A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. The MAPStump Decision Support System
2.2. Study Site and Definition of Scenarios
2.3. The Biodiversity Submodel (BM)
2.4. Score Setting in the BM
2.5. The Production Submodel (PM)
2.6. Score Settings in the PM
2.7. Sensitivity Analysis of the MAPStump-DSS
3. Results
3.1. Outcome of Scenarios Based on Biodiversity and Economic Criteria
3.2. Spatial Patterns of Stump Harvest
3.3. Sensitivity Analysis
4. Discussion
4.1. The MAPStump-DSS for Assessment of Tree Stump Harvest
4.2. Limitations with the MAPStump-DSS Study and Future Development Needs
4.3. Spatial Stump Harvest Planning with the MAPStump-DSS
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acosta-Michlik, L.; Lucht, W.; Bondeau, A.; Beringer, T. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renew. Sustain. Energy Rev. 2011, 15, 2791–2809. [Google Scholar] [CrossRef]
- Röser, D.; Asikainen, A.; Raulund-Rasmussen, K.; Møller, I.S. Sustainable Use of Wood for Energy—A Synthesis with Focus on the Nordic–Baltic Region; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Persson, T.; Egnell, G. Stump harvesting for bioenergy: A review of climatic and environmental impacts in northern Europe and America. Wires Energy Environ. 2018, 7, e307. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Anttila, P.; Mäkinen, M.; Jänis, J.; Asikainen, A. Wood Extractives of Finnish Pine, Spruce and Birch–Availability and Optimal Sources of Compounds: A Literature Review; Natural Resources Institute Finland (Luke): Helsinki, Finland, 2017; p. 55. [Google Scholar]
- Jonsson, R. How to cope with changing demand conditions-The Swedish forest sector as a case study: An analysis of major drivers of change in the use of wood resources. Can. J. For. Res. 2013, 43, 405–418. [Google Scholar] [CrossRef]
- Helmisaari, H.S.; Kaarakka, L.; Olsson, B.A. Increased utilization of different tree parts for energy purposes in the Nordic countries. Scand. J. For. Res. 2014, 29, 312–322. [Google Scholar] [CrossRef]
- Laitila, J.; Nuutinen, Y. Efficiency of Integrated Grinding and Screening of Stump Wood for Fuel at Roadside Landing with a Low-Speed Double-Shaft Grinder and a Star Screen. Croat. J. Eng. 2015, 36, 19–32. [Google Scholar]
- Laitila, J.; Poikela, A.; Ovaskainen, H.; Vaatainen, K. Novel extracting methods for conifer stumps. Int. J. For. Eng. 2019, 30, 56–65. [Google Scholar] [CrossRef]
- Laitila, J.; Ranta, T.; Asikainen, A.; Jappinen, E.; Korpinen, O.J. The cost competitiveness of conifer stumps in the procurement of forest chips for fuel in Southern and Northern Finland. Silva. Fenn. 2015, 49. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Egnell, G.; Börjesson, P. Theoretical Versus Market Available Supply of Biomass for Energy from Long-Rotation Forestry and Agriculture–Swedish Experiences; IEA Bioenergy: Umeå, Sweden, 2012. [Google Scholar]
- SKA. Skogliga Konsekvensanalyser 2015–SKA15; Swedish Forest Agency: Jönköping, Sweden, 2015.
- Johansson, J.; Ranius, T. Biomass outtake and bioenergy development in Sweden: The role of policy and economic presumptions. Scand. J. For. Res. 2019, 34, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Swedish Forest Agency. Stubbskörd–Kunskapssammanställning Och Skogsstyrelsens Rekommendationer; Swedish Forest Agency: Jönköping, Sweden, 2009.
- Swedish Government. En Skogspolitik I Takt Med Tiden; Ministry of Environment, Ministry of Enterprise, Eds.; Swedish Government: Stockholm, Sweden, 2008.
- Lahtinen, K.; Myllyviita, T.; Leskinen, P.; Pitkanen, S.K. A systematic literature review on indicators to assess local sustainability of forest energy production. Renew. Sustain. Energy Rev. 2014, 40, 1202–1216. [Google Scholar] [CrossRef]
- Lundmark, R.; Athanassiadis, D.; Wetterlund, E. Supply assessment of forest biomass-A bottom-up approach for Sweden. Biomass Bioenergy 2015, 75, 213–226. [Google Scholar] [CrossRef]
- Walmsley, J.D.; Godbold, D.L. Stump Harvesting for Bioenergy-A Review of the Environmental Impacts. Forestry 2010, 83, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Stens, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef]
- von Hofsten, H. Skörd av Stubbar. Nuläge Och Utvecklingsbehov. Reviderad Version 2011. [Stump Harvesting. Present Situation and Need for Development. Revised Version 2011]; Skogforsk: Uppsala, Sweden, 2010. [Google Scholar]
- Strengbom, J.; Dahlberg, A.; Larsson, A.; Lindelöw, A.; Sandström, J.; Widenfalk, O.; Gustafsson, L. Introducing Intensively Managed Spruce Plantations in Swedish Forest Landscapes will Impair Biodiversity Decline. Forests 2011, 2, 610–630. [Google Scholar] [CrossRef] [Green Version]
- de Jong, J.; Akselsson, C.; Egnell, G.; Löfgren, S.; Olsson, B.A. Realizing the energy potential of forest biomass in Sweden-How much is environmentally sustainable? For. Ecol. Manag. 2017, 383, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Khanam, T.; Pelkonen, P. People’s knowledge, perceptions, and attitudes towards stump harvesting for bioenergy production in Finland. Renew. Sustain. Energy Rev. 2017, 70, 107–116. [Google Scholar] [CrossRef]
- Geijer, E.; Andersson, J.; Bostedt, G.; Brännlund, R.; Hjältén, J. Is Stump Harvesting a Remedy for the Climate Crisis or a Curse for Biodiversity? An Interdisciplinary Study of Conflicting Goals. CERE Work. Pap. 2012, 2012. [Google Scholar] [CrossRef]
- Jonsell, M.; Schroeder, M. Proportions of saproxylic beetle populations that utilise clear-cut stumps in a boreal landscape-Biodiversity implications for stump harvest. For. Ecol. Manag. 2014, 334, 313–320. [Google Scholar] [CrossRef]
- Svensson, M.; Dahlberg, A.; Ranius, T.; Thor, G. Occurrence Patterns of Lichens on Stumps in Young Managed Forests. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Johansson, V.; Felton, A.; Ranius, T. Long-term landscape scale effects of bioenergy extraction on dead wood-dependent species. For. Ecol. Manag. 2016, 371, 103–113. [Google Scholar] [CrossRef]
- Bouget, C.; Lassauce, A.; Jonsell, M. Effects of fuelwood harvesting on biodiversity-A review focused on the situation in Europe. Can. J. For. Res. 2012, 42, 1421–1432. [Google Scholar] [CrossRef]
- Hiron, M.; Jonsell, M.; Kubart, A.; Thor, G.; Schroeder, M.; Dahlberg, A.; Johansson, V.; Ranius, T. Consequences of bioenergy wood extraction for landscape-level availability of habitat for dead wood-dependent organisms. J. Environ. Manag. 2017, 198, 33–42. [Google Scholar] [CrossRef]
- Ranius, T.; Hämäläinen, A.; Sjögren, J.; Hiron, M.; Jonason, D.; Kubart, A.; Schroeder, M.; Dahlberg, A.; Thor, G.; Jonsell, M. The evolutionary species pool concept does not explain occurrence patterns of dead-wood-dependent organisms: Implications for logging residue extraction. Oecologia 2019, 191, 241–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsell, M.; Ols, C.; Victorsson, J.; Hellqvist, S. Diptera in clear-felling stumps like it dry. Scand. J. For. Res. 2019, 34, 673–677. [Google Scholar] [CrossRef]
- Jonsell, M.; Hansson, J. Logs and Stumps in Clearcuts Support Similar Saproxylic Beetle Diversity: Implications for Bioenergy Harvest. Silva. Fenn. 2011, 45, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Victorsson, J.; Jonsell, M. Effects of stump extraction on saproxylic beetle diversity in Swedish clear-cuts. Insect Conserv. Diver 2013, 6, 483–493. [Google Scholar] [CrossRef]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management-the approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag. 2008, 255, 3222–3241. [Google Scholar] [CrossRef]
- Nordström, E.M.; Holmström, H.; Öhman, K. Evaluating continuous cover forestry based on the forest owner’s objectives by combining scenario analysis and multiple criteria decision analysis. Silva. Fenn. 2013, 47. [Google Scholar] [CrossRef] [Green Version]
- Röser, D.; Pasanen, K.; Asikainen, A. Decision-support program “EnerTree” for analyzing forest residue recovery options. Biomass Bioenergy 2006, 30, 326–333. [Google Scholar] [CrossRef]
- Myllyviita, T.; Leskinen, P.; Leihtinen, K.; Pasanen, K.; Sironen, S.; Ktihkonen, T.; Sikanen, L. Sustainability assessment of wood-based bioenergy-A methodological framework and a case-study. Biomass Bioenergy 2013, 59, 293–299. [Google Scholar] [CrossRef]
- Carnbero, C.; Sowlati, T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives-A review of literature. Renew. Sustain. Energy Rev. 2014, 36, 62–73. [Google Scholar] [CrossRef]
- Sacchelli, S.; De Meo, I.; Paletto, A. Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy. Appl. Energy 2013, 104, 10–20. [Google Scholar] [CrossRef]
- Pang, X.; Nordström, E.M.; Bottcher, H.; Trubins, R.; Mörtberg, U. Trade-offs and synergies among ecosystem services under different forest management scenarios-The LEcA tool. Ecosyst. Serv. 2017, 28, 67–79. [Google Scholar] [CrossRef]
- Olsson, B.A.; Hannrup, B.; Jönsson, M.; Larsolle, A.; Nordström, M.; Mörtberg, U.; Rudolphi, J.; Strömgren, M. A decision support model for individual tree stump harvesting options based on criteria for economic return and environmental protection. Scand. J. For. Res. 2017, 32, 246–259. [Google Scholar] [CrossRef]
- Arlinger, J.; Möller, J.J.; Sondell, J. A Description of Pri-Files. Background, Structure and Examples; Skogforsk: Uppsala, Sweden, 2003. [Google Scholar]
- Arlinger, J.; Nordström, M.; Möller, J.J. StanForD 2010. Modern Communication with Forest Machines; Skogforsk: Uppsala, Sweden, 2012. [Google Scholar]
- Ananda, J.; Herath, G. The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. For. Policy Econ. 2003, 5, 13–26. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decision Making with Multiple Objectives Preferences and Value Tradeoffs; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Caruso, A.; Rudolphi, J.; Rydin, H. Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Marklund, L.G. Biomassafunktioner för Tall, Gran Och Björk I Sverige. [Biomass Functions for Pine, Spruce and Birch in Sweden.]; Institutionen för Skogstaxering: Umeå, Sweden, 1988; p. 100. [Google Scholar]
- Repola, J.; Ojansuu, R.; Kukkola, M. Biomass Functions for Scots Pine, Norway Spruce and Birch in Finland; Finnish Forest Research Institute: Helsinki, Finland, 2007; p. 28.
- Brunberg, T.; Eliasson, L. Basis for Production Standard for Tops and Branches Forwarders (Underlag för Produktionsnorm för Grotskotare); Swedish Forest Research Institute: Uppsala, Sweden, 2013. [Google Scholar]
- Loucks, D.P.; van Beek, E.; Stedinger, J.R.; Dijkman, J.P.M.; Villars, M.T. Model sensitivity and uncertainty analysis. In Water Resources Systems Planning and Management—An Introduction to Methods, Models and Applications; Springer: Cham, Switzerland, 2005. [Google Scholar]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lohmus, A.; Pastur, G.M.; Messier, C.; et al. Retention Forestry to Maintain Multifunctional Forests: A World Perspective. Bioscience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Snll, T.; Nordn, J. Importance of spatial configuration of deadwood habitats in species conservation. Conserv. Biol. 2019, 33, 1205–1207. [Google Scholar] [CrossRef]
- Komonen, A.; Muller, J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv. Biol. 2018, 32, 535–545. [Google Scholar] [CrossRef]
- Buchholz, T.S.; Volk, T.A.; Luzadis, V.A. A participatory systems approach to modeling social, economic, and ecological components of bioenergy. Energy Policy 2007, 35, 6084–6094. [Google Scholar] [CrossRef]
- Flisberg, P.; Frisk, M.; Ronnqvist, M.; Guajardo, M. Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study. Energy 2015, 85, 353–365. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Adoption of the Paris Agreement; United Nations: Paris, Franse, 2015. [Google Scholar]
- Banja, M.; Jégard, M.; Monforti-Ferrario, F.; Dallemand, J.-F.; Taylor, N.; Motola, V.; Sikkema, R. Renewables in the EU: An Overview of Support Schemes and Measures; European Commission, Joint Research Centre: Ispra, Italy, 2017. [Google Scholar]
- Ranius, T.; Caruso, A.; Jonsell, M.; Juutinen, A.; Thor, G.; Rudolphi, J. Dead wood creation to compensate for habitat loss from intensive forestry. Biol. Conserv. 2014, 169, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H.; Kline, K.L.; Buford, M.A.; Volk, T.A.; Smith, C.T.; Stupak, I. Incorporating bioenergy into sustainable landscape designs. Renew. Sustain. Energy Rev. 2016, 56, 1158–1171. [Google Scholar] [CrossRef] [Green Version]
- Snall, T.; Johansson, V.; Jonsson, M.; Ortiz, C.; Hammar, T.; Caruso, A.; Svensson, M.; Stendahl, J. Transient trade-off between climate benefit and biodiversity loss of harvesting stumps for bioenergy. Gcb Bioenergy 2017, 9, 1751–1763. [Google Scholar] [CrossRef]
Criteria | Mean Score of Medium (20–50 cm) Diameter Stump | Relevance | ||
---|---|---|---|---|
Norway Spruce | Scots Pine | Birch spp. | ||
k1: Obligate | 0.45 | 0.55 | 0.80 | Fungi, insects, lichens |
k2: Facultative | 0.35 | 0.25 | 0.65 | Fungi, insects, lichens |
k3: Conserv concern | 0.10 | 0.20 | 0.80 | Insects (beetles), fungi |
k4: Shaded | Sigmoid distance functions, Figure 2 | Bryophytes | ||
Stump diameter | k1–4 + Δdouble sigmoid diameter function, Figure 2 | All organisms | ||
Critical habitat | Sigmoid distance functions, Figure 2 | Critical habitat | ||
Biodiversity score SB | Maximum value of the above for individual stumps | All above |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jönsson, M.; Sjögren, J.; Hannrup, B.; Larsolle, A.; Mörtberg, U.; Nordström, M.; Olsson, B.A.; Strömgren, M. A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria. Sustainability 2020, 12, 8900. https://doi.org/10.3390/su12218900
Jönsson M, Sjögren J, Hannrup B, Larsolle A, Mörtberg U, Nordström M, Olsson BA, Strömgren M. A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria. Sustainability. 2020; 12(21):8900. https://doi.org/10.3390/su12218900
Chicago/Turabian StyleJönsson, Mari, Jörgen Sjögren, Björn Hannrup, Anders Larsolle, Ulla Mörtberg, Maria Nordström, Bengt A. Olsson, and Monika Strömgren. 2020. "A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria" Sustainability 12, no. 21: 8900. https://doi.org/10.3390/su12218900
APA StyleJönsson, M., Sjögren, J., Hannrup, B., Larsolle, A., Mörtberg, U., Nordström, M., Olsson, B. A., & Strömgren, M. (2020). A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria. Sustainability, 12(21), 8900. https://doi.org/10.3390/su12218900