Impact and Acting Path of Carbon Emission Trading on Carbon Emission Intensity of Construction Land: Evidence from Pilot Areas in China
Abstract
:1. Introduction
2. Research Basis
2.1. Development and Current Status of China’s Carbon Emission Trading
2.2. Mechanism Underlying the Effect of Trading on Carbon Emissions
3. Methodology and Data
3.1. Methodology
3.1.1. Difference-in-Difference Model
3.1.2. Quantile Regression Model
3.1.3. STIRPAT Model
3.2. Variable Selection and Measurement
3.3. Data Sources
4. DID Testing and Results
4.1. DID Estimation Results
4.2. Parallel Trend Test
4.3. Robustness Test
5. Impact Mechanism and Acting Path of Carbon Emission Trading on CEICL
5.1. Direct Acting Path of Carbon Emission Trading on CEICL
5.2. Indirect Acting Path of Carbon Emission Trading on CEICL
6. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Xie, P.; Li, C.; Luo, Z.; Zhao, D. The Key elements analysis from the mitigation effectiveness assessment of Chinese pilots carbon emission trading system. China Popul. Resour. Environ. 2018, 28, 29–37. [Google Scholar]
- Li, Y.-N.; Cai, M.; Wu, K.; Wei, J. Decoupling analysis of carbon emission from construction land in Shanghai. J. Clean. Prod. 2019, 210, 25–34. [Google Scholar] [CrossRef]
- Yang, Q. Land use change and carbon cycle. China Land Sci. 2010, 24, 7–12. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, H. A review of China’s carbon trading market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Yi, L.; Li, C.; Yang, L.; Liu, J. Comparative study on the development degree of China’s 7 pilot carbon markets. China Popul. Resour. Environ. 2018, 28, 134–140. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, W. Recognition and analysis of potential risks in China’s carbon emission trading markets. Adv. Clim. Chang. Res. 2019, 10, 30–46. [Google Scholar] [CrossRef]
- Kong, Y.; Zhao, T.; Yuan, R.; Chen, C. Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles. J. Clean. Prod. 2019, 211, 222–232. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, M.; Song, Y. Exploring China’s carbon emissions peak for different carbon tax scenarios. Energy Policy 2019, 129, 1245–1252. [Google Scholar] [CrossRef]
- Wang, J.; Gu, F.; Liu, Y.; Fan, Y.; Guo, J. Bidirectional interactions between trading behaviors and carbon prices in European Union emission trading scheme. J. Clean. Prod. 2019, 224, 435–443. [Google Scholar] [CrossRef]
- Dutta, A. Impact of carbon emission trading on the European Union biodiesel feedstock market. Biomass Bioenergy 2019, 128, 105328. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Lu, C. The impact on electric power industry under the implementation of national carbon trading market in china: A dynamic CGE analysis. J. Clean. Prod. 2018, 200, 511–523. [Google Scholar] [CrossRef]
- Dong, F.; Dai, Y.; Zhang, S.; Zhang, X.; Long, R. Can a carbon emission trading scheme generate the porter effect? Evidence from pilot areas in China. Sci. Total Environ. 2019, 653, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, D.; Li, S.; Zhou, N.; Xiong, J. Has China’s pilot emissions trading scheme influenced the carbon intensity of output? Int. J. Environ. Res. Public Health 2019, 16, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 122383. [Google Scholar] [CrossRef]
- Ren, Y.; Fu, J. Research on the effect of carbon emissions trading on emission reduction and green development. China Popul. Resour. Environ. 2019, 29, 11–20. [Google Scholar]
- Huang, S. Carbon Emission Trading and Industrial Structure and Economic Growth. Ph.D. Thesis, Shandong University, Shandong, China, 2016. [Google Scholar]
- Porter, M.E.; van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Ashenfelter, O.; Card, D. Using the longitudinal structure of earnings to estimate the effect of training programs. Rev. Econ. Stat. 1985, 67, 648–660. [Google Scholar] [CrossRef]
- Clò, S.; Fumagalli, E. The effect of price regulation on energy imbalances: A difference in differences design. Energy Econ. 2019, 81, 754–764. [Google Scholar] [CrossRef]
- Wan, Z.; Zhou, X.; Zhang, Q.; Chen, J. Do ship emission control areas in China reduce sulfur dioxide concentrations in local air? A study on causal effect using the difference-in-difference model. Mar. Pollut. Bull. 2019, 149, 110506. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, P.; Pan, Y. Does China’s carbon emission trading policy have an employment double dividend and a Porter effect? Energy Policy 2020, 142, 111492. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, F.; Wang, X. Impact of low-carbon pilot policy on the performance of urban carbon emissions and its mechanism. Resour. Sci. 2019, 41, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Bassets, G. Regression quintiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, T. Identifying major influencing factors of CO2 emissions in China: Regional disparities analysis based on STIRPAT model from 1996 to 2015. Atmos. Environ. 2019, 207, 136–147. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Huang, X.; Li, Y. Effects of carbon emissions and their spatio-temporal patterns in jiangsu province from 1996 to 2007. Resour. Sci. 2010, 32, 768–775. [Google Scholar]
- Zhang, W.; Xu, H. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3. [Google Scholar]
- Zhou, B.; Zhang, C.; Song, H.; Wang, Q. How does emission trading reduce China’s carbon intensity? An exploration using a decomposition and difference-in-differences approach. Sci. Total Environ. 2019, 676, 514–523. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar] [CrossRef]
Variables | Before Pilot (2007–2010) | After Pilot (2011–2017) | Ratio Change | ||||
---|---|---|---|---|---|---|---|
Treatment | Control | Ratio | Treatment | Control | Ratio | ||
(a) | (b) | (c) = (a)/(b) | (d) | (e) | (f) = (d)/(e) | (g) = (f)−(c) | |
lnCEICL | 1.437 | 2.070 | 0.694 | 1.368 | 2.119 | 0.646 | −0.049 |
lnPOP | 8.016 | 8.190 | 0.979 | 8.118 | 8.218 | 0.988 | 0.009 |
lnUR | 4.200 | 3.791 | 1.108 | 4.280 | 3.946 | 1.085 | −0.023 |
lnIS | 3.771 | 3.881 | 0.972 | 3.662 | 3.821 | 0.958 | −0.013 |
lnPGDP | 10.570 | 9.910 | 1.067 | 11.012 | 10.444 | 1.054 | −0.012 |
lnEI | 0.614 | 0.845 | 0.727 | 0.466 | 0.705 | 0.661 | −0.066 |
Variables | Model (1) | Model (2) | Model (3) | Model (4) |
---|---|---|---|---|
did | −0.1179 *** | −0.1179 *** | −0.1075 *** | −0.0997 *** |
(−3.49) | (−3.79) | (−3.37) | (−3.06) | |
time | 0.0489 *** | −0.0290 | 0.1260 *** | 0.2574 ** |
(2.94) | (−0.67) | (6.35) | (2.19) | |
treated | −0.6222 *** | −0.6222 *** | −0.4253 *** | −0.4640 *** |
(−14.82) | (−12.89) | (−3.01) | (−3.21) | |
lnPOP | 0.0188 | −0.2661 | ||
(0.08) | (−0.94) | |||
lnUR | −0.6934 *** | −0.5803 *** | ||
(−3.39) | (−2.80) | |||
lnIS | 0.0985 | −0.0301 | ||
(1.34) | (−0.35) | |||
lnPGDP | 0.4906 *** | 0.3224 *** | ||
(5.37) | (3.16) | |||
lnEI | 1.6167 *** | 1.6269 *** | ||
(9.47) | (9.02) | |||
cons | 1.7053 *** | 1.6995 *** | −2.2423 | 1.7566 |
(110.48) | (58.03) | (−1.10) | (0.61) | |
Year fixed effect | NO | YES | NO | YES |
Province fixed effect | YES | YES | YES | YES |
N | 330 | 330 | 330 | 330 |
F | 358.0275 | 355.4447 | 359.3544 | 367.8947 |
R-squared | 0.9456 | 0.9577 | 0.9672 | 0.9702 |
p | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variables | 2011–2013 | 2011–2014 | 2011–2015 | |||
---|---|---|---|---|---|---|
Model (5) | Model (6) | Model (7) | Model (8) | Model (9) | Model (10) | |
did | −0.0960 *** | −0.0682 ** | −0.1139 *** | −0.0922 *** | −0.1137 *** | −0.0961 *** |
(−2.95) | (−2.02) | (−3.68) | (−2.72) | (−3.94) | (−2.91) | |
time | 0.0942 *** | 0.0350 | 0.0538 * | 0.0025 | −0.0001 | 0.0115 |
(3.46) | (0.35) | (1.75) | (0.02) | (−0.00) | (0.11) | |
treated | −0.6531 *** | −0.6292 *** | −0.6559 *** | −0.5760 *** | −0.6592 *** | −0.5818 *** |
(−23.53) | (−3.88) | (−25.14) | (−3.70) | (−25.18) | (−4.02) | |
lnPOP | 0.2525 | 0.2566 | 0.0893 | |||
(0.72) | (0.83) | (0.32) | ||||
lnUR | −0.3282 | −0.4265 ** | −0.4825 *** | |||
(−1.50) | (−2.14) | (−2.69) | ||||
lnIS | −0.1071 | −0.0588 | −0.0447 | |||
(−0.69) | (−0.45) | (−0.42) | ||||
lnPGDP | 0.6073 *** | 0.5902 *** | 0.4954 *** | |||
(4.49) | (4.66) | (3.95) | ||||
lnEI | 1.6308 *** | 1.5588 *** | 1.3984 *** | |||
(6.19) | (7.82) | (7.74) | ||||
cons | 1.6697 *** | −6.0309 | 1.6732 *** | −5.6288 * | 1.6815 *** | −3.0135 |
(86.54) | (−1.58) | (77.24) | (−1.74) | (71.04) | (−1.04) | |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Province fixed effect | YES | YES | YES | YES | YES | YES |
N | 210 | 210 | 240 | 240 | 270 | 270 |
F | 881.6003 | 555.5359 | 811.5524 | 563.9221 | 701.6984 | 598.6219 |
R-squared | 0.9707 | 0.9774 | 0.9691 | 0.9771 | 0.9684 | 0.9760 |
p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variables | Model (11) | Model (12) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | 0.9 | 0.1 | 0.25 | 0.5 | 0.75 | 0.9 | |
lnCTV | −0.0231 *** | −0.0206 ** | −0.0120 * | −0.0209 * | −0.0196 ** | 0.0188 | 0.534 | 0.147 | 0.0382 | 0.00764 |
(0.00608) | (0.0103) | (0.00649) | (0.0117) | (0.00904) | (0.212) | (0.381) | (0.228) | (0.394) | (0.301) | |
lnCTA | 0.00911 | 0.00339 | 0.00699 | 0.0230 | 0.0279 * | 0.000970 | 0.00372 | 0.00262 | 0.0193 | 0.0309 ** |
(0.0107) | (0.0181) | (0.0114) | (0.0205) | (0.0159) | (0.0110) | (0.0197) | (0.0118) | (0.0204) | (0.0156) | |
lnPOP | −0.779 | −0.768 | −0.503 | 0.278 | 0.337 | −0.0338 | 0.250 | −0.311 | 0.323 | 0.101 |
(0.474) | (0.801) | (0.506) | (0.910) | (0.705) | (0.509) | (0.916) | (0.548) | (0.948) | (0.723) | |
lnUR | −1.299 *** | −1.115 ** | −0.826 *** | −0.664 | −0.298 | −1.406 *** | −0.833 | −0.863 ** | −0.877 | −0.662 |
(0.290) | (0.489) | (0.309) | (0.556) | (0.431) | (0.322) | (0.579) | (0.346) | (0.599) | (0.457) | |
lnIS | −0.0749 | −0.0693 | −0.116 | −0.120 | −0.173 | −0.0625 | −0.0248 | −0.0885 | −0.100 | −0.0817 |
(0.0914) | (0.154) | (0.0976) | (0.175) | (0.136) | (0.0905) | (0.163) | (0.0974) | (0.169) | (0.129) | |
lnPGDP | 0.361 *** | 0.341 * | 0.279 ** | 0.236 | 0.257 | 0.289 ** | 0.191 | 0.298 ** | 0.338 | 0.622 *** |
(0.113) | (0.190) | (0.120) | (0.216) | (0.168) | (0.115) | (0.206) | (0.123) | (0.213) | (0.163) | |
lnEI | 0.992 *** | 1.121 *** | 1.285 *** | 1.360 *** | 1.755 *** | 0.828 *** | 1.092 *** | 1.322 *** | 1.427 *** | 2.251 *** |
(0.212) | (0.358) | (0.226) | (0.406) | (0.315) | (0.208) | (0.374) | (0.224) | (0.387) | (0.296) | |
lnCTV×lnIS | −0.0110 | −0.0242 | −0.0358 * | −0.0596 * | −0.0884 *** | |||||
(0.0190) | (0.0342) | (0.0205) | (0.0354) | (0.0270) | ||||||
lnCTV×lnPGDP | −0.00172 | −0.0398 | −0.00776 | 0.00407 | 0.0152 | |||||
(0.0170) | (0.0306) | (0.0183) | (0.0317) | (0.0242) | ||||||
lnCTV×lnEI | 0.0393 | −0.0688 | 0.137 | 0.269 * | 0.310 ** | |||||
(0.0859) | (0.155) | (0.0925) | (0.160) | (0.122) | ||||||
Constant | 8.603 ** | 7.831 | 5.286 | −1.009 | −2.926 | 4.124 | 0.193 | 3.646 | −1.716 | −4.287 |
(3.314) | (5.601) | (3.540) | (6.364) | (4.934) | (3.473) | (6.251) | (3.736) | (6.466) | (4.933) | |
N | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Dong, J.; Song, Y. Impact and Acting Path of Carbon Emission Trading on Carbon Emission Intensity of Construction Land: Evidence from Pilot Areas in China. Sustainability 2020, 12, 7843. https://doi.org/10.3390/su12197843
Li L, Dong J, Song Y. Impact and Acting Path of Carbon Emission Trading on Carbon Emission Intensity of Construction Land: Evidence from Pilot Areas in China. Sustainability. 2020; 12(19):7843. https://doi.org/10.3390/su12197843
Chicago/Turabian StyleLi, Lu, Jie Dong, and Yan Song. 2020. "Impact and Acting Path of Carbon Emission Trading on Carbon Emission Intensity of Construction Land: Evidence from Pilot Areas in China" Sustainability 12, no. 19: 7843. https://doi.org/10.3390/su12197843
APA StyleLi, L., Dong, J., & Song, Y. (2020). Impact and Acting Path of Carbon Emission Trading on Carbon Emission Intensity of Construction Land: Evidence from Pilot Areas in China. Sustainability, 12(19), 7843. https://doi.org/10.3390/su12197843