Sustainable Ambient Environment to Prevent Future Outbreaks: How Ambient Environment Relates to COVID-19 Local Transmission in Lima, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
2.2.1. Ambient Environment Relationship with COVID-19 Infected Case
2.2.2. Forecasting the Pattern of COVID-19 Infected Cases
3. Results
3.1. Cases of COVID-19 Infection in Lima, Peru
3.2. Correlation Between Variables with COVID-19 Cases
3.3. Trajectory Forecast of COVID-19 Cases Using ARIMA in Lima
4. Discussion
4.1. Correlation between COVID-19 Cases and Ambient Environment
4.2. ARIMA Trajectory Pattern of COVID-19 Case in Lima
4.3. Government Policy on Future Ambient Environment and COVID-19 Management
4.4. Future Mitigation as Consideration for Preventing Similar Outbreak
5. Study Limitation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Pullano, G.; Pinotti, F.; Valdano, E.; Poletto, C.; Boëlle, P.Y.; D’Ortenzio, E.; Yazdanpanah, Y.; Eholie, S.P.; Altmann, M.; et al. Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study. Lancet 2020, 395, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xie, J. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 27, taaa037. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Goggins, W.B.; Chan, E.Y.Y. A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong. Sci. Total Environ. 2018, 643, 414–422. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.L.; Zheng, X. Impact of weather factors on influenza hospitalization across different age groups in subtropical Hong Kong. Int. J. Biometeorol. 2018, 62, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Ramanathan, K.; Antognini, D.; Combes, A.; Paden, M.; Zakhary, B.; Ogino, M.; Maclaren, G.; Brodie, D. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Respiratory 2020, 8. [Google Scholar] [CrossRef]
- Correia, G.; Rodrigues, L.; Gameiro, M.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses 2020, 141, 109781. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, humidity, and latitude analysis to predict potential spread and seasonality for COVID-19. SSRN Electron. J. 2020, 3, e2011834. [Google Scholar]
- Luo, W.; Majumder, M.S.; Liu, D.; Poirier, C.; Mandl, K.D.; Lipsitch, M.; Santillana, M. The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv 2020. [Google Scholar] [CrossRef]
- Guo, X.-J.; Zhang, H.; Zeng, Y.-P. Transmissibility of COVID-19 and its association with temperature and humidity. Res. Sq. 2020. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.; Li, X.; Hu, L.; Jiang, G. An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 2020, 3730–3732. [Google Scholar] [CrossRef] [PubMed]
- Anser, M.K.; Yousaf, Z.; Khan, M.A.; Nassani, A.A.; Abro, M.M.Q.; Vo, X.H.; Zaman, K. Social and administrative issues related to the COVID-19 pandemic in Pakistan: Better late than never. Environ. Sci. Pollut. Res. 2020, 474, 34567–34573. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. No Association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur. Respir. J. 2020, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, K.; Shahzad, U.; Iqbal, N.; Shahzad, F.; Fareed, Z. Effects of Climatological Parameters on the Outbreak Spread of COVID-19 in Highly Affected Regions of Spain. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef]
- Contini, D.; Costabile, F. Does air pollution influence COVID-19 outbreaks? Atmosphere 2020, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Saez, M.; Tobias, A.; Muñoz, P.; Campbell, M.J. A GEE moving average analysis of the relationship between air pollution and mortality for asthma in Barcelona, Spain. Stat. Med. 1999, 18, 2077–2086. [Google Scholar] [CrossRef]
- Pope, C.A.; Ransom, M.R.; Schwartz, J. Daily mortality and PM10 pollution in utah valley. Arch. Environ. Health 1992, 47, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J.A.; Tse, L.A.; Zhao, Z.; Kan, H.; et al. Fine particulate air pollution and daily mortality: A nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med. 2017, 196, 73–81. [Google Scholar] [CrossRef]
- Peel, J.L.; Tolbert, P.E.; Klein, M.; Metzger, K.B.; Flanders, W.D.; Todd, K.; Mulholland, J.A.; Ryan, P.B.; Frumkin, H. Ambient air pollution and respiratory emergency department visits. Epidemiology 2005, 16, 164–174. [Google Scholar] [CrossRef]
- Farhat, S.C.L.; Paulo, R.L.P.; Shimoda, T.M.; Conceição, G.M.S.; Lin, C.A.; Braga, A.L.F.; Warth, M.P.N.; Saldiva, P.H.N. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz. J. Med. Biol. Res. 2005, 38, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Metzger, K.B.; Tolbert, P.E.; Klein, M.; Peel, J.L.; Flanders, W.D.; Todd, K.; Mulholland, J.A.; Ryan, P.B.; Frumkin, H. Ambient air pollution and cardiovascular emergency department visits. Epidemiology 2004, 15, 46–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, X.-J.; Guan, Y.-J. Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infect. Control Hosp. Epidemiol. 2020, 1–11. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Defensoría del Pueblo. La Calidad del Aire en Lima y su Impacto en la Salud y Vida de sus Habitantes; Defensoría del Pueblo Informe Defensorial No. 116; Defensoría del Pueblo: Lima, Peru, 2006. [Google Scholar]
- Municipalidad De San Borja. Aprueban la Política Ambiental Local Ordenanza N° 573-MSB; Municipalidad De San Borja: San Borja, Peru, 2016. [Google Scholar]
- Gonzales, G.F.; Steenland, K. Environmental health in Peru: Outdoor and indoor air contamination. Pan Am. J. Public Health 2014, 36, 141. [Google Scholar]
- Arias Velásquez, R.M.; Mejía Lara, J.V. Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima. Urban Clim. 2020, 33, 100664. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos EC Introduction to Multivariate Regression Analysis. Hippokratia 2005, 14, 23–28.
- Sen, J.; Chaudhuri, T.D. A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector. SIAM J. Financ. Math. 2015, 6, 467–486. [Google Scholar]
- Benvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Br. 2020, 29, 105340. [Google Scholar] [CrossRef]
- Perone, G. An ARIMA Model to Forecast the Spread of COVID-2019 Epidemic in Italy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Dritsakis, N.; Klazoglou, P. Time Series Analysis using ARIMA Models: An Approach to Forecasting Health Expenditure in USA. Econ. Internazionale Int. Econ. 2019, 72, 77–106. [Google Scholar]
- Liu, Q.; Liu, X.; Jiang, B.; Yang, W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect. Dis. 2011, 11. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T. On the Order Determination of ARIMA Models. Appl. Stat. 1977, 26, 290–301. [Google Scholar] [CrossRef]
- Unggara, I.; Musdholifah, A.; Sari, A.K. Optimization of ARIMA Forecasting Model Using Firefly Algorithm. Indones. J. Comput. Cybern. Syst. 2019, 13, 127–136. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V.K. ARIMA forecasting of ambient air pollutants. Stoch. Environ. Res. Risk Assess. 2010, 751–760. [Google Scholar] [CrossRef]
- Open, A.; Journal, A.; Gu, Y.; Wei, H.; Balikhin, M.M. Nonlinear predictive model selection and model averaging using information criteria. Syst. Sci. Control Eng. 2018, 6, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Salud. Situación Actual “COVID-19” al 10 de Mayo 2020. COVID-19 Coronavirus Disease 2019; Ministerio de Salud: Lima, Peru, 2020.
- Smit, A.J.; Fitchett, J.M.; Engelbrecht, F.A.; Scholes, R.J.; Dzhivhuho, G.; Sweijd, N.A. Winter is coming: A southern hemisphere perspective of the environmental drivers of sars-cov-2 and the potential seasonality of covid-19. Int. J. Environ. Res. Public Health 2020, 17, 5634. [Google Scholar] [CrossRef]
- Lal, P.; Kumar, A.; Kumar, S.; Kumari, S.; Saikia, P.; Dayanandan, A.; Adhikari, D.; Khan, M.L. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci. Total Environ. 2020, 732, 139297. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Sanità di Toppi, L.; Bellini, E. Novel Coronavirus: How Atmospheric Particulate Affects Our Environment and Health. Challenges 2020, 11, 6. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Cianfanelli, L.; Vlachos, K.; Landoni, G.; Cremona, G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J. Infect. 2020. [Google Scholar] [CrossRef]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef]
- Bashir, M.F.; Bilal, B.M.; Komal, B. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, G.; Luo, L.; Li, Y.; Shi, W.; Hospital, Z.; Shi, W. Associations between ambient air pollutants exposure and case fatality rate of COVID-19: A multi-city ecological study in China. medRxiv 2020, 2–11. [Google Scholar] [CrossRef]
- MINAM. Republica del Peru Aprueban Estándares de Calidad Ambiental (ECA) para Aire y Establecen Disposiciones Complementarias; Decreto Supremo No. 003-2017-MINAM; Ministerio del Ambiente: Magdalena Marina, Peru, 2017.
- Tresierra-Ayala, M.A. Mascarillas textiles en la Pandemia por COVID-19. Rev. Médica Val. 2020, 9, 9–10. [Google Scholar]
- Rodriguez-Morales, A.J.; Sánchez-Duque, J.A.; Hernández Botero, S.; Pérez-Díaz, C.E.; Villamil-Gómez, W.E.; Méndez, C.A.; Verbanaz, S.; Cimerman, S.; Rodriguez-Enciso, H.D.; Escalera-Antezana, J.P.; et al. Preparación y control de la enfermedad por coronavirus 2019 (COVID-19) en América Latina. Acta Med. Peru. 2020, 37, 3–7. [Google Scholar] [CrossRef]
- Comité de Gestión Iniciativa Aire Limpio Lima-Callao. Plan Integral De Saneamiento Atmosférico Para Lima-Callao (PISA); Comité de Gestión Iniciativa Aire Limpio Lima-Callao: Lima, Peru, 2010. [Google Scholar]
- Ministerio del Ambiente. Republica del Peru Aprueban el Plan Nacional de Acción Ambiental PLANAA PERÚ: 2011–2021; Ministerio del Ambiente: Magdalena Marina, Peru, 2011.
- Zhang, Z.; Xue, T.; Jin, X. Effects of meteorological conditions and air pollution on COVID-19 transmission: Evidence from 219 Chinese cities. Sci. Total Environ. 2020, 741, 140244. [Google Scholar] [CrossRef]
- Wang, K.; Yin, H.; Chen, Y. The effect of environmental regulation on air quality: A study of new ambient air quality standards in China. J. Clean. Prod. 2019, 215, 268–279. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Hanage, W.P.; Rasmussen, A.L. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear. Cell 2020, 182, 794–795. [Google Scholar] [CrossRef]
- Toyoshima, Y.; Nemoto, K.; Matsumoto, S.; Nakamura, Y.; Kiyotani, K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J. Hum. Genet. 2020. [Google Scholar] [CrossRef]
df | SS | MS | F | Significance F | |
---|---|---|---|---|---|
Regression | 3 | 244.8397 | 81.61323 | 79.33975 | 1.57 × 10−21 |
Residual | 64 | 65.83392 | 1.028655 | ||
Total | 67 | 310.6736 |
Coefficients | Standard Error | t Stat | p-Value | |
---|---|---|---|---|
Intercept | 54.34278 | 9.820579 | 5.533562 | 6.25 × 10−7 |
PM2.5 | 0.173609 | 0.220736 | 0.7865 | 0.434477 |
PM10 | 0.739323 | 0.368269 | 2.007559 | 0.048916 |
Average Temperature | −16.3385 | 2.999513 | −5.44705 | 8.71 × 10−7 |
ARIMA (p,d,q) | Lag | Akaike’s Information Criteria | Root Mean Square Error |
---|---|---|---|
1,1,1 | PM2.5 (1) + PM10 (3) + Average Temperature (6) | 118.916 | 0.72757 |
2,0,3 | PM2.5 (1) + PM10 (3) + Average Temperature (6) | 123.142 | 0.63601 |
1,1,1 | PM2.5 (2) + PM10 (3) + Average Temperature (5) | 123.466 | 0.67957 |
No | Correlation | p-Value | Variable | Method | Region | References |
---|---|---|---|---|---|---|
1 | Correlated | <0.05 | Mean PM2.5 | Pearson | Italy | [60] |
2 | Correlated | <0.01 | Mean PM2.5 | Pearson | Northern Italy | [61] |
3 | Correlated | <0.01 | Mean PM10 | Spearman | California, US | [62] |
Correlated | <0.01 | Mean PM2.5 | ||||
Correlated | <0.01 | Mean PM10 | ||||
4 | Significant | <0.01 | Mean temperature | Spearman | China | [7] |
5 | Not correlated | 0.28 | Mean temperature | Multiple regression | China City inside Hubei | [24] |
correlated | <0.05 | Mean temperature | Pearson | Lima, Peru | Current study | |
6 | Not correlated | >0.05 | Mean PM2.5 | |||
Correlated | <0.05 | Mean PM10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, T.-C.; Pacheco, A.M.; Iswara, A.P.; Dermawan, D.; Andhikaputra, G.; Chiang Hsieh, L.-H. Sustainable Ambient Environment to Prevent Future Outbreaks: How Ambient Environment Relates to COVID-19 Local Transmission in Lima, Peru. Sustainability 2020, 12, 9277. https://doi.org/10.3390/su12219277
Kuo T-C, Pacheco AM, Iswara AP, Dermawan D, Andhikaputra G, Chiang Hsieh L-H. Sustainable Ambient Environment to Prevent Future Outbreaks: How Ambient Environment Relates to COVID-19 Local Transmission in Lima, Peru. Sustainability. 2020; 12(21):9277. https://doi.org/10.3390/su12219277
Chicago/Turabian StyleKuo, Tsai-Chi, Ana Maria Pacheco, Aditya Prana Iswara, Denny Dermawan, Gerry Andhikaputra, and Lin-Han Chiang Hsieh. 2020. "Sustainable Ambient Environment to Prevent Future Outbreaks: How Ambient Environment Relates to COVID-19 Local Transmission in Lima, Peru" Sustainability 12, no. 21: 9277. https://doi.org/10.3390/su12219277
APA StyleKuo, T.-C., Pacheco, A. M., Iswara, A. P., Dermawan, D., Andhikaputra, G., & Chiang Hsieh, L.-H. (2020). Sustainable Ambient Environment to Prevent Future Outbreaks: How Ambient Environment Relates to COVID-19 Local Transmission in Lima, Peru. Sustainability, 12(21), 9277. https://doi.org/10.3390/su12219277