporal resolution | 16 day | 16 day | 16 day |
Details of spectral resolutions (μm) | Band 1: (blue) 0.450–0.515 | Band 1: (blue) 0.450–0.515 | Band 1: (blue) 0.43–0.45 |
Band 2: (green) 0.525-0.605 | Band 2: (green) 0.525–0.605 | Band 2: (blue-green) 0.45–0.51 | |
Band 3: (red) 0.63-0.69 | Band 3: (red) 0.63–0.69 | Band 3: (green) 0.53–0.59 | |
Band 4: Near-Infrared (N.I.R.) 0.76–0.90 | Band 4: (N.I.R.) 0.76–0.90 | Band 4: (red) 0.64–0.67 | |
Band 5: Short-Wave Infrared (SWIR-1) 1.55–1.75 | Band 5: (SWIR-1) 1.55–1.75 | Band 5: (N.I.R.) 0.85–0.88 | |
Band 6: (thermal) 10.4–12.5 | Band 6: (thermal) 10.4–12.5 | Band 6: (SWIR-1) 1.57–1.65 | |
Band 7: (SWIR-2) 2.09–2.35 | Band 7: (SWIR-2) 2.09–2.35 | Band 7: (SWIR-2) 2.11–2.29 | |
Band 8: (Pan) 0.52–0.92 | Band 8: (Pan) 0.50–0.68 | ||
Band 9: (Cirrus) 1.36–1.38 Band 10: (Thermal I.R.) 10.60–11.19 Band 11: (Thermal I.R.) 11.50–12.51 |
LC Class | 1990 (ha) | 1996 (ha) | 2000 (ha) | 2003 (ha) |
---|---|---|---|---|
Natural Forest | ||||
Primary dryland forest | 694,737 | 664,757 | 634,776 | 619,004 |
Secondary dryland forest | 638,049 | 620,773 | 603,496 | 618,381 |
Primary mangrove forest | 208,727 | 207,345 | 205,963 | 201,768 |
Secondary mangrove forest | 25,345 | 24,209 | 23,073 | 25,776 |
Primary swamp forest | 342,429 | 329,304 | 316,179 | 292,789 |
Secondary swamp forest | 531,109 | 419,213 | 307,317 | 313,173 |
Total area (ha) | 2,440,396 | 2,265,600 | 2,090,804 | 2,070,891 |
Percentage of change (%) | 50.30 | 46.70 | 43.09 | 42.68 |
Change rate (ha/yr) | = | −7.1626 | −7.715 | −0.952 |
Non-Forest | ||||
Bush/shrub | 71,946 | 24,194 | 176,443 | 177,229 |
Estate crop plantation | - | - | - | 101 |
Settlement area | 3160 | 3366 | 3571 | 3667 |
Barren land | 81,714 | 51,759 | 21,805 | 21,805 |
Cloud covered | 764 | 764 | 764 | 764 |
Savanna/grassland | 471,693 | 549,087 | 626,480 | 646,258 |
Water body | 352,031 | 352,012 | 351.993 | 351,992 |
Swamp shrub | 930,069 | 931,438 | 932,806 | 929,360 |
Dryland agriculture | 14,377 | 15,368 | 16,358 | 16,772 |
Shrub-mixed dryland farm | 43,462 | 49,013 | 54,563 | 54,563 |
Paddy field | 10,932 | 10,932 | 10,932 | 10,974 |
Fishpond | - | - | - | - |
Airport/harbor | 159 | 159 | 159 | 159 |
Transmigration area | 36,638 | 41,430 | 46.221 | 46,221 |
Swamp | 394,375 | 456,596 | 518,816 | 521,051 |
Total area (ha) | 2,411,319 | 2,586,115 | 2,760,912 | 2,780,824 |
Percentage of change (%) | 49.70 | 53.30 | 56.91 | 57.32 |
Change rate (ha/yr) | = | 7249 | 6759 | 0.721 |
LC Class | 2006 (ha) | 2009 (ha) | 2011 (ha) | 2014 (ha) |
---|---|---|---|---|
Natural Forest | ||||
Primary dryland forest | 598,828 | 553,728 | 553,098 | 543,670 |
Secondary dryland forest | 627,494 | 672,086 | 672,425 | 678,803 |
Primary mangrove forest | 196,510 | 196,510 | 196,510 | 197,808 |
Secondary mangrove forest | 23,678 | 23,574 | 23,574 | 23,675 |
Primary swamp forest | 238,249 | 205,343 | 205,343 | 206,530 |
Secondary swamp forest | 338,909 | 371,810 | 371,810 | 374,446 |
Total area (ha) | 2,023,668 | 2,023,051 | 2,022,760 | 2,024,932 |
Percentage of change (%) | 41.71 | 41.70 | 41.69 | 41.74 |
Change rate (ha/yr) | −2280 | −0.030 | −0.014 | −0.107 |
Non-Forest | ||||
Bush/shrub | 178,032 | 178,463 | 177,262 | 174,273 |
Estate crop plantation | 101 | 101 | 1533 | 16,535 |
Settlement area | 3891 | 3891 | 3891 | 3917 |
Barren land | 21,853 | 21,853 | 21,913 | 23,501 |
Cloud covered | 764 | 764 | 764 | - |
Savanna/grassland | 655,175 | 704,034 | 704,044 | 708,703 |
Water body | 351,995 | 351,994 | 351,994 | 322,264 |
Swamp shrub | 949,786 | 900,908 | 900,838 | 906,111 |
Dryland agriculture | 16,803 | 16,880 | 16,880 | 17,184 |
Shrub-mixed dryland farm | 65,250 | 65,379 | 65,379 | 65,760 |
Paddy field | 10,974 | 10,974 | 11,044 | 11,463 |
Fishpond | - | - | - | - |
Airport/harbor | 159 | 159 | 159 | 159 |
Transmigration area | 46,221 | 46,221 | 46,221 | 46,440 |
Swamp | 527,044 | 527,044 | 527,034 | 530,472 |
Total area (ha) | 2,828,047 | 2,828,664 | 2,828,955 | 2,826,783 |
Percentage of change (%) | 58.29 | 58.30 | 58.31 | 58.26 |
Change rate (ha/yr) | 1698 | 0.022 | 0.010 | −0.077 |
LC Class | 2015 (ha) | 2016 (ha) | 2017 (ha) | 2018 (ha) | 2019 (ha) |
---|---|---|---|---|---|
Natural Forest | |||||
Primary dryland forest | 529,715 | 522,977 | 519,144 | 401,879 | 500,359 |
Secondary dryland forest | 664,888 | 654,663 | 652,518 | 732,934 | 631,295 |
Primary mangrove forest | 196,758 | 195,162 | 195,007 | 195,660 | 195,384 |
Secondary mangrove forest | 23,521 | 23,876 | 23,829 | 23,932 | 24,060 |
Primary swamp forest | 202,799 | 200,958 | 200,400 | 202,694 | 202,193 |
Secondary swamp forest | 359,399 | 356,270 | 358,089 | 357,151 | 531,266 |
Total changed area (ha) | 1,977,080 | 1,953,906 | 1,948,987 | 1,914,250 | 2,084,557 |
Percentage of change (%) | 40.75 | 40.27 | 40.17 | 39.46 | 42.97 |
Change rate (ha/yr) | −2363 | −1172 | −0.252 | −1782 | 8897 |
Non-Forest | |||||
Bush/shrub | 169,262 | 166,111 | 170,801 | 169,656 | 29,465 |
Estate crop plantation | 19,885 | 27,397 | 53,857 | 80,231 | 4359 |
Settlement area | 3653 | 3878 | 3480 | 7216 | 7090 |
Barren land | 263,859 | 75,081 | 56,539 | 77,994 | 88,946 |
Cloud covered | - | - | - | - | - |
Savanna/grassland | 568,723 | 700,156 | 603,422 | 576,528 | 555,274 |
Water body | 322,282 | 351,749 | 351,734 | 349,816 | 349,884 |
Swamp shrub | 860,813 | 917,482 | 969,770 | 978,818 | 942,998 |
Dryland agriculture | 16,396 | 17,072 | 16,377 | 18,278 | 21,671 |
Shrub-mixed dryland farm | 62,139 | 65,071 | 65,344 | 70,692 | 8600 |
Paddy field | 11,459 | 11,388 | 11,388 | 48,795 | 45,505 |
Fishpond | - | - | - | 448 | 80 |
Airport/harbor | 159 | 159 | 159 | 175 | 175 |
Transmigration area | 46,440 | 46,152 | 45,504 | 26,526 | 25,575 |
Swamp | 529,565 | 516,113 | 554,354 | 532,291 | 37,538 |
Total area (ha) | 2,874,635 | 2,897,809 | 2,902,728 | 2,937,465 | 2,767,158 |
Percentage of change (%) | 59.25 | 59.73 | 59.83 | 60.54 | 57.03 |
Change rate (ha/yr) | 1693 | 0.806 | 0.170 | 1197 | -5798 |
L.C. Class | Changed Rate (ha/yr) | Total Changed Area | |||
---|---|---|---|---|---|
Gain(+) | Loss(−) | Net(±) | Ha | % | |
Primary dryland forest | 8206.67 | 24,404.83 | −16,198.17 | −194,378.00 | −27.98 |
Secondary dryland forest | 12,976.92 | 13,539.75 | −562,83 | −6754.00 | −1.06 |
Primary mangrove forest | 162.58 | 1274.50 | −1111.92 | −13,343.00 | −6.39 |
Secondary mangrove forest | 282.60 | 389.74 | −107,14 | −1285.70 | −5.07 |
Primary swamp forest | 290.08 | 11,976.42 | −11,686.33 | −140,236.00 | −40.95 |
Secondary swamp forest | 20,255.25 | 20,242.17 | 13.08 | 157.00 | 0.03 |
Bush/shrub | 9267.26 | 4474.00 | 4793.26 | 57,519.10 | 79.95 |
Estate crop plantation | 7863.22 | - | 7863.22 | 94,358.60 | - |
Settlement area | 393.19 | 65.68 | 327.52 | 3930.23 | 124.38 |
Barren land | 22,871.75 | 22,269.04 | 602.71 | 7232.50 | 8.85 |
Cloud covered | - | 63.64 | −63.64 | −763.65 | −100 |
Grassland | 30,703.58 | 23,738.50 | 6965.08 | 83,581.00 | 17.72 |
Water body | 2462.99 | 2641.91 | −178.93 | −2147.15 | −0.61 |
Swamp shrub | 12,203.42 | 11,126.00 | 1077.42 | 12,929.00 | 1.39 |
Dryland agriculture | 731.42 | 123.60 | 607.82 | 7293.80 | 50.73 |
Shrub-mixed dryland | 2570.88 | 476.09 | 2094.78 | 25,137.40 | 57.84 |
Paddy field | 3161.55 | 280.48 | 2881.08 | 34,572.90 | 316.26 |
Fishpond | 37.35 | 30.71 | 6.64 | 79.67 | - |
Airport | 1.38 | 0.02 | 1.36 | 16.30 | 10.27 |
Transmigration area | 816.87 | 1738.78 | −921.92 | −11,063.00 | −30.20 |
Swamp | 14,529.00 | 10,932.08 | 3596.92 | 43,163.00 | 10.94 |
District | 1990 | 2019 |
---|---|---|
Animha | 16,975.06 ± 12,669.66 (125.05, 36,055.10) | 16,983.27 ± 13,440.54 (437.21, 43,225.50) |
Elikobel | 18,216.17 ± 33,037.63 (0.00, 96,199.60) | 17,495.36 ± 34,366.44 (0.00, 96,199.60) |
Ilwayab | 21,715.66 ± 27,109.94 (0,00, 80,960.40) | 21,900.72 ± 21,947.41 (0.00, 80,960.40) |
Jagebob | 15,381.23 ± 21,832.78 (841.02, 6,459.20) | 15,082.23 ± 23,852.07 (841.02, 64,359.20) |
Kurik | 8312.54 ± 7576.85 (482.92, 20,296.30) | 7971.55 ± 6519.25 (482.92, 20,296.30) |
Kaptel | 27,868.15 ± 22,683.46 (2305.88, 63,204.40) | 27,699.84 ± 20,332.62 (5649.91, 63,317.30) |
Kimaam | 45,414.98 ± 63,137.85 (434.43, 181,539.00) | 45,413,29 ± 64,595.09 (20.49, 1,9042.00) |
Malind | 4975.18 ± 3897.71 (0.00, 10,343.10) | 4883.73 ± 4361.10 (0.00, 11,261.90) |
Merauke | 15,106.11 ± 22,450.10 (0.00, 60,288.60) | 15,126.20 ± 18,966.08 (0.00, 60,228.60) |
Muting | 39,547.46 ± 46,345.29 (3699.06, 118,800.00) | 39,489.52 ± 41,776.44 (3954.98, 112,000.00) |
Naukenjerai | 10,682.42 ± 16,181.12 (0.00, 46,611.40) | 9737.45 ± 10,263.51 (0.00, 50,872.70) |
Ngguti | 40,029 ± 24,706.78 (11,205.70, 70,419.90) | 38,816.99 ± 28,004.91 (11,293.40, 89,504.20) |
Okaba | 17,481.54 ± 32,317.97 (37.903, 94,925.10) | 18,900.30 ± 25,688,46 (505.92, 76,309.70) |
Semangga | 2702.08 ± 3717.96 (0.00, 10,013.90) | 2702.08 ± 3978.13 (0.00, 11,292.90) |
Sota | 31,005.28 ± 35,952.15 (1608.15, 110,369.00) | 30,931.49 ± 29,605.80 (6158.29, 99,919.30) |
Tanah Miring | 16,414.01 ± 9013.24 (4923.28, 28,562.60) | 16,359.38 ± 11,134.00 (347.94, 30,763.80) |
Tabonji | 33,038.64 ± 40,211.73 (0.00, 111,643.00) | 33,030.82 ± 42,503.87 (0.00, 120,527.00) |
Tubang | 26,192.51 ± 108,655.74 (1027.90, 73,437.70) | 32,655.19 ± 42,503.87 (8534.63, 89,472.00) |
Ulilin | 56,469.20 ± 108,655.74 (1409.11, 315,111.00) | 56,017.52 ± 103,832.79 (742.51, 299,073.00) |
Waan | 60,482.52 ± 60,071.43 (0.00, 165,196.00) | 61,382.05 ± 64,152.86 (742.51, 29,9073.00) |
LC | 1990 | 2019 | p-Value |
---|---|---|---|
Primary dryland | 34,736.82 ± 71,532.46 (0.00, 315,111.00) | 27,686.42 ± 67,227.85 (0, 299,073.00) | 0.015 |
Secondary dryland | 31,902.33 ± 38,007.26 (1.02, 118,800.00) | 33,604.22 ± 39,934.11 (0, 112,000.00) | 0.313 |
Primary swamp forest | 17,126.28 ± 23,169.16 (1276.23, 107,615) | 10,271.99 ± 8519.85 (531.72, 24,711.10) | 0.107 |
Secondary swamp forest | 26,555.19 ± 24,072.41 (4668.14, 94,925.10) | 18,590.47 ± 23,439.27 (949.07, 105.92) | 0.152 |
Bush/shrub | 3597.31 ± 6055.62 (0, 24,048.80) | 8923.07 ± 16,655.05 (0, 63,317.30) | 0.081 |
Grassland | 23,585.31 ± 36,748.43 (0, 111.643.00) | 35,202.67 ± 42,540.96 (0, 152,745.00) | 0.002 |
Swamp shrub | 46,503 ± 52,913.31 (51.08, 181,539.00) | 45,045.15 ± 50,975.60 (51.08, 190.427) | 0.723 |
Swamp | 19,197.62 ± 16,473.24 (79.92, 62,207.50) | 25,707.58 ± 17,481.00 (34.41, 68,235.40) | 0.007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letsoin, S.M.A.; Herak, D.; Rahmawan, F.; Purwestri, R.C. Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery. Sustainability 2020, 12, 6623. https://doi.org/10.3390/su12166623
Letsoin SMA, Herak D, Rahmawan F, Purwestri RC. Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery. Sustainability. 2020; 12(16):6623. https://doi.org/10.3390/su12166623
Chicago/Turabian StyleLetsoin, Sri Murniani Angelina, David Herak, Fajar Rahmawan, and Ratna Chrismiari Purwestri. 2020. "Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery" Sustainability 12, no. 16: 6623. https://doi.org/10.3390/su12166623
APA StyleLetsoin, S. M. A., Herak, D., Rahmawan, F., & Purwestri, R. C. (2020). Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery. Sustainability, 12(16), 6623. https://doi.org/10.3390/su12166623