HDPE Geomembranes for Environmental Protection: Two Case Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Properties
2.3. Mechanical Properties
2.4. Stress Cracking (SC) and Oxidative Induction Time (OIT) Properties
2.5. Thermal Analysis Methodology
3. Results and Discussion
3.1. Physical Evaluations
3.2. Mechanical Evaluations
3.3. Stress Cracking (SC) and Oxidative Induction Time (OIT) Evaluations
3.4. Thermal Analysis Evaluations
3.4.1. Thermogravimetry (TG) and Differential Thermal Analysis (DTA)
3.4.2. Differential Scanning Calorimetry (DSC)
3.4.3. Dynamic Mechanical Analysis (DMA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rollin, A.R.; Rigo, J.M. Geomembranes—Identification and Performance Testing, 1st ed.; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Palmeira, E.M. Geossintéticos em Geotecnia e Meio Ambiente, 1st ed.; Oficina de Textos: São Paulo, Brazil, 2018. [Google Scholar]
- Koerner, R.M. Designing with Geosynthetics, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Scheirs, J. A Guide to Polymeric Geomembranes: A Practical Approach, 1st ed.; Wiley: London, UK, 2009. [Google Scholar]
- Vertematti, J.C. Manual Brasileiro de Geossintéticos, 2nd ed.; Blücher: São Paulo, Brazil, 2015. [Google Scholar]
- Rowe, R.K.; Sangam, H.P. Durability of HDPE Geomembranes. Geotext Geomembr. 2002, 20, 77–95. [Google Scholar] [CrossRef]
- Kay, D.; Blond, E.; Mlynarek, J. Geosynthetics durability: A polymer chemistry issue. In Proceedings of the 57th Canadian Geotechnical Conference, Quebec, QC, Canada, 24–26 October 2004. [Google Scholar]
- Rowe, R.K.; Abdelaal, F.B.; Brachman, R.W.I. Antioxidant depletion of HDPE geomembrane with sand protection layer. Geosynth. Int. 2013, 20, 73–89. [Google Scholar] [CrossRef]
- Koerner, G.R.; Hsuan, Y.G.; Koerner, R.M. The durability of geosynthetics. In Geosynthetics in Civil Engineering, 1st ed.; Sarsby, R.W., Ed.; Woodhead Published Limited: Cambridge, UK, 2007; pp. 36–65. [Google Scholar]
- Hsuan, Y.G.; Koerner, R.M. The single point-notched constant tension load test: A quality control test for assessing stress crack resistance. Geosynth. Int. 1995, 2, 831–843. [Google Scholar] [CrossRef]
- Hsuan, Y.G.; Koerner, R.M. Antioxidant depletion lifetime in high density polyethylene geomembranes. J. Geotech. Geoenviron. 1998, 124, 532–541. [Google Scholar] [CrossRef]
- Ewais, A.M.R.; Rowe, R.K.; Scheirs, J. Degradation behaviour of HDPE geomembranes with high and low initial high-pressure oxidative induction time. Geotext. Geomembr. 2014, 42, 111–126. [Google Scholar] [CrossRef]
- Lodi, P.C.; Bueno, B.S.; Vilar, O.M. The Effects of Weathering Exposure on the Physical, Mechanical, and Thermal Properties of High-density Polyethylene and Poly (Vinyl Chloride). Mater. Res. 2013, 16, 1331–1335. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.K.; Ewais, A.M.R. Ageing of exposed geomembranes at locations with different climatological conditions. Can. Geotech. J. 2015, 52, 326–343. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Rowe, R.K. Effect of HDPE geomembrane thickness on the depletion of antioxidants. In Proceedings of the 60th Canadian Geotechnical Conference and the 8th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 21–24 October 2007. [Google Scholar]
- Rowe, R.K.; Islam, M.Z.; Hsuan, Y.G. Leachate chemical composition effects on OIT depletion in an HDPE geomembrane. Geosynth. Int. 2008, 15, 136–151. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.K.; Rimal, S.; Sangam, H. Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotext. Geomembr. 2009, 27, 137–151. [Google Scholar] [CrossRef]
- Lodi, P.C.; Bueno, B.S. Thermo-gravimetric Analysis (TGA) after Different Exposures of High Density Polyethylene (HDPE) and Poly Vinyl Chloride (PVC) Geomembranes. Electron. J. Geotech. Eng. 2012, 17, 3339–3349. [Google Scholar]
- Ewais, A.M.R.; Rowe, R.K.; Rimal, S.; Sangam, H.P. 17-year elevated temperature study of HDPE geomembrane longevity in air, water and leachate. Geosynth. Int. 2018, 25, 525–544. [Google Scholar] [CrossRef]
- Reis, R.K.; Barroso, M.; Lopes, M.G. Evolução de cinco geomembranas expostas a condições climáticas em Portugal durante 12 anos. GEOTECNIA 2017, 141, 41–58. [Google Scholar] [CrossRef]
- Safari, E.; Rowe, R.K.; Markle, J. Antioxidants in an HDPE geomembrane used in a bottom liner and cover in a PCB containment landfill for 25 years. In Proceedings of the Pan Am CGS Geotechnical Conference, Toronto, ON, Canada, 2–6 October 2011. [Google Scholar]
- Abdelaal, F.B.; Rowe, R.K. Degradation of an HDPE geomembrane without HALS in chlorinated water. Geosynth. Int. 2019, 26, 354–370. [Google Scholar] [CrossRef]
- Abdelaal, F.B.; Morsy, M.S.; Rowe, R.K. Long-term performance of a HDPE geomembrane stabilized with HALS in chlorinated water. Geotext Geomembr. 2019, 47, 815–830. [Google Scholar] [CrossRef]
- Leite, A.F.R.; Ligeiro, L.P.M. Características, Tratamento e Potencial Utilização de Esgoto Produzido em Shopping Centers: Estudo de caso do Catarina Fashion Outlet. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Química Pura Laboratório de Análises Químicas. Relatório de Ensaios nº 49808/18. Giruá, Rio Grande do Sul, Brazil. 2018. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 5199 Standard Test Methods for Measuring the Nominal Thickness of Geosynthetics; ASTM: West Conshohocken, PA, USA, 2012; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 4218 Standard Test Method for Determination of Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique; ASTM: West Conshohocken, PA, USA, 2020; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 792 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement; ASTM: West Conshohocken, PA, USA, 2013; p. 6. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 1238 Standard Test Methods for Melt Flow Rates of Thermoplastics by Extrusion Plastometer; ASTM: West Conshohocken, PA, USA, 2013; p. 16. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 6693 Standard Test Methods for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes; ASTM: West Conshohocken, PA, USA, 2015; p. 5. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 1004 Standard Test Methods for Tear Resistance (Graves Tear) of Plastic Film and Sheeting; ASTM: West Conshohocken, PA, USA, 2013; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 5397 Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test; ASTM: West Conshohocken, PA, USA, 2020; p. 7. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D 5885 Standard Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential Scanning Calorimetry; ASTM: West Conshohocken, PA, USA, 2017; p. 5. [Google Scholar]
- Dias, D.S.; Crespi, M.S.; Ribeiro, C.A.; Kobelnik, M. Evaluation by thermogravimetry of the interaction of the poly(ethylene terephthalate) with oil-based paint. Eclét. Quím. 2015, 40, 77–85. [Google Scholar] [CrossRef]
- Dias, D.S.; Crespi, M.S.; Kobelnik, M.; Ribeiro, C.A. Calorimetric and SEM studies of polymeric blends of PHB-PET. J. Anal. Calorim. 2009, 97, 581–584. [Google Scholar] [CrossRef]
- Lima, J.S.; Kobelnik, M.; Ribeiro, C.A.; Capela, J.M.V.; Crespi, M.S. Kinetic study of crystallization of PHB in presence of hydroxy acids. J. Anal. Calorim. 2009, 97, 525–528. [Google Scholar] [CrossRef]
- GRI (Geosynthetic Research Institute). GRI—GM13 Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes; GRI: Folsom, PA, USA, 2019; p. 11. [Google Scholar]
- Telles, R.W.; Lubowitz, H.R.; Unger, S.L. Assessment of Environmental Stress Corrosion of Polyethylene Liners in Landfills and Impoundments, 1st ed.; U.S. EPA: Cincinnati, OH, USA, 1984.
- Mueller, W.; Jakob, I. Oxidative resistance of high density polyethylene geomembranes. Polym. Degrad. Stab. 2003, 79, 161–172. [Google Scholar] [CrossRef]
- Valentin, C.A.; Silva, J.L.; Kobelnik, M.; Ribeiro, C.A. Thermoanalytical and dynamic mechanical analysis of commercial geomembranes used for fluid retention of leaching in sanitary landfills. J. Anal. Calorim. 2018, 136, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Höhne, G.W.H.; Hemminger, W.F.; Flammersheim, H.J. Differential Scanning Calorimetry, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Gabbott, P. Principles and Applications of Thermal Analysis, 1st ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008. [Google Scholar]
- Menard, K.P. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Cassu, S.N.; Felisberti, M.I. Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas. Quim. Nova 2005, 28, 255–263. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Quinn, F.X. Thermal Analysis: Fundamentals and Applications to Polymer Science, 2nd ed.; John Wiley & Sons Ltd.: Baffins Lane Chichester, UK, 1999. [Google Scholar]
- Krongauz, V.V. Diffusion in polymers dependence on crosslink density. Eyring approach to mechanism. J. Anal. Calorim. 2010, 102, 435–445. [Google Scholar] [CrossRef]
- Suceska, M.; Liu, Z.Y.; Sanja Matecic Musanic, S.M.; Fiamengo, I. Numerical modelling of sample–furnace thermal lag in dynamic mechanical analyser. J. Anal. Calorim. 2010, 100, 337–345. [Google Scholar] [CrossRef]
Characteristic | Unit | Result |
---|---|---|
Fixed Suspension Solids | mg/L | 80 |
Volatile Suspended Solids | mg/L | 320 |
Total Suspended Solids | mg/L | 350 |
Fixed Dissolved Solids | mg/L | 400 |
Volatile Dissolved Solids | mg/L | 300 |
Total Dissolved Solids | mg/L | 700 |
Sedimentable Solids | mg/L | 15 |
Total solids | mg/L | 1100 |
pH | - | 6.5–7.5 |
BOD | mg/L | 100–400 |
Characteristic | Unit | Result |
---|---|---|
Total alkalinity | mg CaCO3/L | 6912 |
Calcium | mg/L | 366 |
Cadmium | mg/L | Not Detected |
Lead | mg/L | Not Detected |
Chloride | mg Cl-/L | 3502 |
Total Coliforms | NMP/100 mL | 8.3 |
Conductivity | μS/cm | 23,210 |
BOD | mg O2/L | 775 |
Iron | mg/L | 11.4 |
Magnesium | mg/L | 0.165 |
Mercury | mg/L | Not Detected |
Nickel | mg/L | 0.230 |
pH | - | 8.19 |
Mineral Oils and Greases | mg/L | Not Detected |
Sample | Thickness/(mm) | CBC/(%) | Density/(g/cm3) | MFI/(g/10 min) |
---|---|---|---|---|
LTE | 1.001 (±0.038) | 2.49 (±0.47) | 0.959 (±0.001) | 0.4555 (±0.0061) |
LCH | 2.075 (±0.036) | 2.36 (±0.11) | 0.946 (±0.002) | 0.5008 (±0.0072) |
Sample | Tens. Break Resist./(kN m−1) | Tens. Break Elong./(%) | Tear Resist./(N) |
---|---|---|---|
LTE | 27.12 (±1.30) | 679.33 (±27.53) | 170.13 (±2.05) |
LCH | 60.40 (±7.66) | 752.60 (±81.38) | 321.80 (±8.92) |
Sample | SC (NCTL-SP) (hours) | OIT-High-Pressure (min) |
---|---|---|
LTE | 30.89 (±12.31) | 180.0 (±1.41) |
LCH | 542.15 (±508.17) | 231.50 (±2.12) |
Sample | 5 °C min−1 | 10 °C min−1 | 20 °C min−1 | 30 °C min−1 |
---|---|---|---|---|
LCH Synthetic air | 248–369 °C | 259–406 °C | 264–352 °C | 264–358 °C |
5.33% | 4.64% | 3.47% | 2.95% | |
369–392 °C | 406–465 °C | 352–392 °C | 358–578 °C | |
29.15% | 89.52% | 8.68% | 91.89% | |
392–459 °C | 465–600 °C | 392–484 °C | 578–600 °C | |
55.77 °C | 4.85% | 82.48% | 2.72% | |
459–600 ºC | ---- | 484–600 °C | ---- | |
9.51% | ---- | 3.35% | ---- | |
Residue | Residue | Residue | Residue | |
0.24% | 0.99% | 2.95% | 2.44% | |
LTE Synthetic air | 238–363 °C | 241–364 °C | 249–362 °C | 262-372 °C |
7.89% | 8.40% | 6.33% | 6.01% | |
363–422 °C | 364–417 °C | 362–426 °C | 372–500 °C | |
44.09% | 48.08% | 49.29% | 90.57% | |
422–468 °C | 417–475 °C | 426–497 °C | 500–580 °C | |
42.77% | 38.92% | 39.65% | 1.34% | |
468–600 °C | 475–592 °C | 497–586 °C | ---- | |
3.77% | 3.46% | 2.85% | ---- | |
Residue | Residue | Residue | Residue | |
1.48% | 1.14% | 1.88% | 2.08% | |
LCH Carbonic air | 378–498 °C | 383–435 °C | 387–443 °C | 401–451 °C |
96.38% | 3.66% | 1.33% | 3.00% | |
---- | 435–508 °C | 443–523 °C | 451–530 °C | |
---- | 92.93% | 94.89% | 93.48% | |
Residue | Residue | Residue | Residue | |
3.62% | 3.41% | 3.78% | 3.52% | |
LTE Carbonic air | 376–496 °C | 381–507 °C | 405–518 °C | 410–525 °C |
94.04% | 94.28% | 94.97% | 96.15% | |
Residue | Residue | Residue | Residue | |
5.96% | 5.72% | 5.03% | 3.85% |
Purge Gas and Sample | Temperature Ranges for Kinetic Evaluation (DTG Curves) | Ea/kJ mol−1 | R |
---|---|---|---|
Synthetic air LTE | (5 °C) 243–281 °C (10 °C) 250–287 °C (20 °C) 258–294 °C (30 °C) 262–300 °C | 137.94 (± 0.15) | 0.99357 |
Carbonic gas LTE | (5 °C) 376–490 °C (10 °C) 386–503 °C (20 °C) 406–516 °C (30 °C) 418–525 °C | 237.83 (± 0.09) | 0.99634 |
Carbonic gas LCH | (5 °C) 390–492 °C (10 °C) 405–507 °C (20 °C) 425–524 °C (30 °C) 441–533 °C | 253.07 (± 0.04) | 0.99945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavoie, F.L.; Valentin, C.A.; Kobelnik, M.; Lins da Silva, J.; Lopes, M.d.L. HDPE Geomembranes for Environmental Protection: Two Case Studies. Sustainability 2020, 12, 8682. https://doi.org/10.3390/su12208682
Lavoie FL, Valentin CA, Kobelnik M, Lins da Silva J, Lopes MdL. HDPE Geomembranes for Environmental Protection: Two Case Studies. Sustainability. 2020; 12(20):8682. https://doi.org/10.3390/su12208682
Chicago/Turabian StyleLavoie, Fernando Luiz, Clever Aparecido Valentin, Marcelo Kobelnik, Jefferson Lins da Silva, and Maria de Lurdes Lopes. 2020. "HDPE Geomembranes for Environmental Protection: Two Case Studies" Sustainability 12, no. 20: 8682. https://doi.org/10.3390/su12208682
APA StyleLavoie, F. L., Valentin, C. A., Kobelnik, M., Lins da Silva, J., & Lopes, M. d. L. (2020). HDPE Geomembranes for Environmental Protection: Two Case Studies. Sustainability, 12(20), 8682. https://doi.org/10.3390/su12208682