N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil
Abstract
:1. Introduction
- To determine the effects of varying N rates of NBPT-coated urea (NCU) on the growth of maize.
- To determine the best optimal NBPT-coated urea (NCU) application rate for the yield of maize.
- To evaluate the effects of varying N rates of NBPT-coated urea (NCU) on nitrogen uptake and nitrogen use efficiency (NUE).
2. Materials and Methods
2.1. Geographical Location and Climatic Conditions
2.2. Soil Condition
2.3. Plant Material
2.4. Preparation of NBPT-Coated Urea (NCU)
2.5. Experimental Design and Treatment Application
2.6. Data Collection and Analysis
2.7. Statistical Analysis
3. Results
3.1. Effects of NCU on the Growth and Yield of Maize
3.2. Effects of NCU on Nitrogen Uptake and Nitrogen Use Efficiency (NUE)
4. Discussion
4.1. Effects of NCU on the Growth and Yield of Maize
4.2. Effects of NCU on Nitrogen Uptake and Nitrogen Use Efficiency (NUE)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IFA International Fertilizer Association. Fertilizer Outlook 2018–2022. In Proceedings of the IFA Annual Conference, Berlin, Germany, 19–20, June, 2018; IFA Report “Medium-Term Outlook for World Agriculture and Fertilizer Demand: 2017/18-2022/23. IFA International Fertilizer Association Services PITaA: Paris, France, 2018. [Google Scholar]
- Rosmarina, A.K.; Khanif, M.Y.; Hanafi, M.M.; Aminuddin, H. Laboratory evaluation of metal elements urease inhibitor and DMPP nitrification inhibitor on nitrogenous gas losses in selected rice soils. Water Air Soil Pollut. 2016, 227, 1–14. [Google Scholar]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.W.; Boyer, E.W.; Pabich, W.J.; Galloway, J.N. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 2002, 31, 88–96. [Google Scholar] [CrossRef]
- Dawar, K.; Zaman, M.; Rowarth, J.S.; Blennerhassett, J.D.; Turnbull, M.H. The impact of urease inhibitor on the bioavailability of nitrogen in urea and in comparison, with other nitrogen sources in ryegrass (Lolium perenne L.). Crop Pasture Sci. 2010, 61, 214–221. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Jiang, Y.; Chen, L.; Song, Y.; Wang, L.; Xie, J.; Ma, X. Fate of applied urea 15N in a soil maize system as affected by urease inhibitor and nitrification inhibitor. Plant Soil Environ. 2010, 56, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Latifah, O.; Osumanu, H.A.; Nik, M.A.M. Improving ammonium and nitrate release from urea using clinoptilolite zeolite and compost produced from agricultural wastes. Sci. World J. 2015, 22. [Google Scholar] [CrossRef]
- Zaman, M.; Blennerhassett, J.D. Can urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) improve urea efficiency: Effect of different application rate, timing and irrigation systems. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Blennerhassett, J.D.; Zaman, M.; Ramakrishnan, C. The potential for increasing nitrogen responses using Agrotain treated urea. Proc. N. Zealand Grassl. Assoc. 2006, 68, 297–301. [Google Scholar] [CrossRef]
- Khan, M.J.; Malik, A.; Zaman, M.; Khan, Q. Nitrogen use efficiency and yield of maize crop as affected by agrotain coated urea in arid calcareous soils. Soil Environ. 2014, 33, 1–6. [Google Scholar]
- Rodriguez, J. Effect of application times of urease inhibitor (Agrotain) on NH3 emissions from urine patches. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2014. [Google Scholar]
- Rawluk, C.D.L.; Grant, C.A.; Racz, G.J. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 2001, 81, 239–246. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar]
- Silva, D.R.G.; Pereira, A.F.; Dourado, R.L.; Silva, F.P.D.; Avila, F.W.; Faquin, V. Productivity and efficiency of nitrogen fertilization in maize under different levels of urea and NBPT treated urea. Cienc. E Agrotecnologia 2011, 35, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Li-Min, C.; Tong-Ke, Z.; Zhi-Zhuang, A.; Lian-Feng, D.; Shun-Jiang, L. Effect of urease inhibitor NBPT on the growth and quality of rape. In Proceedings of the World Congress of Soil Science, Soil Solutions for a Changing World 50, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Espindula, M.C.; Rocha, V.C.; Souza, M.A.; Campanharo, M.; Paula, G.S. Rates of urea with or without urease inhibitor for topdressing wheat. Chil. J. Agric. Res. 2013, 73, 160–167. [Google Scholar]
- Dawar, K.; Zaman, M.; Rowarth, J.S.; Turnbull, M.H. Applying urea with urease inhibitor (N-(n-butyl) thiophosphoric triamide) in fine particle application improves nitrogen uptake in ryegrass (Lolium perenne L.). Soil Sci. Plant Nutr. 2012, 58, 309–318. [Google Scholar] [CrossRef]
- Mathialagan, R.; Mansor, N.; Shamsuddin, M.R. Kinetic properties of soil urease in hibited by allicin and NBPT (N-(n-butyl) thiophosphoric triamide). AIP Conf. Proc. 2019. [Google Scholar] [CrossRef]
- Osumanu, A.H.; Hussain, A.H.; Ahmad, M.H. Ammonia volatilization and ammonium accumulation from urea mixed with zeolite and triple super phosphate. Acta Agric. Scand. 2008, 58, 182–186. [Google Scholar]
- Kiran, J.K.; Khanif, M.Y.; Amminuddin, H.; Anuar, A.R. Effects of controlled release urea on the yield and nitrogen nutrition of flooded rice. Commun. Soil Sci. Plant Anal. 2010, 41, 811–819. [Google Scholar] [CrossRef]
- Nasima, J.; Khanif, M.Y.; Hanafi, M.M.; Wan, M.Z.W.Y.; Dharejo, K.A. Maize response to biodegradable polymer and urease inhibitor coated urea. Int. J. Agric. Biol. 2010, 12, 773–776. [Google Scholar]
- Mahfuzah, N.A.; Khanif, M.Y.; Radziah, O. Efficiency of coated urea on nutrient uptake and maize production. Commun. Soil Sci. Plant Anal. 2018, 49, 1394–1400. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S.; Page, A.L.; Miller, R.H.; Keeney, D.R. Nitrogen-total. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1982; Volume 2, pp. 1149–1178. [Google Scholar]
- Bray, R.H.; Kurtz, L. TDetermination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Chapman, H.D. Cation-exchange capacity. Agron. J. 1965, 9, 891–901. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 643–698. [Google Scholar]
- Panda, M.M.; Mosier, A.R.; Mohanty, S.K.; Chakravorti, S.P.; Chalam, A.B.; Reddy, M.D. Nitrogen utilization by lowland rice as affected by fertilization with urea and green manure. Fertil. Res. 1995, 40, 215–223. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarin, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen nitrogen uptake. Field Crop. Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wachocho, N.A.; Laghari, G.M.; Laghari, A.H.; Bhabhan, G.M.; Taipur, K.H.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–218. [Google Scholar]
- Khanif, M.Y. From Soil to Table. Inaugural Lecture Series; Universiti Putra Malaysia: Selangor, Malaysia, 2008. [Google Scholar]
- Dawar, K.; Zaman, M.; Rowarthc, J.S.; Blennerhassett, J.D.; Turnbulla, M.H. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 2011, 144, 41–50. [Google Scholar] [CrossRef]
- Venterea, R.T.; Maharjan, B.; Dolan, M.S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emission in a corn cropping system. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, L.S.B. Urease inhibitor: A review. Indian J. Biotechnol. 2012, 11, 381–388. [Google Scholar]
- Khan, A.Z.; Ali, B.; Afzal, M.; Wahab, S.; Khalil, S.K.; Amin, N.; Ping, Q.; Qiaojing, T.; Zhou, W. Effects of sulfur and urease coated controlled release urea on dry matter yield, n uptake and grain quality of rice. J. Anim. Plant Sci. 2015, 25, 679–685. [Google Scholar]
- McClallen, M.W. Wheat, Rice and Corn Response to the Urease Inhibitor N-(n-butyl) Thiophosphoric Triamide in a Dimethyl Sulfoxide/Propylene Glycol Solution. Master’s Thesis, West Texas A&M University Canyon, Canyon, TX, USA, 2014. [Google Scholar]
- Yang, Z.; Liu, S.; Zheng, D.; Feng, S. Effects of cadium, zinc and lead on soil enzyme activities. J. Enviromental Sci. 2006, 18, 1135–1141. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Harapiak, J.T.; Flore, N.A.; Stonehouse, T.B. Use of N-(n-butyl) thiophoshoric triamide (NBPT) to increase safety of seed-placed urea. Can. J. Plant Sci. 2004, 84, 105–116. [Google Scholar] [CrossRef]
- Zaman, M.; Zaman, S.; Adhinarayanan, C.; Nguyen, M.L.; Nawaz, S.; Dawar, K.M. Effects of urease and nitrification inhibitors on the efficient use of urea for pastoral systems. Soil Sci. Plant Nutr. 2013, 59, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.J. Urease Activity and Inhibition—Principles and Practices; The International Fertilizer Society Meeting: London, UK, 2000. [Google Scholar]
- Sanz-Cobena, A.; Misselbrook, T.H.; Arce, A.; Mingot, J.I.; Diez, J.A.; Vallejo, A. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agric. Ecosyst. Environ. 2008, 126, 243–249. [Google Scholar] [CrossRef]
- Goos, R.J. A comparison of a maleic-itaconic polymer and N-(n-butyl) thiophosphoric triamide as urease inhibitors. Soil Sci. Soc. Am. J. 2011, 77, 128. [Google Scholar]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and mentnitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Kawakami, M.E.; Oosterhuis, M.D.; Snider, L.J.; Mozaffaria, M. Physiological and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD. Eur. J. Agron. 2012, 43, 147–154. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Soil textural class | Clay |
pH before liming | 4.19 |
pH after liming | 5.40 |
Total (%) | |
Sand | 40.79 |
Silt | 14.29 |
Clay | 44.92 |
Total C (%) | 1.29 |
Total N (%) | 0.18 |
Available (mg kg−1) | |
P | 0.05 |
K | 40.15 |
Ca | 80.24 |
Mg | 16.38 |
CEC (cmol kg−1) | 9.98 |
Mineral N (μg g−1) | |
NH4+-N | 8.94 |
NO3−-N | 6.52 |
Label | Specification |
---|---|
T0 | No Fertilizer |
T1 | Farmers’ practice (120 kg N ha−1 urea) |
T2 | NCU fertilizer (144 kg N ha−1 with application frequency similar to T1) |
T3 | NCU fertilizer (120 kg N ha−1 with application frequency similar to T1) |
T4 | NCU fertilizer (96 kg N ha−1 with application frequency similar to T1) |
T5 | NCU fertilizer (72 kg N ha−1 with application frequency similar to T1) |
Treatments | Chlorophyll Content (SPAD Unit) | Plant Dry Weight (g) | Surface Leaf Area (cm2) | Yield (t ha−1) |
---|---|---|---|---|
T0 | 37.71 b | 165.30 b | 1924.40 c | 1.86 d |
T1 | 47.30 b | 234.15 b | 3123.20 bc | 3.80 c |
T2 | 55.24 a | 288.82 ab | 3430.20 abc | 4.43 bc |
T3 | 51.24 a | 403.05 a | 4928.70 a | 5.40 ab |
T4 | 51.20 a | 359.86 a | 4543.90 ab | 5.65 a |
T5 | 52.23 a | 375.22 a | 4537.80 ab | 4.72 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zuki, M.M.; Md. Jaafar, N.; Sakimin, S.Z.; Yusop, M.K. N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil. Sustainability 2020, 12, 8780. https://doi.org/10.3390/su12218780
Mohd Zuki MM, Md. Jaafar N, Sakimin SZ, Yusop MK. N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil. Sustainability. 2020; 12(21):8780. https://doi.org/10.3390/su12218780
Chicago/Turabian StyleMohd Zuki, Muhammad Muhaymin, Noraini Md. Jaafar, Siti Zaharah Sakimin, and Mohd Khanif Yusop. 2020. "N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil" Sustainability 12, no. 21: 8780. https://doi.org/10.3390/su12218780
APA StyleMohd Zuki, M. M., Md. Jaafar, N., Sakimin, S. Z., & Yusop, M. K. (2020). N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil. Sustainability, 12(21), 8780. https://doi.org/10.3390/su12218780