Noise Estimation Using Road and Urban Features
Abstract
:1. Introduction
2. Methodology
2.1. Cities Studied
2.2. Sampling Method
2.3. Measurement Procedure
- Location of the street: distance to the city center.
- Urban land use: gyms, cinemas, pubs, restaurants, supermarkets, schools, etc.
- Street geometry: street width, adjacent lanes, bikeway, lanes, parking, etc.
- Road traffic control: traffic lights, crosswalks, speed bumps, etc.
- Public and private transport: bus and taxi stops, bus routes, bus stations, etc.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Relationships beetween Noise and Road and Urban Features
3.2. Urban Features Model
- -
- AIC: 908.36 (Valdivia), 920.22 (Talca).
- -
- BIC: 1116.10 (Valdivia), 1098.24 (Talca).
- -
- Multiple R2: 0.83 (Valdivia), 0.85 (Talca).
- -
- Adjusted R2: 0.69 (Valdivia), 0.73 (Talca).
3.3. Noise Estimation in Different Types of Road Categories
4. Conclusions
- A total of 73.3% and 81.3% of the streets measured in Talca and Valdivia, respectively, exceed the daytime sound level of 55 dB, generating a serious potential annoyance for the citizens. Therefore, noise pollution is also present in the cities of Chile and should be considered in actions aimed at sustainability.
- Urban variables related to street location, urban land use, street geometry, road traffic control and public and private transport were shown to be highly correlated with noise levels. Considering the usefulness of these variables in urban planning, they could be used in noise prediction models.
- Multiple regression models were developed in Valdivia and Talca using only urban variables for noise prediction. The models developed in Valdivia (LAeq = 43.32 + 1.28 traffic lights + 0.83 crosswalks + 2.51 road surface condition + 1.60 lanes—4.76 law enforcement authorities + 1.01 bus routes + 2.69 schools + 2.19 floors in buildings + 0.006 street length—0.64 bus stops—0.14 shops) and Talca (LAeq = 42.15 + 0.007 street length—3.30 road signs indicating places of interest + 7.52 parallel parking + 3.21 road surface condition + 0.73 small shops—7.98 law enforcement authorities + 2.08 speed bumps + 2.74 floors in buildings + 0.12 street width + 0.17 shops) were able to explain the urban noise variability by 71% and 73%, respectively. These models can be a useful tool for urban planners to implement action plans regarding noise pollution.
- The median of the absolute errors in the noise estimation using the models developed in both Chilean cities was approximately 3 dBA. Urban models did not present significant differences in their uncertainties despite being in a different city from that in which the model was developed. Therefore, urban models created in one city could be applied in other similar cities.
- Comparable errors were obtained in the different types of urban roads. In addition, the errors were not biased. Thus, these models can be either an alternative or a complement for noise prediction, especially in streets where there is no precise register of the sound sources.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Reference Framework for Sustainable Cities. 5 Dimensions and 30 Objectives for a European Vision of Tomorrow’s Cities; RFSC: Luxembourg, 2016; Available online: http://rfsc.eu/ (accessed on 27 August 2020).
- European Commission. Towards a Local Sustainability Profile: European Common Indicators; Office for Official Publications of the European Communities: Luxembourg, 2000; Available online: https://op.europa.eu/en/publication-detail/-/publication/33eba485-e1e3-4748-9358-0d66ef86bcc3 (accessed on 27 August 2020).
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; UN: A/RES/70/1. 2015. Available online: https://www.un.org/sustainabledevelopment (accessed on 27 August 2020).
- ISO 37101. Sustainable Development in Communities—Management System for Sustainable Development—Requirements with Guidance for Use; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- European Environment Agency. Environmental Noise in Europe—2020; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Hammer, M.S.; Swinburn, T.K.; Neitzel, R.L. Environmental Noise Pollution in the United States: Developing an Effective Public Health Response. Environ. Health Persp. 2014, 12, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Dirección de Estudios Sociales del Instituto de Sociología de la Pontificia Universidad Católica de Chile. Informe Final—Encuesta Nacional de Medio Ambiente 2018; Licitación Nº608897-110-LE17; Ministerio de Medio Ambiente: Santiago, Chile, 2018. Available online: https://mma.gob.cl/wp-content/uploads/2018/03/Informe-Final-Encuesta-Nacional-de-Medio-Ambiente-2018.pdf (accessed on 27 August 2020).
- Gómez, I.; Glisser, M.; Padilla, C. Influence of road traffic noise in ischaemic heart disease. Introduction to the issue in Santiago of Chile. In Proceedings of the 44th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2015, San Francisco, CA, USA, 9–12 August 2015. [Google Scholar]
- Ruiz-Padillo, A.; Ruiz, D.P.; Torija, A.J.; Ramos-Ridao, Á. Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Environ. Impact Assess. 2016, 61, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- Park, T.; Kim, M.; Jang, C.; Choung, T.; Sim, K.-A.; Seo, D.; Chang, S. The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. Sustainability 2018, 10, 2947. [Google Scholar] [CrossRef] [Green Version]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Sally Liu, L.-J.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation Noise and Blood Pressure in a Population-Based Sample of Adults. Environ. Health Persp. 2011, 120, 50–55. [Google Scholar] [CrossRef]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mehri, A.; Alimohammadi, I.; Ebrahimi, H.; Hajizadeh, R.; Roudbari, M. Effect of traffic noise on mental performance with regard to introversion and task complexity. Appl. Acoust. 2018, 132, 118–123. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Kwan, M.-P.; Kou, L.; Chai, Y. Assessing personal noise exposure and its relationship with mental health in Beijing based on individuals’ space-time behavior. Environ. Int. 2020, 139, 105737. [Google Scholar] [CrossRef] [PubMed]
- Tandel, B.N.; Macwan, J.E.M. Road traffic noise exposure and hearing impairment among traffic policemen in Surat, Western India. J. Inst. Eng. Ser. A 2017, 98, 101–105. [Google Scholar] [CrossRef]
- Nagodawithana, N.S.; Pathmeswaran, A.; Pannila, A.S.; Wickramasinghe, A.R.; Sathiakumar, N. Noise-induced hearing loss among traffic policemen in the city of Colombo, Sri Lanka. Asian J. Water Environ. Pollut. 2015, 120, 9–14. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Dimitrova, D.D.; Dimitrakova, E.D. Noise exposure during pregnancy, birth outcomes and fetal development: Meta-Analyses using quality effects model. Folia Medica 2014, 56, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; van Kamp, I. WHO Environmental Noise Guidelines for the European Region: A Systematic Review of Transport Noise Interventions and Their Impacts on Health. Int. J. Environ. Res. Public Health 2017, 14, 873. [Google Scholar] [CrossRef] [Green Version]
- Miedema, H.M.E.; Oudshoorn, C.G.M. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416. [Google Scholar] [CrossRef]
- Alves, J.; Silva, L.; Remoaldo, P. The Influence of Low-Frequency Noise Pollution on the Quality of Life and Place in Sustainable Cities: A Case Study from Northern Portugal. Sustainability 2015, 7, 13920–13946. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Burden of Disease from Environmental Noise—Quantification of Healthy Life Years Lost in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011; Available online: https://apps.who.int/iris/handle/10665/326424 (accessed on 29 August 2020).
- Fredianelli, L.; Nastasi, M.; Bernardini, M.; Fidecaro, F.; Licitra, G. Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports. Sustainability 2020, 12, 1740. [Google Scholar] [CrossRef] [Green Version]
- Veirs, S.; Veirs, V.; Wood, J.D. Ship noise extends to frequencies used for echolocation by endangered killer whales. PeerJ 2016, 4, e1657. [Google Scholar] [CrossRef] [Green Version]
- Shannon, G.; McKenna, M.F.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.M.; Brown, E.; Warner, K.A.; Nelson, M.D.; White, C.; Briggs, J.; et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 2015, 91, 982–1005. [Google Scholar] [CrossRef]
- Tobías, A.; Díaz, J.; Sáez, M.; Alberdi, J.C. Use of Poisson regression and Box–Jenkins models to evaluate the short-term effects of environmental noise levels on daily emergency admissions in Madrid, Spain. Eur. J. Epidemiol. 2001, 17, 765–771. [Google Scholar] [CrossRef]
- Picard, M.; Girard, S.A.; Simard, M.; Larocque, R.; Leroux, T.; Turcotte, F. Association of work-related accidents with noise exposure in the workplace and noise-induced hearing loss based on the experience of some 240,000 person-years of observation. Accident Anal. Prev. 2008, 40, 1644–1652. [Google Scholar] [CrossRef]
- Szczepańska, A.; Senetra, A.; Wasilewicz-Pszczółkowska, M. The Influence of Traffic Noise on Apartment Prices on the Example of a European Urban Agglomeration. Sustainability 2020, 12, 801. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.; King, E.A. Mapping for sustainability: Environmental noise and the city. In Methods of Sustainability Research in the Social Sciences; Fahy, F., Rau, H., Eds.; SAGE Publications: London, UK, 2013; p. 133. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Hong, J.; Kim, S.; Kim, K.-H. Noise Indicators for Size Distributions of Airborne Particles and Traffic Activities in Urban Areas. Sustainability 2018, 10, 4599. [Google Scholar] [CrossRef] [Green Version]
- Aumond, P.; Can, A.; Rey Gozalo, G.; Fortin, N.; Suárez, E. Method for in situ acoustic calibration of smartphone-based sound measurement applications. Appl. Acoust. 2020, 166, 107337. [Google Scholar] [CrossRef]
- Devkota, B.; Miyazaki, H.; Witayangkurn, A.; Kim, S.M. Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest. Sustainability 2019, 11, 4718. [Google Scholar] [CrossRef] [Green Version]
- Axsen, J.; Sovacool, B.K. The roles of users in electric, shared and automated mobility transitions. Transp. Res. D Transp. Environ. 2019, 71, 1–21. [Google Scholar] [CrossRef]
- Gómez Escobar, V.; Barrigón Morillas, J.M.; Rey Gozalo, G.; Vaquero, J.; Méndez Sierra, J.A.; Vílchez-Gómez, R.; Carmona del Río, F.J. Acoustical environmental of the medieval centre of Cáceres (Spain). Appl. Acoust. 2012, 73, 673–685. [Google Scholar] [CrossRef]
- Barrigón Morillas, J.M.; Gómez Escobar, V.; Rey Gozalo, G. Noise source analyses in the acoustical environment of the medieval centre of Cáceres (Spain). Appl. Acoust. 2013, 74, 526–534. [Google Scholar] [CrossRef]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M.; Montes González, D. Perceptions and use of urban green spaces on the basis of size. Urban For. Urban Green. 2019, 46, 126470. [Google Scholar] [CrossRef]
- Barrigón Morillas, J.M.; Rey Gozalo, G.; Montes González, D.; Atanasio Moraga, P.; Vílchez-Gómez, R. Noise Pollution and Urban Planning. Curr. Pollut. Rep. 2018, 4, 208–219. [Google Scholar] [CrossRef]
- Prieto Gajardo, C.; Barrigón Morillas, J.M.; Rey Gozalo, G.; Vílchez-Gómez, R. Can weekly noise levels of urban road traffic, as predominant noise source, estimate annual ones? J. Acoust. Soc. Am. 2016, 140, 3702–3709. [Google Scholar] [CrossRef] [Green Version]
- Morley, D.W.; Gulliver, J. Methods to improve traffic flow and noise exposure estimation on minor roads. Environ. Pollut. 2016, 216, 746–754. [Google Scholar] [CrossRef]
- De la Prida, D.; Pedrero, A.; Navacerrada, M.A.; Díaz, C. Relationship between the geometric profile of the city and the subjective perception of urban soundscapes. Appl. Acoust. 2019, 149, 74–84. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Relationship between spatiotemporal variability of soundscape and urban morphology in a multifunctional urban area: A case study in Seoul, Korea. Build. Environ. 2017, 126, 382–395. [Google Scholar] [CrossRef]
- Barrigón, J.M.; Escobar, V.G.; Gozalo, G.R.; Vílchez-Gómez, R. Possible relation of noise levels in streets to the population of the municipalities in which they are located. J. Acoust. Soc. Am. 2010, 128, EL86–EL92. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, M.J.; Fernández, M.D.; Flindell, I.; Torija, A.J.; Ballesteros, J.A. Estimating leisure noise in Spanish cities. Appl. Acoust. 2014, 86, 17–24. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Liang, C.-H.; Wu, C.-F.; Chang, L.-T. Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131, 104959. [Google Scholar] [CrossRef]
- Aguilera, I.; Foraster, M.; Basagaña, X.; Corradi, E.; Deltell, A.; Morelli, X.; Phuleria, H.C.; Ragettli, M.S.; Rivera, M.; Thomasson, A.; et al. Application of land use regression modelling to assess the spatial distribution of road traffic noise in three European cities. J. Expo. Sci. Environ. Epid. 2014, 25, 97–105. [Google Scholar] [CrossRef]
- Torija, A.J.; Genaro, N.; Ruiz, D.P.; Ramos-Ridao, A.; Zamorano, M.; Requena, I. Priorization of acoustic variables: Environmental decision support for the physical characterization of urban sound environments. Build. Environ. 2010, 45, 1477–1489. [Google Scholar] [CrossRef]
- Lee, E.Y.; Jerrett, M.; Ross, Z.; Coogan, P.F.; Seto, E.Y.W. Assessment of traffic-related noise in three cities in the United States. Environ. Res. 2014, 132, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Oiamo, T.H.; Davies, H.; Rainham, D.; Rinner, C.; Drew, K.; Sabaliauskas, K.; Macfarlane, R. A combined emission and receptor-based approach to modelling environmental noise in urban environments. Environ. Pollut. 2018, 242, 1387–1394. [Google Scholar] [CrossRef]
- Yang, H.; Song, J.; Choi, M. Measuring the Externality Effects of Commercial Land Use on Residential Land Value: A Case Study of Seoul. Sustainability 2016, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Sieber, C.; Ragettli, M.S.; Brink, M.; Toyib, O.; Baatjies, R.; Saucy, A.; Probst-Hensch, N.; Dalvie, M.A.; Röösli, M. Land Use Regression Modeling of Outdoor Noise Exposure in Informal Settlements in Western Cape, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 1262. [Google Scholar] [CrossRef] [Green Version]
- Gozalo, G.R.; Morillas, J.M.B.; Escobar, V.G. Analysis of Noise Exposure in Two Small Towns. Acta Acust. United Ac. 2012, 98, 884–893. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M. Analysis of Sampling Methodologies for Noise Pollution Assessment and the Impact on the Population. Int. J. Environ. Res. Publuic Health 2016, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Gómez Escobar, V.; Barrigón Morillas, J.M.; Rey Gozalo, G.; Vílchez-Gómez, R.; Carmona Del Río, J.; Méndez Sierra, J.A. Analysis of the Grid Sampling Method for Noise Mapping. Arch. Acoust. 2012, 37, 499–514. [Google Scholar] [CrossRef] [Green Version]
- ISO 1996-2. Description, Measurement and Assessment of Environmental Noise, Part 2: Determination of Environmental Noise Levels; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E. Applied Regression Analysis and Other Multivariable Methods; PWS-KENT Publishing Company: Boston, MA, USA, 1988. [Google Scholar]
- World Health Organization. Environmental Noise Guidelines for the European Region; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2018; Available online: https://www.euro.who.int/en/publications/abstracts/environmental-noise-guidelines-for-the-european-region-2018 (accessed on 14 September 2020).
- World Health Organization. Guidelines for Community Noise; World Health Organization: Geneva, Switzerland, 1999; Available online: https://apps.who.int/iris/handle/10665/66217 (accessed on 14 September 2020).
- Alvarado, R.E.M.; Morillas, J.M.B.; Gozalo, G.R. Urban characteristics and traffic noise in Loja (Ecuador). In Proceedings of the 46th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2017, Hong Kong, China, 27–30 August 2017. [Google Scholar]
- Lu, X.; Kang, J.; Zhu, P.; Cai, J.; Guo, F.; Zhang, Y. Influence of urban road characteristics on traffic noise. Transport. Res. D Transp. Environ. 2019, 75, 136–155. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M.; Trujillo Carmona, J.; Montes González, D.; Atanasio Moraga, P.; Gómez Escobar, V.; Vílchez-Gómez, R.; Méndez Sierra, J.A.; Prieto-Gajardo, C. Study on the relation between urban planning and noise level. Appl. Acoust. 2016, 111, 143–147. [Google Scholar] [CrossRef]
- Harouvi, O.; Ben-Elia, E.; Factor, R.; de Hoogh, K.; Kloog, I. Noise estimation model development using high-resolution transportation and land use regression. J. Expo. Sci. Environ. Epid. 2018, 28, 559–567. [Google Scholar] [CrossRef]
- Goudreau, S.; Plante, C.; Fournier, M.; Brand, A.; Roche, Y.; Smargiassi, A. Estimation of spatial variations in urban noise levels with a land use regression model. Environ. Pollut. 2014, 3, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, M.S.; Goudreau, S.; Plante, C.; Fournier, M.; Hatzopoulou, M.; Perron, S.; Smargiassi, A. Statistical modeling of the spatial variability of environmental noise levels in Montreal, Canada, using noise measurements and land use characteristics. J. Expo. Sci. Environ. Epid. 2016, 26, 597–605. [Google Scholar] [CrossRef]
- Olayinka, O.S. Effective noise control measures and sustainable development in Nigeria. World J. Environ. Eng. 2013, 1, 5–15. [Google Scholar]
- Montes González, D.; Barrigón Morillas, J.M.; Rey Gozalo, G.; Godinho, L. Effect of parking lanes on assessing the impact of road traffic noise on building façades. Environ. Res. 2020, 184, 109299. [Google Scholar] [CrossRef]
- Belsley, D.A. Conditioning Diagnostics: Collinearity and Weak Data in Regression; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Licitra, G.; Moro, A.; Teti, L.; Del Pizzo, A.; Bianco, F. Modelling of acoustic ageing of rubberized pavements. Appl. Acoust. 2019, 146, 237–245. [Google Scholar] [CrossRef]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Praticò, F.G.; Anfosso-Lédée, F. Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia Soc. Behav. 2012, 53, 203–212. [Google Scholar] [CrossRef]
- WG-AEN. Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure, version 2; European Commission Working Group—Assessment of Exposure to Noise (WG-AEN): Brussels, Belgium, 2007. [Google Scholar]
- Bertellino, F.; Cicoira, P.; Gerola, F.; Clementel, M.; Scaramuzza, P.; Nardelli, M. Noise mapping of agglomerations: A comparision of interim standards vs new CNOSSOS-EU method in a real case study. In Proceedings of the 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, INTER-NOISE 2016, Hamburg, Germany, 21–24 August 2016; pp. 1356–1366. [Google Scholar]
r Pearson | p–Value | Road and Urban Features |
---|---|---|
0.70–0.60 | <0.001 | Traffic lights (no.), crosswalks (no.), lanes (no.), street length (m). |
0.60–0.50 | <0.001 | Cafes and restaurants (no.), urban road width (m), schools (no.), bus routes (no.), small shops (no.), bus stops (no.), street width (m), shops (no.), parking sections (no.). |
0.50–0.40 | <0.001 | Adjacent lanes (no.), private clubs (no.), petrol stations (no.), churches (no.), road signs indicating places of interest (no.), floors in buildings (no.), average height of buildings (m), taxi stops (no.), law enforcement authorities (no.), industries (no.), road signs indicating the way to other cities (no.), road intersections with preference (no.), fire departments (no.). |
0.40–0.30 | <0.001 | Administrative offices (no.), police stations (no.), supermarkets (no.), government officies (no.), nursery schools (no.), academies (no.), health centers (no.). |
0.30–0.26 | <0.001 | Hotels (no.), universities (no.), hostels (no.). |
0.26–0.20 | <0.01 | Bus stations (no.), oncoming lanes (no.), private parking (no.), pubs (no.), distance to city center (m), medical clinics (no.), graveyards (no.), service lanes (no.), road surface type (1–4), libraries (no.). |
0.20–0.16 | <0.05 | Malls (no.), oblique parking (no.), traffic island (m), public areas (m2), bikeway (no.), sport fields (no.), museums (no.), parallel parking (no.), gyms (no.), road surface condition (1–3). |
< 0.16 | >0.05 | Secondary schools (no.), road intersections without preference (no.), nursing homes (no.), speed bumps (no.), hospitals (no.), stadiums (no.), street profile, green areas (m2), road slope (0–3), parking (no.), cinemas (no.), theatres (no.). |
r Pearson | p–Value | Road and Urban Features |
---|---|---|
0.70–0.60 | <0.001 | Street length (m), lines (no.), traffic lights (no.). |
0.60–0.50 | <0.001 | Crosswalks (no.), urban road width (m), small shops (no.), oncoming lanes (no.), street width (m), bus stops (no.), floors in buildings (no.). |
0.50–0.40 | <0.001 | Bus routes (no.), schools (no.), adjacent lanes (no.), road surface condition (1–3), cafes and restaurants (no.), road intersections with preference (no.), supermarkets (no.). |
0.40–0.30 | <0.001 | Industries (no.), shops (no.), universities (no.), petrol stations (no.), gardens (no.), road signs indicating the way to other cities (no.), road signs indicating places of interest (no.), churches (no.), medical clinics (no.). |
0.30–0.26 | <0.001 | Law enforcement authorities (no.), police stations (no.), private clubs (no.), administrative offices (no.), malls (no.), secondary schools (no.), sport fields (no.). |
0.26–0.20 | <0.01 | Government administrations (no.), average height of buildings (m), pubs (no.), academies (no.), speed bumps (no.), service lanes (no.), hostels (no.). |
0.20–0.16 | <0.05 | Gyms (no.), distance to the city center (m), graveyards (no.), parkings (no.), private parkings (no.), parallel parking (no.), oblique parking (no.), hospitals (no.). |
< 0.16 | >0.05 | Health centers (no.), fire departments (no.), hotels (no.), stadiums (no.), theatres (no.), road slope (0–3), museums (no.), bus stations (no.), libraries (no.), road intersections without preference (no.), street profile (0–2), cinemas (no.), road surface type (1–3), taxi stops (no.). |
Variables | Coefficient | Std. Error | t–Value | p–Value |
---|---|---|---|---|
(Intercept) | 43.32 | 2.04 | 21.22 | <0.001 |
Traffic lights | 1.28 | 0.39 | 3.24 | <0.01 |
Crosswalks | 0.83 | 0.27 | 3.08 | <0.01 |
Road surface condition | 2.51 | 0.77 | 3.28 | <0.01 |
Lanes | 1.60 | 0.52 | 3.05 | <0.01 |
Law enforcement authorities | −4.76 | 1.13 | −4.23 | <0.001 |
Bus routes | 1.01 | 0.20 | 5.11 | <0.001 |
Schools | 2.69 | 1.01 | 2.68 | <0.01 |
Floors in buildings | 2.19 | 0.64 | 3.43 | <0.001 |
Street length | 0.006 | 0.001 | 4.57 | <0.001 |
Bus stops | −0.64 | 0.19 | −3.38 | <0.001 |
Shops | −0.14 | 0.06 | −2.46 | <0.05 |
Goodness-of-fit | ||||
F–statistic | 31.22 | <0.001 | ||
AIC | 873.93 | |||
BIC | 913.07 | |||
Multiple R2 | 0.71 | |||
Adjusted R2 | 0.70 | |||
Mean absolute error | 3.20 |
Variables | Coefficient | Std. Error | t–Value | p–Value |
---|---|---|---|---|
(Intercept) | 42.15 | 2.00 | 21.05 | <0.001 |
Street length | 0.007 | 0.001 | 6.08 | <0.001 |
Road signs indicating places of interest | −3.30 | 0.66 | −5.02 | <0.001 |
Parallel parking | 7.52 | 1.26 | 5.95 | <0.001 |
Road surface condition | 3.21 | 0.71 | 4.53 | <0.001 |
Small shops | 0.73 | 0.17 | 4.37 | <0.001 |
Law enforcement authorities | −7.98 | 1.50 | −5.31 | <0.001 |
Speed bumps | 2.08 | 0.85 | 2.45 | <0.05 |
Floors in buildings | 2.74 | 0.98 | 2.79 | <0.01 |
Street width | 0.12 | 0.03 | 4.24 | <0.001 |
Shops | 0.17 | 0.04 | 3.96 | <0.001 |
Goodness-of-fit | ||||
F–statistic | 38.58 | <0.001 | ||
AIC | 909.47 | |||
BIC | 945.67 | |||
Multiple R2 | 0.73 | |||
Adjusted R2 | 0.72 | |||
Mean absolute error | 3.65 |
Valdivia | Talca | |
---|---|---|
Total points | 0.21 | 0.20 |
Category 1 | 0.42 | 0.42 |
Category 2 | 0.60 | 0.69 |
Category 3 | 0.80 | 0.68 |
Category 4 | 0.39 | 0.31 |
Category 5 | 0.84 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey Gozalo, G.; Suárez, E.; Montenegro, A.L.; Arenas, J.P.; Barrigón Morillas, J.M.; Montes González, D. Noise Estimation Using Road and Urban Features. Sustainability 2020, 12, 9217. https://doi.org/10.3390/su12219217
Rey Gozalo G, Suárez E, Montenegro AL, Arenas JP, Barrigón Morillas JM, Montes González D. Noise Estimation Using Road and Urban Features. Sustainability. 2020; 12(21):9217. https://doi.org/10.3390/su12219217
Chicago/Turabian StyleRey Gozalo, Guillermo, Enrique Suárez, Alexandra L. Montenegro, Jorge P. Arenas, Juan Miguel Barrigón Morillas, and David Montes González. 2020. "Noise Estimation Using Road and Urban Features" Sustainability 12, no. 21: 9217. https://doi.org/10.3390/su12219217
APA StyleRey Gozalo, G., Suárez, E., Montenegro, A. L., Arenas, J. P., Barrigón Morillas, J. M., & Montes González, D. (2020). Noise Estimation Using Road and Urban Features. Sustainability, 12(21), 9217. https://doi.org/10.3390/su12219217