Study on the Similarity of the Parameters of Biomass and Solid Waste Fuel Combustion for the Needs of Thermal Power Engineering
Abstract
:1. Introduction
2. Materials
- The following renewable fuels were tested to show the similarity of combustion parameters:
- energetic willow—originated from typical energy crops, the grain size of energetic willow is below 20 mm;
- sewage sludge—originated from a mechanical–biological municipal sewage treatment plant, the tested sludge was biologically stabilized as a result of fermentation, dehydrated on belt presses, subjected to hygienization with burnt lime, and the grain size of sewage sludge was below 5 mm;
- RDF fuel—originated from an enterprise specializing in the reception and management of waste, fuel obtained from processing municipal waste (composition: paper 10%, plastics 80% and textiles 10%), grain size of RDF fuel below 40 mm;
- mixture—energetic willow (80% mass content) and RDF fuel (20% mass content);
- mixture—sewage sludge (75% mass content) and RDF fuel (mass content 25%).
3. Methods of Testing the Similarity of the Combustion Process
3.1. Diagram of Van Krevelen
3.2. Thermogravimetric Analysis
3.3. Indicators for the Quantitative Assessment of the Combustion Process
- Δmfuel—the rate of fuel reduction (kg/s),
- AR—area of the grate (m2).
4. Results and Discussion
- using the Van Krevelen diagram for a more effective comparison of the fuel characteristics of analyzed renewable and alternative fuels with coal;
- tests on a microscale, i.e., thermogravimetric analysis, to identify the basic features of the TG/DTG combustion kinetics;
- to characterize the usefulness of replacing coal with the tested substances and their mixtures in the grate furnaces by comparing the thermal and mass load capacity of the grates and testing the indicators of quantitative assessments of combustion.
4.1. Using the Van Krevelen Diagram for a More Effective Comparison of Fuel Characteristics
4.2. Thermogravimetry Studies to Identify the Basic Features of Combustion Kinetics
4.3. Recommendations on Replacing Coal with Alternative and Renewable Fuels and Their Mixtures in the Existing Grate Furnaces of Boilers in Thermal Power Engineering
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
uFR | reaction front rate, m/s |
xFR | location of reaction front, m |
t | time of combustion, s |
SZ | ignition rate, kg/(m2s) |
ρn | bulk density, kg/m3 |
SUM | the rate of mass loss, kg/(m2s) |
Ar | grate area, m2 |
Δmfuel | the mass loss over time, kg/s |
OCR | rate heat release rate, kW/m2 |
Wd | calorific value of the fuel, kJ/kg |
OMR | mechanical load of grate, kg/m2h |
x | position of the waste on the grate, m |
mp | the mass of fuel, kg |
References
- EU. Dyrektywa Parlamentu Europejskiego i Rady (UE) 2018/2001 z dnia 11 Grudnia 2018 r. w Sprawie Promowania Stosowania Energii ze Źródeł Odnawialnych; EU: Brussels, Belgium, 2018. [Google Scholar]
- Rogowska, D. Wykorzystanie OZE w energetyce a zrównoważony rozwój. Nafta-Gaz 2017, 8, 616–623. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuşkaya, S. Can biomass energy be an efficient policy tool for sustainable development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Kotlicki, T.; Buchta, J. Co-firing of waste in power industry-analysis of legal conditions in Poland. J. Power Technol. 2011, 91, 165–170. [Google Scholar]
- Alwaeli, M. Recycling of packaging waste in Poland. Waste Manag. 2009, 29, 3054–3055. [Google Scholar] [CrossRef]
- Alwaeli, M. An economic analysis of joined costs and beneficial effects of waste recycling. Environ. Prot. Eng. 2011, 37, 91–103. [Google Scholar]
- Kicińska, A.; Gucwa, J.; Kosa-Burda, B. Evaluating potential for using municipal sewage sludge in the rehabilitation of ground degraded by the sodium processing industry. Bull. Environ. Contam. Toxicol. 2019, 102, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Gaska, K.; Generowicz, A.; Lobur, M.; Jaworski, N.; Ciuła, J.; Vovk, M. Advanced algorithmic model for poly-optimization of biomass fuel production from separate combustible fractions of municipal wastes as a progress in improving energy efficiency of waste utilization. In Proceedings of the 2nd International Conference on Renewable Energy and Environment Engineering (REEE 2019), Munich, Germany, 19–22 August 2019; Caetano, N., Ed.; EDP Sciences: Les Ulis, France, 2019; Volume 122, p. 01004. [Google Scholar] [CrossRef]
- Kicińska, A. Chemical and mineral composition of fly ashes from home furnaces, and health and environmental risk related to their presence in the environment. Chemosphere 2019, 215, 574–585. [Google Scholar] [CrossRef]
- Krawczyk, P.; Szczygieł, J. Analiza uwarunkowań stosowania paliwa alternatywnego do wytwarzania energii elektrycznej i ciepła w warunkach przedsiębiorstwa ciepłowniczego (Refusederivedfuel as a fuel for chp plant in a heating plant conditions). Rynek Energii 2013, 6, 91–96. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lewandowski, M. Designing the Business Models for Circular Economy—Towards the Conceptual Framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- USTAWA, OOZE. Ustawa z dnia 20 lutego 2015 r. o odnawialnych źródłach energii. Dz.U. 2015, 478, 1–230. [Google Scholar]
- Energetyczne, P. Ustawa z dnia 10 kwietnia 1997 r.—Prawo energetyczne. Dz.U. 1997, 54, 348. [Google Scholar]
- ISAP. Rozporządzenie Ministra Rozwoju z dnia 21 stycznia 2016 r. w sprawie wymagań dotyczących prowadzenia procesu termicznego przekształcania odpadów oraz sposobów postępowania z odpadami powstałymi w wyniku tego procesu. Dz.U. 2016, 108, 1–3. [Google Scholar]
- Lin, H.; Ma, X. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator. Waste Manag. 2012, 32, 561–567. [Google Scholar] [CrossRef]
- Yang, Y.B.; Ryu, C.; Goodfellow, J.; NasserzadehSharifi, V.; Swithenbank, J. Modelling waste combustion in grate furnaces. Process. Safety Environ. Prot. 2004, 82, 208–222. [Google Scholar] [CrossRef]
- Bleckwehl, S.; Riegel, M.; Kolb, T.; Seifert, H. Kennzahlen zur Quantitativen Beschreibung des Abbrandes von Ersatzbrennstoffen; Herstellung und Verwertung, Thome-Kozmiensky, K.J., Beckmann, M., Eds.; Berliner Abfallwirtschaftskonf: Berlin, Germany, 2005; pp. 127–141. [Google Scholar]
- Bleckwehl, S.; Kolb, T.; Schröder, E.; Vortmann, C. Measurements and modelling of solid fuel combustion in fixed bed reactors. In Proceedings of the 30th International Symposium on Combustion, Chicago, IL, USA, 25–30 July 2004; pp. 25–30. [Google Scholar]
- Polesek-Karczewska, S.; Turzyński, T.; Kardaś, D.; Heda, Ł. Front velocity in the combustion of blends of poultry litter with straw. Fuel Process. Technol. 2018, 176, 301–315. [Google Scholar] [CrossRef]
- Kluska, J.; Turzyński, T.; Kardaś, D. Experimental tests of co-combustion of pelletized leather tannery wastes and hardwood pellets. Waste Manag. 2018, 79, 22–29. [Google Scholar] [CrossRef]
- Saeed, M.A.; Medina, C.H.; Andrews, G.E.; Phylaktou, H.N.; Slatter, D.; Gibbs, B.M. Agricultural waste pulverised biomass: MEC and flame speeds. J. Loss Prev. Process. Ind. 2015, 36, 308–317. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Slatter, D.J.; Saeed, M.A.; Phylaktou, H.N.; Andrews, G.E.; Garcia-Torrent, J. Ignition sensitivity of solid fuel mixtures. Fuel 2018, 223, 451–461. [Google Scholar] [CrossRef]
- Kubica, K.; Ściążko, M.; Raińczak, J. Współspalanie biomasy z węglem. Polityka Energetyczna 2003, 6, 297–307. [Google Scholar]
- Golec, T. Współspalanie biomasy w kotłach energetycznych. Energetyka 2004, 7–8, 437–445. [Google Scholar]
- Haustein, E.; Grabarczyk, L. Wpływ współspalania biomasy z węglem kamiennym na wybrane właściwości fizyczno-chemiczne popiołu lotnego. Polityka Energetyczna 2012, 15, 87–101. [Google Scholar]
- Czop, M.; Kajda-Szcześniak, M. Tests of physicochemical properties of fuel and ballast fractions from waste processing installations. ACEE Archit. Civ. Eng. Environ. 2016, 9, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Magdziarz, A.; Wilk, M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Convers. Manag. 2013, 75, 425–430. [Google Scholar] [CrossRef]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Kok, M.V.; Özgür, E. Thermal analysis and kinetics of biomass samples. Fuel Process. Technol. 2013, 106, 739–743. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Graphicalstatistical method for the study of structure and reaction processes of coal. Fuel 1950, 29, 269. [Google Scholar]
- Meunieur, J. Vergasung Fester Brennstoffe und die Oxidative Umwandlung von Kohlenwasserstoffen; Chemie: Weinheim, Germany, 1962. [Google Scholar]
- Ostojski, A. Sewage sludge classification based on elementary analysis. In Nowe metody redukcji emisji zanieczyszczeń i wykorzystnia produktów ubocznych oczyszczalni ścieków.—T. 4 H. Obarska-Pempkowiak; Pawłowski, L., Ed.; Komitet Inzynierii Środowiska PAN: Lublin, Poland, 2009; pp. 41–51. [Google Scholar]
- Kempa, E. Systematyka osadów ściekowych. In Materiały Międzynarodowej Konferencji Naukowo Technicznej ”Osady Ściekowe: Odpad czy Surowiec?”; Bień, J., Ed.; Politechniki Wrocławskiej: Częstochowa, Poland, 1997; pp. 7–35. [Google Scholar]
- Research Report No: ZMT/15/2019; ICHPW: Zabrze, Poland, 2019.
- Jaworski, T. Modelling of the Process of Mass Transfer on the Grates of Solid Waste Thermal Processing Equipment; Monograph Publisher Gliwice: Politechnika Śląska, Poland, 2012; pp. 132–142. [Google Scholar]
- Kajda-Szcześniak, M.; Jaworski, T. Characteristics of the combustion process of woodwork waste in the installation of thermal treatment of municipal solid waste (tpok). Wood Res. 2018, 63, 15–23. [Google Scholar]
- Red Ściążko, M. Kinetyka Reakcji Heterogenicznych w Procesach Konwersji Paliw Stałych; WIChPW: Zabrze, Poland, 2015. [Google Scholar]
- Król, D.; Poskrobko, S. Waste and fuels from waste Part, I. Analysis of thermal decomposition. J. Therm. Anal. Calorim. 2012, 109, 619–628. [Google Scholar] [CrossRef]
Parameter | Energetic Willow | Sewage Sludge | RDF Fuel | Energetic Willow 80% + RDF 20% | Sewage Sludge 75% + RDF 25% | Hard Coal [25,26,27] |
---|---|---|---|---|---|---|
Total moisture, % mass | 7.11 ± 0.04 | 79.58 ± 0.07 | 26.23 ± 0.06 | 10.93 ± 0.04 | 66.24 ± 0.07 | 19 |
Combustible fraction, % dry mass | 98.87 ± 0.16 | 61.85 ± 0.04 | 87.93 ± 0.28 | 96.68 ± 0.19 | 68.37 ± 0.1 | 90–95 |
Ash, % dry mass | 1.13 ± 0.16 | 38.15 ± 0.04 | 12.07 ± 0.28 | 3.32 ± 0.19 | 31.61 ± 0.1 | 5–10 |
Volatile fraction, % dry mass | 81.98 ± 0.02 | 52.6 ± 0.43 | 85.65 ± 0.65 | 82.71 ± 0.15 | 60.86 ± 0.48 | 18.49 |
High Heating Value, kJ/kg | 19,414.86 ± 2 | 2856.55 ± 30 | 19,719.99 ± 24 | 19,475.89 ± 6 | 7072.41 ± 28 | 21–32 |
High Heating Value, kJ/kgdry mass | 20,900.92 ± 2 | 13,989.37 ± 30 | 26,731.73 ± 24 | 22,067.08 ± 6 | 1714.96 ± 28 | n.d. |
Low Heating Value, kJ/kgdry mass | 19,352.30 ± 2 | 13,123.12 ± 30 | 24,840.97 ± 24 | 20,450.03 ± 6 | 16,052.58 ± 28 | 22 |
Carbon, % dry mass | 53.38 ± 0.05 | 30.38 ± 0.04 | 56.44 ± 0.06 | 53.99 ± 0.05 | 36.90 ± 0.05 | 87.52 |
Hydrogen, % dry mass | 6.88 ± 0.05 | 3.85 ± 0.04 | 8.4 ± 0.06 | 7.18 ± 0.05 | 4.99 ± 0.05 | 4.26 |
Oxygen, % dry mass | 37.04 ± 0.04 | 21.15 ± 0.06 | 20.37 ± 0.05 | 33.70 ± 0.05 | 20.96 ± 0.06 | 1.55 |
Nitrogen, % dry mass | 1.24 ± 0.09 | 4.86 ± 0.16 | 1.53 ± 0.07 | 1.30 ± 0.09 | 4.03 ± 0.14 | 1.25 |
Sulphur, % dry mass | 0.24 ± 0.02 | 1.47 ± 0.02 | 0.84 ± 0.07 | 0.36 ± 0.03 | 1.31 ± 0.03 | 0.3–1.5 |
Chloride, % dry mass | 0.09 ± 0.01 | 0.14 ± 0.02 | 0.35 ± 0.01 | 0.14 ± 0.01 | 0.19 ± 0.02 | 0.04–0.4 |
Sample | Unit | Energetic Willow | Sewage Sludge | RDF Fuel | RDF Fuel | Energetic Willow + RDF in Mass Share: 0.8/0.2 | Sewage Sludge + RDF in Mass Share: 0.75/0.25 |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Process temp. T | °C | 850 | 850 | 850 | 850 | 850 | 850 |
Mass mp | kg | 0.55 | 1.77 | 0.172 | 0.105 | 0.39 | 0.50 |
Layer height h | m | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Combustion time t | s | 900 | 1140 | 600 | 600 | 600 | 1020 |
Fuel stream mp/t | kg/s | 0.0006 | 0.0015 | 0.00028 | 0.00017 | 0.00065 | 0.00049 |
λ | - | 2.5 | 2.2 | 2.0 | 2.9 | 3.5 | 3.3 |
Bulk density ρn | kg/m3 | 124 | 369 | 36 | 22 | 83 | 104 |
Rate of reaction front uFR | m/s | 0.00166 | 0.00099 | 0.00083 | 0.00055 | 0.00083 | 0.00044 |
Rate of ignition SZ | kg/m2 s | 0.2058 | 0.3689 | 0.02998 | 0.0212 | 0.06914 | 0.0462 |
Rate of mass decrement SUM | kg/m2 s | 0.03605 | 0.04934 | 0.0156 | 0.0104 | 0.03646 | 0.0214 |
Thermal load of the grate OCR | kW/m2 | 697 | 647 | 417 | 278 | 759 | 354 |
Mechanical load of the grate OMR | kg/m2 h | 91.6 | 232.9 | 43 | 26.25 | 97.5 | 73.53 |
SZ/SUM | - | 5.70 | 3.94 | 1.92 | 2.03 | 1.89 | 2.15 |
Type of Grate | Mechanical Load of Grate kg/m2 h | Thermal Load of Grate kW/m2 |
---|---|---|
Sliding grate | 80–120 | 600–800 |
Moving grate | 300–400 | 700–1000 |
Reciprocating grate (Martin) | 700–800 | 1500–2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, T.J.; Kajda-Szcześniak, M. Study on the Similarity of the Parameters of Biomass and Solid Waste Fuel Combustion for the Needs of Thermal Power Engineering. Sustainability 2020, 12, 7894. https://doi.org/10.3390/su12197894
Jaworski TJ, Kajda-Szcześniak M. Study on the Similarity of the Parameters of Biomass and Solid Waste Fuel Combustion for the Needs of Thermal Power Engineering. Sustainability. 2020; 12(19):7894. https://doi.org/10.3390/su12197894
Chicago/Turabian StyleJaworski, Tomasz J., and Małgorzata Kajda-Szcześniak. 2020. "Study on the Similarity of the Parameters of Biomass and Solid Waste Fuel Combustion for the Needs of Thermal Power Engineering" Sustainability 12, no. 19: 7894. https://doi.org/10.3390/su12197894
APA StyleJaworski, T. J., & Kajda-Szcześniak, M. (2020). Study on the Similarity of the Parameters of Biomass and Solid Waste Fuel Combustion for the Needs of Thermal Power Engineering. Sustainability, 12(19), 7894. https://doi.org/10.3390/su12197894