The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature
Abstract
:1. Introduction
2. COVID-19 and Its Presence in Human Faeces
2.1. Diarrhea and Its Association with COVID-19
2.2. COVID-19 in Faecal Samples
3. Urban Water Cycle as Tool for SARS-CoV-2 Epidemiology
3.1. Urban Water Cycle
3.2. Wastewater and SARS-CoV-2
4. Analysis for Each UWC Component
4.1. Wastewater Treatment Plants (WWTPs)
4.2. Sewer Systems
4.3. Surface Waters/Groundwater
4.4. Wastewater from Hospitals
4.5. Benefits and Outcomes of Monitoring the Different UWC Components
4.6. Spatial Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Sallard, E.; Lescure, F.-X.; Yazdanpanah, Y.; Mentre, F.; Peiffer-Smadja, N. Type 1 interferons as a potential treatment against COVID-19. Antivir. Res. 2020, 178, 104791. [Google Scholar] [CrossRef]
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 Infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20, 400–402. [Google Scholar] [CrossRef]
- Tsai, J.; Wilson, M. COVID-19: A potential public health problem for homeless populations. Lancet Public Health 2020, 5, e186–e187. [Google Scholar] [CrossRef]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Dhar, D.; Nath, D.; Ghangrekar, M.M.; Banerjee, R.; Das, S.; Chatterjee, J. Coronavirus disease 2019 (COVID-19) outbreak: Some serious consequences with urban and rural water cycle. Npj Clean Water 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Heller, L.; Mota, C.R.; Greco, D.B. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci. Total Environ. 2020, 729, 138919. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, X.; Xu, H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin. Gastroenterol. Hepatol. 2020, 18, 1636–1637. [Google Scholar] [CrossRef]
- Sultan, S.; Altayar, O.; Siddique, S.M.; Davitkov, P.; Feuerstein, J.D.; Lim, J.K.; Falck-Ytter, Y.; El-Serag, H.B. AGA institute rapid review of the gastrointestinal and liver manifestations of COVID-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology 2020, 159, 320–334. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, F.; Baumgart, D.C.; Danese, S.; Peyrin-Biroulet, L. Diarrhea During COVID-19 Infection: Pathogenesis, epidemiology, prevention, and management. Clin. Gastroenterol. Hepatol. 2020, 18, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology 2020, 158, 1518–1519. [Google Scholar] [CrossRef]
- Huldani, N.; Uinarni, H.; Sukmana, B.I.; Tommy, T.; Said, M.F.; Edyson, N.; Eso, A.; Sitepu, R.K.; Arifin, E.M.; Mawu, F.O.; et al. Corona virus infectious disease 19 (COVID-19) in various reviews. Syst. Rev. Pharm. 2020, 11, 58–68. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Lopes, A.L.F.; Pacheco, G.; de Sá Guimarães Nolêto, I.R.; Nicolau, L.A.D.; Medeiros, J.V.R. Premises among SARS-CoV-2, dysbiosis and diarrhea: Walking through the ACE2/MTOR/autophagy route. Med. Hypotheses 2020, 144, 110243. [Google Scholar] [CrossRef]
- Li, X.-Y.; Dai, W.-J.; Wu, S.-N.; Yang, X.-Z.; Wang, H.-G. The occurrence of diarrhea in COVID-19 patients. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 284–285. [Google Scholar] [CrossRef]
- Wei, X.-S.; Wang, X.; Niu, Y.-R.; Ye, L.-L.; Peng, W.-B.; Wang, Z.-H.; Yang, W.-B.; Yang, B.-H.; Zhang, J.-C.; Ma, W.-L.; et al. Diarrhea is associated with prolonged symptoms and viral carriage in corona virus disease 2019. Clin. Gastroenterol. Hepatol. 2020, 18, 1753–1759. [Google Scholar] [CrossRef]
- Wong, S.H.; Lui, R.N.; Sung, J.J. COVID-19 and the digestive system. J. Gastroenterol. Hepatol. 2020, 35, 744–748. [Google Scholar] [CrossRef]
- Xu, J.; Chu, M.; Zhong, F.; Tan, X.; Tang, G.; Mai, J.; Lai, N.; Guan, C.; Liang, Y.; Liao, G. Digestive symptoms of COVID-19 and expression of ACE2 in digestive tract organs. Cell Death Discov. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Yan, Q.; Zhang, S.; Wang, Y.; Li, Y. A Case of COVID-19 patient with the diarrhea as initial symptom and literature review. Clin. Res. Hepatol. Gastroenterol. 2020, 44, e109–e112. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Chan, P.P.Y.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.H.; Tam, A.R.; et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Kipkorir, V.; Cheruiyot, I.; Ngure, B.; Misiani, M.; Munguti, J. Prolonged SARS-CoV-2 RNA detection in anal/rectal swabs and stool specimens in COVID-19 patients after negative conversion in nasopharyngeal RT-PCR test. J. Med. Virol. 2020, 92, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833. [Google Scholar] [CrossRef]
- Xing, Y.-H.; Ni, W.; Wu, Q.; Li, W.-J.; Li, G.-J.; Wang, W.-D.; Tong, J.-N.; Song, X.-F.; Wing-Kin Wong, G.; Xing, Q.-S. Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J. Microbiol. Immunol. Infect. 2020, 53, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.-Q.; Zhang, H.-Y.; Zhao, H.; Che, T.-L.; Zhang, A.-R.; Liu, M.-J.; Shi, W.-Q.; Guo, J.-P.; Zhang, Y.; Liu, W.; et al. Meteorological conditions and nonpharmaceutical interventions jointly determined local transmissibility of COVID-19 in 41 Chinese cities: A retrospective observational study. Lancet Reg. Health West. Pac. 2020, 2, 100020. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.-T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, L.; Deng, Q.; Zhang, G.; Wu, K.; Ni, L.; Yang, Y.; Liu, B.; Wang, W.; Wei, C.; et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol. 2020, 92, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.A.; Melgarejo, J.; Prats, D.; Torres, A.; Martínez, S. Urban water cycle simulation/management models: A review. Water 2017, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Naddeo, V.; Liu, H. Editorial perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond? Environ. Sci. Water Res. Technol. 2020, 6, 1213–1216. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Jones, D.L.; Baluja, M.Q.; Graham, D.W.; Corbishley, A.; McDonald, J.E.; Malham, S.K.; Hillary, L.S.; Connor, T.R.; Gaze, W.H.; Moura, I.B.; et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Sci. Total Environ. 2020, 749, 141364. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Menon, N.G.; Mohapatra, G.; Pisharody, L.; Pattnaik, A.; Menon, N.G.; Bhukya, P.L.; Srivastava, M.; Singh, M.; Barman, M.K.; et al. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. Sci. Total Environ. 2020, 765, 142746. [Google Scholar] [CrossRef]
- Langone, M.; Petta, L.; Cellamare, C.M.; Ferraris, M.; Guzzinati, R.; Mattioli, D.; Sabia, G. SARS-CoV-2 in water services: Presence and impacts. Environ. Pollut. 2021, 268, 115806. [Google Scholar] [CrossRef]
- Bogler, A.; Packman, A.; Furman, A.; Gross, A.; Kushmaro, A.; Ronen, A.; Dagot, C.; Hill, C.; Vaizel-Ohayon, D.; Morgenroth, E.; et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat. Sustain. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Sharma, S.; Dwivedi, S.K. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resour. Conserv. Recycl. 2021, 164, 105156. [Google Scholar] [CrossRef]
- Graham, K.; Loeb, S.; Wolfe, M.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K.; Sassoubre, L.; Mendoza, L.; Roldan-Hernandez, L.; et al. SARS-CoV-2 in wastewater settled solids is associated with COVID-19 cases in a large urban Sewershed. medRxiv 2020, 1–35. [Google Scholar] [CrossRef]
- Lee, I.-C.; Huo, T.-I.; Huang, Y.-H. Gastrointestinal and liver manifestations in patients with COVID-19. J. Chin. Med. Assoc. 2020, 83, 521–523. [Google Scholar] [CrossRef]
- Wurtzer, S.; Waldman, P.; Ferrier-Rembert, A.; Frenois-Veyrat, G.; Mauchel, J.; Boni, M.; Maday, Y.; OBEPINE consortium; Marechal, V.; Moulin, L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. Water Reserch 2021, 198, 117183. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Barcelo, D. An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J. Environ. Chem. Eng. 2020, 8, 104006. [Google Scholar] [CrossRef]
- Kumar, M.; Joshi, M.; Patel, A.K.; Joshi, C.G. Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environ. Res. 2021, 196, 110946. [Google Scholar] [CrossRef]
- Maal-Bared, R.; Brisolara, K.; Munakata, N.; Bibby, K.; Gerba, C.; Sobsey, M.; Schaefer, S.; Swift, J.; Gary, L.; Sherchan, S.; et al. Implications of SARS-CoV-2 on current and future operation and management of wastewater systems. Water Environ. Res. 2020, 93, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Rothman, J.A.; Loveless, T.B.; Griffith, M.L.; Steele, J.A.; Griffith, J.F.; Whiteson, K.L. Metagenomics of wastewater influent from Southern California wastewater treatment facilities in the era of COVID-19. Microbiol. Resour. Announc. 2020, 9, e00907-20. [Google Scholar] [CrossRef]
- Torii, S.; Furumai, H.; Katayama, H. Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater. Sci. Total Environ. 2020, 756, 143067. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, C. Sewage monitoring is the UK’s next defence against COVID-19. BMJ 2020, 370, m2599. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, N.G.; Gebhard, L.G.; Carballeda, J.M.; Aiello, I.; Recalde, E.; Terny, G.; Ambrosolio, S.; L’Arco, G.; Konfino, J.; Brardinelli, J.I. SARS-CoV-2 surveillance in untreated wastewater: First detection in a low-resource community in Buenos Aires, Argentina. medRxiv 2020, 1–14. [Google Scholar] [CrossRef]
- Barril, P.A.; Pianciola, L.A.; Mazzeo, M.; Ousset, M.J.; Jaureguiberry, M.V.; Alessandrello, M.; Sánchez, G.; Oteiza, J.M. Evaluation of viral concentration methods for SARS-CoV-2 recovery from wastewaters. Sci. Total Environ. 2021, 756, 144105. [Google Scholar] [CrossRef]
- Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan, S.P.; et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Bivins, A.; Bibby, K.; Farkas, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B.R.; et al. Comparison of virus concentration methods for the RT-QPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020, 739, 139960. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Tscharke, B.; Bertsch, P.M.; Bibby, K.; Bivins, A.; Choi, P.; Clarke, L.; Dwyer, J.; Edson, J.; Nguyen, T.M.H.; et al. SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Sci. Total Environ. 2021, 761, 144216. [Google Scholar] [CrossRef] [PubMed]
- Sapula, S.A.; Whittall, J.J.; Pandopulos, A.J.; Gerber, C.; Venter, H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 785, 147270. [Google Scholar] [CrossRef]
- Ahmed, F.; Islam, M.A.; Kumar, M.; Hossain, M.; Bhattacharya, P.; Islam, M.T.; Hossen, F.; Hossain, M.S.; Islam, M.S.; Uddin, M.M.; et al. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation center through wastewater surveillance in Bangladesh. medRxiv 2020. [Google Scholar] [CrossRef]
- Jorgensen, A.U.; Gamst, J.; Hansen, L.V.; Knudsen, I.I.H.; Jensen, S.K.S. Eurofins covid-19 sentinel TM wastewater test provide early warning of a potential COVID-19 outbreak. medRxiv 2020. [Google Scholar] [CrossRef]
- Tim, B.; Jacobs, L.; Roeck, N.D.; den Bogaert, S.V.; Aertgeerts, B.; Lahousse, L.; van Nuijs, A.L.N.; Delputte, P. An alternative approach for bioanalytical assay development for wastewater-based epidemiology of SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
- Fongaro, G.; Stoco, P.H.; Souza, D.S.M.; Grisard, E.C.; Magri, M.E.; Rogovski, P.; Schorner, M.A.; Barazzetti, F.H.; Christoff, A.P.; de Oliveira, L.F.V.; et al. SARS-CoV-2 in human sewage in Santa Catalina, Brazil. medRxiv 2020. [Google Scholar] [CrossRef]
- Prado, T.; Fumian, T.M.; Mannarino, C.F.; Maranhão, A.G.; Siqueira, M.M.; Miagostovich, M.P.; Prado, T.; Fumian, T.M.; Mannarino, C.F.; Maranhão, A.G.; et al. Preliminary results of SARS-CoV-2 detection in sewerage system in Niterói Municipality, Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 2020, 115, 1–3. [Google Scholar] [CrossRef]
- Zaneti, R.N.; Girardi, V.; Spilki, F.R.; Mena, K.; Westphalen, A.P.C.; da Costa Colares, E.R.; Pozzebon, A.G.; Etchepare, R.G. QMRA of SARS-CoV-2 for workers in wastewater treatment plants. medRxiv 2020. [Google Scholar] [CrossRef]
- Zaneti, R.N.; Girardi, V.; Spilki, F.R.; Mena, K.; Westphalen, A.P.C.; da Costa Colares, E.R.; Pozzebon, A.G.; Etchepare, R.G. Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Sci. Total Environ. 2021, 754, 142163. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; Fumian, T.M.; Mannarino, C.F.; Resende, P.C.; Motta, F.C.; Eppinghaus, A.L.F.; Chagas do Vale, V.H.; Braz, R.M.S.; de Andrade, J.d.S.R.; Maranhão, A.G.; et al. Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Res. 2021, 191, 116810. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.C.; Torres-Franco, A.F.; Lopes, B.C.; da Silva Santos, B.S.Á.; Costa, E.A.; Costa, M.S.; Reis, M.T.P.; Melo, M.C.; Polizzi, R.B.; Teixeira, M.M.; et al. Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. Water Res. 2021, 195, 117002. [Google Scholar] [CrossRef]
- Neault, N.; Baig, A.T.; Graber, T.E.; D’Aoust, P.M.; Mercier, E.; Alexandrov, I.; Crosby, D.; Mayne, J.; Pounds, T.; MacKenzie, M.; et al. SARS-CoV-2 protein in wastewater mirrors COVID-19 prevalence. medRxiv 2020. [Google Scholar] [CrossRef]
- D’Aoust, P.M.; Mercier, E.; Montpetit, D.; Jia, J.-J.; Alexandrov, I.; Neault, N.; Baig, A.T.; Mayne, J.; Zhang, X.; Alain, T.; et al. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Res. 2021, 188, 116560. [Google Scholar] [CrossRef]
- Lin, X.; Glier, M.; Kuchinski, K.; Mierlo, T.R.-V.; McVea, D.; Tyson, J.R.; Prystajecky, N.; Ziels, R.M. Assessing multiplex tiling PCR sequencing approaches for detecting genomic variants of SARS-CoV-2 in municipal wastewater. medRxiv 2021. [Google Scholar] [CrossRef]
- Chik, A.H.S.; Glier, M.B.; Servos, M.; Mangat, C.S.; Pang, X.-L.; Qiu, Y.; D’Aoust, P.M.; Burnet, J.-B.; Delatolla, R.; Dorner, S.; et al. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-QPCR: Results and implications from a collaborative inter-laboratory study in Canada. J. Environ. Sci. 2021, 107, 218–229. [Google Scholar] [CrossRef]
- D’Aoust, P.M.; Towhid, S.T.; Mercier, É.; Hegazy, N.; Tian, X.; Bhatnagar, K.; Zhang, Z.; MacKenzie, A.E.; Graber, T.E.; Delatolla, R. COVID-19 monitoring in rural communities: First comparison of lagoon and pumping station samples for wastewater-based epidemiology. medRxiv 2021. [Google Scholar] [CrossRef]
- Acosta, N.; Bautista, M.A.; Hollman, J.; McCalder, J.; Beaudet, A.B.; Man, L.; Waddell, B.J.; Chen, J.; Li, C.; Kuzma, D.; et al. Wastewater monitoring of SARS-CoV-2 from acute care hospitals identifies nosocomial transmission and outbreaks. medRxiv 2021. [Google Scholar] [CrossRef]
- Hinz, A.; Xing, L.; Doukhanine, E.; Hug, L.A.; Kassen, R.; Ormeci, B.; Kibbee, R.J.; Wong, A.; MacFadden, D.; Nott, C. SARS-CoV-2 Detection from the built environment and wastewater and its use for hospital surveillance. medRxiv 2021. [Google Scholar] [CrossRef]
- Guardado, A.L.P.; Sweeney, C.L.; Hayes, E.; Trueman, B.F.; Huang, Y.; Jamieson, R.C.; Rand, J.L.; Gagnon, G.A.; Stoddart, A.K. Development and optimization of a new method for direct extraction of SARS-CoV-2 RNA from municipal wastewater using magnetic beads. medRxiv 2020. [Google Scholar] [CrossRef]
- Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Núñez-Acuña, G.; Valenzuela-Miranda, D.; Benaventel, B.P.; Sáez-Vera, C.; Urrutia, H.; Novoa, B.; Figueras, A.; Roberts, S.; et al. The wastewater microbiome: A novel insight for COVID-19 surveillance. Sci. Total Environ. 2021, 764, 142867. [Google Scholar] [CrossRef]
- Ampuero, M.; Valenzuela, S.; Valiente-Echeverría, F.; Soto-Rifo, R.; Barriga, G.P.; Chnaiderman, J.; Rojas, C.; Guajardo-Leiva, S.; Díez, B.; Gaggero, A. SARS-CoV-2 detection in sewage in Santiago, Chile—Preliminary results. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhao, L.; Atoni, E.; Du, Y.; Zhang, H.; Donde, O.; Huang, D.; Xiao, S.; Ma, T.; Shu, Z.; Yuan, Z.; et al. First study on surveillance of SARS-CoV-2 RNA in wastewater systems and related environments in Wuhan: Post-lockdown. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, D.; Ling, H.; Huang, X.; Li, J.; Li, W.; Yi, C.; Zhang, T.; Jiang, Y.; He, Y.; Deng, S.; et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020, 741, 140445. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Kong, W.-H.; Wang, S.; Long, Y.-B.; Dong, L.-H.; He, Z.-Y.; Liu, M.-Q. Detection of SARS-CoV-2 RNA in medical wastewater in Wuhan during the COVID-19 outbreak. Virol. Sin. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mlejnkova, H.; Sovova, K.; Vasickova, P.; Ocenaskova, V.; Jasikova, L.; Juranova, E. Preliminary study of Sars-Cov-2 occurrence in wastewater in the Czech Republic. Int. J. Environ. Res. Public. Health 2020, 17, 5508. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Klapsa, D.; Wilton, T.; Zambon, M.; Bentley, E.; Bujaki, E.; Fritzsche, M.; Mate, R.; Majumdar, M. Tracking SARS-CoV-2 in sewage: Evidence of changes in virus variant predominance during COVID-19 pandemic. Viruses 2020, 12, 1144. [Google Scholar] [CrossRef]
- Wilton, T.; Bujaki, E.; Klapsa, D.; Majumdar, M.; Zambon, M.; Fritzsche, M.; Mate, R.; Martin, J. Rapid increase of SARS-CoV-2 variant, B.1.1.7 detected in sewage samples from England between October 2020 and January 2021. mSystems 2021, 6, e0035321. [Google Scholar] [CrossRef] [PubMed]
- Hillary, L.S.; Farkas, K.; Maher, K.H.; Lucaci, A.; Thorpe, J.; Distaso, M.A.; Gaze, W.H.; Paterson, S.; Burke, T.; Connor, T.R.; et al. Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Res. 2021, 200, 117214. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Latorre, L.; Ballesteros, I.; Villacrés-Granda, I.; Granda, M.G.; Freire-Paspuel, B.; Ríos-Touma, B. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci. Total Environ. 2020, 743, 140832. [Google Scholar] [CrossRef] [PubMed]
- Hokajärvi, A.-M.; Rytkönen, A.; Tiwari, A.; Kauppinen, A.; Oikarinen, S.; Lehto, K.-M.; Kankaanpää, A.; Gunnar, T.; Al-Hello, H.; Blomqvist, S.; et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Sci. Total Environ. 2021, 770, 145274. [Google Scholar] [CrossRef] [PubMed]
- Wurtzer, S.; Marechal, V.; Mouchel, J.-M.; Moulin, L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Trottier, J.; Darques, R.; Ait Mouheb, N.; Partiot, E.; Bakhache, W.; Deffieu, M.S.; Gaudin, R. Post-lockdown detection of SARS-CoV-2 RNA in the wastewater of Montpellier, France. One Health 2020, 10, 100157. [Google Scholar] [CrossRef]
- Wurtz, N.; Lacoste, A.; Jardot, P.; Delache, A.; Fontaine, X.; Verlande, M.; Annessi, A.; Giraud-Gatineau, A.; Chaudet, H.; Fournier, P.-E.; et al. Viral RNA in city wastewater as a key indicator of COVID-19 recrudescence and containment measures effectiveness. Front. Microbiol. 2021, 12, 1157. [Google Scholar] [CrossRef]
- Lazuka, A.; Arnal, C.; Soyeux, E.; Sampson, M.; Lepeuple, A.-S.; Deleuze, Y.; Duteil, S.P.; Lacroix, S. COVID-19 wastewater based epidemiology: Long-term monitoring of 10 WWTP in France reveals the importance of the sampling context. medRxiv 2021. [Google Scholar] [CrossRef]
- Westhaus, S.; Weber, F.-A.; Schiwy, S.; Linnemann, V.; Brinkmann, M.; Widera, M.; Greve, C.; Janke, A.; Hollert, H.; Wintgens, T.; et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany—Suitability for COVID-19 surveillance and potential transmission risks. Sci. Total Environ. 2021, 751, 141750. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Lackner, S. Long-term monitoring of SARS-CoV-2 in wastewater of the Frankfurt metropolitan area in Southern Germany. medRxiv 2020. [Google Scholar] [CrossRef]
- Dumke, R.; de la Cruz Barron, M.; Oertel, R.; Helm, B.; Kallies, R.; Berendonk, T.U.; Dalpke, A. Evaluation of two methods to concentrate SARS-CoV-2 from untreated wastewater. Pathogens 2021, 10, 195. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Lackner, S. Metatranscriptomic analysis reveals SARS-CoV-2 mutations in wastewater of the Frankfurt metropolitan area in Southern Germany. Microbiol. Resour. Announc. 2021, 10, e00280-21. [Google Scholar] [CrossRef]
- Petala, M.; Dafou, D.; Kostoglou, M.; Karapantsios, T.; Kanata, E.; Chatziefstathiou, A.; Sakaveli, F.; Kotoulas, K.; Arsenakis, M.; Roilides, E.; et al. A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of Thessaloniki in Greece. Sci. Total Environ. 2020, 755, 142855. [Google Scholar] [CrossRef]
- Pechlivanis, N.; Tsagiopoulou, M.; Maniou, M.C.; Tougkousidis, A.; Laidou, S.; Vlachonikola, E.; Mouchtaropoulou, E.; Chassalevris, T.; Chaintoutis, S.; Dovas, C.; et al. Detecting SARS-CoV-2 lineages and mutational load in municipal wastewater; A use-case in the metropolitan area of Thessaloniki, Greece. medRxiv 2021. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, X.; Li, S.; Lam, N.S.; Wang, Y.; Chu, D.K.W.; Poon, L.L.M.; Tun, H.M.; Peiris, M.; Deng, Y.; et al. The first case study of wastewater-based epidemiology of COVID-19 in Hong Kong. Sci. Total Environ. 2021, 790, 148000. [Google Scholar] [CrossRef]
- Róka, E.; Khayer, B.; Kis, Z.; Kovács, L.B.; Schuler, E.; Magyar, N.; Málnási, T.; Oravecz, O.; Pályi, B.; Pándics, T.; et al. Ahead of the second wave: Early warning for COVID-19 by wastewater surveillance in Hungary. Sci. Total Environ. 2021, 786, 147398. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Hemalatha, M.; Kopperi, H.; Ranjith, I.; Kumar, A.K. Comprehensive surveillance of SARS-CoV-2 spread using wastewater-based epidemiology studies. medRxiv 2020. [Google Scholar] [CrossRef]
- Arora, S.; Nag, A.; Sethi, J.; Rajvanshi, J.; Saxena, S.; Shrivastava, S.K.; Gupta, A.B. Sewage surveillance for the presence of SARS-CoV-2 genome as a useful Wastewater Based Epidemiology (WBE) tracking tool in India. Water Sci. Technol. 2020, 82, 2823–2836. [Google Scholar] [CrossRef]
- Hemalatha, M.; Tharak, A.; Kopperi, H.; Kiran, U.; Gokulan, C.G.; Mishra, R.K.; Mohan, S.V. Comprehensive and temporal surveillance of SARS-CoV-2 in urban water bodies: Early signal of second wave onset. medRxiv 2021. [Google Scholar] [CrossRef]
- Kumar, M.; Joshi, M.; Shah, A.V.; Srivastava, V.; Dave, S. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. Sci. Total Environ. 2021, 792, 148367. [Google Scholar] [CrossRef]
- Srivastava, V.; Gupta, S.; Patel, A.K.; Joshi, M.; Kumar, M. Comparative analysis of SARS-CoV-2 RNA load in wastewater from three different cities of Gujarat, India. medRxiv 2021. [Google Scholar] [CrossRef]
- Kumar, M.; Kuroda, K.; Joshi, M.; Bhattacharya, P.; Barcelo, D. First comparison of conventional activated sludge versus root-zone treatment for SARS-CoV-2 RNA removal from wastewaters: Statistical and temporal significance. Chem. Eng. J. 2021, 425, 130635. [Google Scholar] [CrossRef]
- Kumar, M.; Kuroda, K.; Patel, A.K.; Patel, N.; Bhattacharya, P.; Joshi, M.; Joshi, C.G. Decay of SARS-CoV-2 RNA along the wastewater treatment outfitted with Upflow Anaerobic Sludge Blanket (UASB) system evaluated through two sample concentration techniques. Sci. Total Environ. 2021, 754, 142329. [Google Scholar] [CrossRef] [PubMed]
- Tharak, A.; Kopperi, H.; Hemalatha, M.; Kiran, U.; Gokulan, C.G.; Moharir, S.; Mishra, R.K.; Mohan, S.V. Understanding SARS-CoV-2 infection and dynamics with long term wastewater based epidemiological surveillance. medRxiv 2021. [Google Scholar] [CrossRef]
- Gholipour, S.; Mohammadi, F.; Nikaeen, M.; Shamsizadeh, Z.; Khazeni, A.; Sahbaei, Z.; Mousavi, S.M.; Ghobadian, M.; Mirhendi, H. COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere 2021, 273, 129701. [Google Scholar] [CrossRef]
- Rafiee, M.; Isazadeh, S.; Mohseni-Bandpei, A.; Mohebbi, S.R.; Jahangiri-rad, M.; Eslami, A.; Dabiri, H.; Roostaei, K.; Tanhaei, M.; Amereh, F. Moore swab performs equal to composite and outperforms grab sampling for SARS-CoV-2 monitoring in wastewater. Sci. Total Environ. 2021, 790, 148205. [Google Scholar] [CrossRef]
- Or, I.B.; Yaniv, K.; Shagan, M.; Ozer, E.; Erster, O.; Mendelson, E.; Mannasse, B.; Shirazi, R.; Kramarsky-Winter, E.; Nir, O.; et al. Regressing SARS-CoV-2 sewage measurements onto COVID-19 burden in the population: A proof-of-concept for quantitative environmental surveillance. medRxiv 2020. [Google Scholar] [CrossRef]
- Ali, H.A.; Yaniv, K.; Bar-Zeev, E.; Chaudhury, S.; Shaga, M.; Lakkakula, S.; Ronen, Z.; Kushmaro, A.; Nir, O. Tracking SARS-CoV-2 RNA through the wastewater treatment process. medRxiv 2020. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Iaconelli, M.; Bonadonna, L.; Lucentini, L.; Suffredini, E. SARS-CoV-2 has been circulating in northern Italy since december 2019: Evidence from environmental monitoring. Sci. Total Environ. 2021, 750, 141711. [Google Scholar] [CrossRef]
- Jafferali, M.H.; Khatami, K.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Benchmarking virus concentration methods for quantification of SARS-CoV-2 in raw wastewater. Sci. Total Environ. 2020, 755, 142939. [Google Scholar] [CrossRef] [PubMed]
- Baldovin, T.; Amoruso, I.; Fonzo, M.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy). Sci. Total Environ. 2020, 760, 143329. [Google Scholar] [CrossRef]
- Castiglioni, S.; Schiarea, S.; Pellegrinelli, L.; Primache, V.; Galli, C.; Bubba, L.; Mancinelli, F.; Marinelli, M.; Cereda, D.; Ammoni, E.; et al. SARS-CoV-2 RNA in urban wastewater samples to monitor the COVID-19 epidemic in Lombardy, Italy (March–June 2020). medRxiv 2021. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. medRxiv 2020. [Google Scholar] [CrossRef]
- Hata, A.; Honda, R.; Hara-Yamamura, H.; Meuchi, Y. Detection of SARS-CoV-2 in wastewater in Japan by multiple molecular assays-implication for Wastewater-Based Epidemiology (WBE). medRxiv 2020. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Barragán-Trinidad, M.; Buitrón, G. Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico. J. Water Process Eng. 2021, 40, 101815. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-coronavirus-2 in sewage. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Lara, R.W.I.; Elsinga, G.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.E.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.M.; Lycett, S.; et al. Monitoring SARS-CoV-2 circulation and diversity through community wastewater sequencing. medRxiv 2020. [Google Scholar] [CrossRef]
- Lodder, W.; de Roda Husman, A.M. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef]
- Sharif, S.; Ikram, A.; Khurshid, A.; Salman, M.; Mehmood, N.; Arshad, Y.; Ahmad, J.; Angez, M.; Alam, M.M.; Rehman, L.; et al. Detection of SARS-coronavirus-2 in wastewater, using the existing environmental surveillance network: An epidemiological gateway to an early warning for COVID-19 in communities. medRxiv 2020. [Google Scholar] [CrossRef]
- Saththasivam, J.; El-Malah, S.S.; Gomez, T.A.; Jabbar, K.A.; Remanan, R.; Krishnankutty, A.K.; Ogunbiyi, O.; Rasool, K.; Ashhab, S.; Rashkeev, S.; et al. COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Sci. Total Environ. 2021, 774, 145608. [Google Scholar] [CrossRef]
- Kuryntseva, P.; Karamova, K.; Fomin, V.; Selivanovskaya, S.; Galitskaya, P. A simplified approach to monitoring the COVID-19 epidemiologic situation using waste water analysis and its application in Russia. medRxiv 2020. [Google Scholar] [CrossRef]
- Hong, P.; Rachmadi, A.T.; Mantilla-Calderon, D.; Alkahtani, M.; Bashwari, Y.M.; Qarni, H.A.; Zhou, J. How early into the outbreak can surveillance of SARS-CoV-2 in wastewater tell us? medRxiv 2020. [Google Scholar] [CrossRef]
- Hong, P.-Y.; Rachmadi, A.T.; Mantilla-Calderon, D.; Alkahtani, M.; Bashawri, Y.M.; Al Qarni, H.; O’Reilly, K.M.; Zhou, J. Estimating the minimum number of SARS-CoV-2 infected cases needed to detect viral RNA in wastewater: To what extent of the outbreak can surveillance of wastewater tell us? Environ. Res. 2021, 195, 110748. [Google Scholar] [CrossRef]
- Kolarević, S.; Micsinai, A.; Szántó-Egész, R.; Lukács, A.; Kračun-Kolarević, M.; Lundy, L.; Kirschner, A.K.T.; Farnleitner, A.H.; Djukic, A.; Čolić, J.; et al. Detection of SARS-CoV-2 RNA in the Danube river in Serbia associated with the discharge of untreated wastewaters. Sci. Total Environ. 2021, 783, 146967. [Google Scholar] [CrossRef]
- Wong, J.C.C.; Tan, J.; Lim, Y.X.; Arivalan, S.; Hapuarachchi, H.C.; Mailepessov, D.; Griffiths, J.; Jayarajah, P.; Setoh, Y.X.; Tien, W.P.; et al. Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. Sci. Total Environ. 2021, 786, 147419. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Koritnik, T.; Mioč, V.; Trkov, M.; Bolješič, M.; Berginc, N.; Prosenc, K.; Kotar, T.; Paragi, M. Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Sci. Total Environ. 2020, 755, 143226. [Google Scholar] [CrossRef] [PubMed]
- Pillay, L.; Amoah, I.D.; Deepnarain, N.; Pillay, K.; Awolusi, O.O.; Kumari, S.; Bux, F. Monitoring changes in COVID-19 infection using wastewater-based epidemiology: A South African perspective. Sci. Total Environ. 2021, 786, 147273. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Muller, C.J.F.; Ghoor, S.; Louw, J.; Archer, E.; Surujlal-Naicker, S.; Berkowitz, N.; Volschenk, M.; Bröcker, L.H.L.; Wolfaardt, G.; et al. Qualitative and quantitative detection of SARS-CoV-2 RNA in untreated wastewater in Western Cape Province, South Africa. S. Afr. Med. J. 2021, 111, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Randazzo, W.; Cuevas-Ferrando, E.; Sanjuan, R.; Domingo-Calap, P.; Sanchez, G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. medRxiv 2020. [Google Scholar] [CrossRef]
- Balboa, S.; Mauricio-Iglesias, M.; Rodriguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Sci. Total Environ. 2021, 772, 145268. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan, R.; Domingo-Calap, P. Reliability of Wastewater Analysis for Monitoring COVID-19 Incidence Revealed by a Long-Term Follow-Up Study; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Lastra, A.; Botello, J.; Pinilla, A.; Canora, J.; Sánchez, J.; Urrutia, J.I.; Fernández, P.; Zapatero, A.; Candel, F.J.; Ortega, M. How to Anticipate Public Health Indicators Using Wastewater SARS-CoV-2 Concentration During the COVID-19 Pandemic. Madrid Region Case Study; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Vallejo, J.A.; Rumbo-Feal, S.; Conde-Perez, K.; Lopez-Oriona, A.; Tarrio, J.; Reif, R.; Ladra, S.; Rodino-Janeiro, B.K.; Nasser, M.; Cid, A.; et al. Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load. medRxiv 2020. [Google Scholar] [CrossRef]
- Chavarria-Miró, G.; Anfruns-Estrada, E.; Guix, S.; Paraira, M.; Galofré, B.; Sáanchez, G.; Pintó, R.; Bosch, A. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Carcereny, A.; Martínez-Velázquez, A.; Bosch, A.; Allende, A.; Truchado, P.; Cascales, J.; Romalde, J.L.; Lois, M.; Polo, D.; Sánchez, G.; et al. Monitoring emergence of SARS-CoV-2 B.1.1.7 variant through the Spanish national SARS-CoV-2 wastewater surveillance system (VATar COVID-19) from December 2020 to March 2021. medRxiv 2021. [Google Scholar] [CrossRef]
- Rusiñol, M.; Zammit, I.; Itarte, M.; Forés, E.; Martínez-Puchol, S.; Girones, R.; Borrego, C.; Corominas, L.; Bofill-Mas, S. Monitoring waves of the COVID-19 pandemic: Inferences from WWTPs of different sizes. Sci. Total Environ. 2021, 787, 147463. [Google Scholar] [CrossRef]
- Saguti, F.; Magnil, E.; Enache, L.; Churqui, M.P.; Johansson, A.; Lumley, D.; Davidsson, F.; Dotevall, L.; Mattsson, A.; Trybala, E.; et al. Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Res. 2021, 189, 116620. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Scheidegger, A.; Bänziger, C.; Cariti, F.; Tuñas Corzon, A.; Ganesanandamoorthy, P.; Lemaitre, J.C.; Ort, C.; Julian, T.R.; Kohn, T. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Res. 2021, 200, 117252. [Google Scholar] [CrossRef]
- Huisman, J.S.; Scire, J.; Caduff, L.; Fernandez-Cassi, X.; Ganesanandamoorthy, P.; Kull, A.; Scheidegger, A.; Stachler, E.; Boehm, A.B.; Hughes, B.; et al. Wastewater-based estimation of the effective reproductive number of SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
- Kocamemi, B.A.; Kurt, H.; Sait, A.; Sarac, F.; Saatci, A.M.; Pakdemirli, B. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv 2020. [Google Scholar] [CrossRef]
- Hasan, S.W.; Ibrahim, Y.; Daou, M.; Kannout, H.; Jan, N.; Lopes, A.; Alsafar, H.; Yousef, A.F. Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Sci. Total Environ. 2020, 764, 142929. [Google Scholar] [CrossRef] [PubMed]
- Albastaki, A.; Naji, M.; Lootah, R.; Almeheiri, R.; Almulla, H.; Almarri, I.; Alreyami, A.; Aden, A.; Alghafri, R. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci. Total Environ. 2020, 760, 143350. [Google Scholar] [CrossRef]
- Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bonneau, R.; Brown, M.A.; Bushman, M.; Chai, P.R.; et al. SARS-CoV-2 titers in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K.K.; Wilkinson, R.; Wiedenheft, B. Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep. Med. 2020, 1, 100098. [Google Scholar] [CrossRef] [PubMed]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv 2020. [Google Scholar] [CrossRef]
- Crits-Christoph, A.; Kantor, R.S.; Olm, M.R.; Whitney, O.N.; Al-Shayeb, B.; Lou, Y.C.; Flamholz, A.; Kennedy, L.C.; Greenwald, H.; Hinkle, A.; et al. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. medRxiv 2020. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 Titers in wastewater are higher than expected from clinically confirmed cases. mSystems 2020, 5, e00614-20. [Google Scholar] [CrossRef]
- Gonzalez, R.; Curtis, K.; Bivins, A.; Bibby, K.; Weir, M.H.; Yetka, K.; Thompson, H.; Keeling, D.; Mitchell, J.; Gonzalez, D. COVID-19 surveillance in southeastern Virginia using wastewater-based epidemiology. Water Res. 2020, 186, 116296. [Google Scholar] [CrossRef]
- Sherchan, S.P.; Shahin, S.; Ward, L.M.; Tandukar, S.; Aw, T.G.; Schmitz, B.; Ahmed, W.; Kitajima, M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020, 743, 140621. [Google Scholar] [CrossRef]
- Miyani, B.; Fonoll, X.; Norton, J.; Mehrotra, A.; Xagoraraki, I. SARS-CoV-2 in Detroit wastewater. J. Environ. Eng. 2020, 146, 06020004. [Google Scholar] [CrossRef]
- Colosi, L.M.; Barry, K.E.; Kotay, S.M.; Porter, M.D.; Poulter, M.D.; Ratliff, C.; Simmons, W.; Steinberg, L.I.; Wilson, D.D.; Morse, R.; et al. Development of wastewater pooled surveillance of SARS-CoV-2 from congregate living settings. medRxiv 2020. [Google Scholar] [CrossRef]
- Curtis, K.; Keeling, D.; Yetka, K.; Larson, A.; Gonzalez, R. Wastewater SARS-CoV-2 concentration and loading variability from grab and 24-hour composite samples. medRxiv 2020. [Google Scholar] [CrossRef]
- Miyani, B.; Zhao, L.; Spooner, M.; Buch, S.; Gentry, Z.; Mehrotra, A.; Norton, J.; Xagoraraki, I. Early warnings of COVID-19 second wave in Detroit. J. Environ. Eng. 2021, 147, 06021004. [Google Scholar] [CrossRef]
- Juel, M.A.I.; Stark, N.; Nicolosi, B.; Lontai, J.; Lambirth, K.; Schlueter, J.; Gibas, C.; Munir, M. Performance evaluation of virus concentration methods for implementing SARS-CoV-2 wastewater based epidemiology emphasizing quick data turnaround. medRxiv 2021. [Google Scholar] [CrossRef]
- Green, H.; Wilder, M.; Middleton, F.A.; Collins, M.; Fenty, A.; Gentile, K.; Kmush, B.; Zeng, T.; Larsen, D.A. Quantification of SARS-CoV-2 and cross-assembly phage (CrAssphage) from wastewater to monitor coronavirus transmission within communities. medRxiv 2020. [Google Scholar] [CrossRef]
- Pecson, B.M.; Darby, E.; Haas, C.N.; Amha, Y.; Bartolo, M.; Danielson, R.; Dearborn, Y.; Giovanni, G.D.; Ferguson, C.; Fevig, S.; et al. Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: Findings from an interlaboratory methods evaluation in the U.S. medRxiv 2020. [Google Scholar] [CrossRef]
- Betancourt, W.W.; Schmitz, B.W.; Innes, G.K.; Brown, K.M.P.; Prasek, S.M.; Stark, E.R.; Foster, A.R.; Sprissler, R.S.; Harris, D.T.; Sherchan, S.P.; et al. Wastewater-based epidemiology for averting COVID-19 outbreaks on the University of Arizona campus. medRxiv 2020. [Google Scholar] [CrossRef]
- Philo, S.E.; Keim, E.K.; Swanstrom, R.; Ong, A.Q.W.; Burnor, E.A.; Kossik, A.L.; Harrison, J.C.; Demeke, B.A.; Zhou, N.A.; Beck, N.K.; et al. A Comparison of SARS-CoV-2 wastewater concentration methods for environmental surveillance. Sci. Total Environ. 2021, 760, 144215. [Google Scholar] [CrossRef] [PubMed]
- Weidhaas, J.; Aanderud, Z.; Roper, D.; VanDerslice, J.; Gaddis, E.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y.; et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. medRxiv 2020. [Google Scholar] [CrossRef]
- Li, B.; Di, D.Y.W.; Saingam, P.; Jeon, M.K.; Yan, T. Fine-scale temporal dynamics of SARS-CoV-2 RNA abundance in wastewater during a COVID-19 lockdown. Water Res. 2021, 197, 117093. [Google Scholar] [CrossRef]
- Barich, D.; Slonczewski, J.L. Wastewater virus detection complements clinical COVID-19 testing to limit spread of infection at Kenyon College. medRxiv 2021. [Google Scholar] [CrossRef]
- Feng, S.; Roguet, A.; McClary-Gutierrez, J.S.; Newton, R.J.; Kloczko, N.; Meiman, J.G.; McLellan, S.L. Evaluation of sampling frequency and normalization of SARS-CoV-2 wastewater concentrations for capturing COVID-19 burdens in the community. medRxiv 2021. [Google Scholar] [CrossRef]
- Gibas, C.; Lambirth, K.; Mittal, N.; Juel, M.A.I.; Barua, V.B.; Roppolo Brazell, L.; Hinton, K.; Lontai, J.; Stark, N.; Young, I.; et al. Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus. Sci. Total Environ. 2021, 782, 146749. [Google Scholar] [CrossRef] [PubMed]
- Gerrity, D.; Papp, K.; Stoker, M.; Sims, A.; Frehner, W. Early-pandemic wastewater surveillance of SARS-CoV-2 in southern Nevada: Methodology, occurrence, and incidence/prevalence considerations. Water Res. X 2021, 10, 100086. [Google Scholar] [CrossRef]
- Greenwald, H.D.; Kennedy, L.C.; Hinkle, A.; Whitney, O.N.; Fan, V.B.; Crits-Christoph, A.; Harris-Lovett, S.; Flamholz, A.I.; Al-Shayeb, B.; Liao, L.D.; et al. Interpretation of temporal and spatial trends of SARS-CoV-2 RNA in San Francisco Bay area wastewater. medRxiv 2021. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Archana, A.; Catoe, D.; Coffman, M.M.; Dorevich, S.; Graham, K.E.; Kim, S.; Grijalva, L.M.; Roldan-Hernandez, L.; Silverman, A.I.; et al. Scaling of SARS-CoV-2 RNA in settled solids from multiple wastewater treatment plants to compare incidence rates of laboratory-confirmed COVID-19 in their sewersheds. Environ. Sci. Technol. Lett. 2021, 8, 398–404. [Google Scholar] [CrossRef]
- Bivins, A.; North, D.; Wu, Z.; Shaffer, M.; Ahmed, W.; Bibby, K. Within-day variability of SARS-CoV-2 RNA in municipal wastewater influent during periods of varying COVID-19 prevalence and positivity. medRxiv 2021. [Google Scholar] [CrossRef]
- Crowe, J.; Schnaubelt, A.T.; Schmidt-Bonne, S.; Angell, K.; Bai, J.; Eske, T.; Nicklin, M.; Pratt, C.; White, B.; Crotts-Hannibal, B.; et al. Pilot program for test-based SARS-CoV-2 screening and environmental monitoring in an urban public school district. medRxiv 2021. [Google Scholar] [CrossRef]
- Scott, L.C.; Aubee, A.; Babahaji, L.; Vigil, K.; Tims, S.; Aw, T.G. Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environ. Res. 2021, 200, 111374. [Google Scholar] [CrossRef]
- Reeves, K.; Leibig, J.; Feula, A.; Saldi, T.; Lasda, E.; Johnson, W.; Lilienfeld, J.; Maggi, J.; Pulley, K.; Wilkerson, P.J.; et al. High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention. medRxiv 2021. [Google Scholar] [CrossRef]
- Simpson, A.; Topol, A.; White, B.; Wolfe, M.K.; Wigginton, K.; Boehm, A.B. Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids. medRxiv 2021. [Google Scholar] [CrossRef]
- Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bushman, M.; Chai, P.R.; Duvallet, C.; Erickson, T.B.; et al. Wastewater surveillance of SARS-CoV-2 across 40 U.S. states. medRxiv 2021. [Google Scholar] [CrossRef]
- Stadler, L.B.; Ensor, K.B.; Clark, J.R.; Kalvapalle, P.; LaTurner, Z.W.; Mojica, L.; Terwilliger, A.; Zhuo, Y.; Ali, P.; Avadhanula, V.; et al. Wastewater analysis of SARS-CoV-2 as a predictive metric of positivity rate for a major metropolis. medRxiv 2020. [Google Scholar] [CrossRef]
- Melvin, R.G.; Chaudhry, N.; Georgewill, O.; Freese, R.; Simmons, G.E. Predictive power of SARS-CoV-2 wastewater surveillance for diverse populations across a large geographical range. medRxiv 2021. [Google Scholar] [CrossRef]
- Wilder, M.L.; Middleton, F.; Larsen, D.A.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, M.; Kmush, B.; et al. Co-Quantification of CrAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. Water Res. X 2021, 11, 100100. [Google Scholar] [CrossRef] [PubMed]
- LaTurner, Z.W.; Zong, D.M.; Kalvapalle, P.; Gamas, K.R.; Terwilliger, A.; Crosby, T.; Ali, P.; Avadhanula, V.; Santos, H.H.; Weesner, K.; et al. Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology. Water Res. 2021, 197, 117043. [Google Scholar] [CrossRef]
- Smyth, D.S.; Trujillo, M.; Cheung, K.; Gao, A.; Hoxie, I.; Kannoly, S.; Kubota, N.; Markman, M.; San, K.M.; Sompanya, G.; et al. Detection of mutations associated with variants of concern via high throughput sequencing of SARS-CoV-2 isolated from NYC wastewater. medRxiv 2021. [Google Scholar] [CrossRef]
- Ai, Y.; Davis, A.; Jones, D.; Lemeshow, S.; Tu, H.; He, F.; Ru, P.; Pan, X.; Bohrerova, Z.; Lee, J. Wastewater-based epidemiology for tracking COVID-19 trend and variants of concern in Ohio, United States. medRxiv 2021. [Google Scholar] [CrossRef]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef]
- Lahrich, S.; Laghrib, F.; Farahi, A.; Bakasse, M.; Saqrane, S.; El Mhammedi, M.A. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. Sci. Total Environ. 2021, 751, 142325. [Google Scholar] [CrossRef] [PubMed]
- Cahill, N.; Morris, D. Recreational waters—A potential transmission route for SARS-CoV-2 to humans? Sci. Total Environ. 2020, 740, 140122. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Bilal, M.; Naushad, M. Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities. J. Water Process Eng. 2020, 39, 101735. [Google Scholar] [CrossRef]
- Balboa, S.; Mauricio-Iglesias, M.; Rodríguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-CoV-2 in wastewater treatment plants points out the sludge line as a suitable spot for incidence monitoring. medRxiv 2020. [Google Scholar] [CrossRef]
- Amoah, I.D.; Kumari, S.; Bux, F. Coronaviruses in wastewater processes: Source, fate and potential risks. Environ. Int. 2020, 143, 105962. [Google Scholar] [CrossRef]
- Baz, S.E.; Imziln, B. Can aerosols and wastewater be considered as potential transmissional sources of COVID-19 to humans? Eur. J. Environ. Public Health 2020, 4, em0047. [Google Scholar] [CrossRef]
- Gormley, M.; Aspray, T.J.; Kelly, D.A. COVID-19: Mitigating transmission via wastewater plumbing systems. Lancet Glob. Health 2020, 8, e643. [Google Scholar] [CrossRef] [Green Version]
- Dada, A.C.; Gyawali, P. Quantitative Microbial Risk Assessment (QMRA) of occupational exposure to SARS-CoV-2 in wastewater treatment plants. Sci. Total Environ. 2020, 763, 142989. [Google Scholar] [CrossRef] [PubMed]
- Bivins, A.; North, D.; Ahmad, A.; Ahmed, W.; Alm, E.; Been, F.; Bhattacharya, P.; Bijlsma, L.; Boehm, A.B.; Brown, J.; et al. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environ. Sci. Technol. 2020, 54, 7754–7757. [Google Scholar] [CrossRef]
- Lesimple, A.; Jasim, S.Y.; Johnson, D.J.; Hilal, N. The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. J. Water Process Eng. 2020, 38, 101544. [Google Scholar] [CrossRef]
- Xagoraraki, I.; O’Brien, E. Wastewater-based epidemiology for early detection of viral outbreaks. In Women in Water Quality: Investigations by Prominent Female Engineers; O’Bannon, D.J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 75–97. ISBN 978-3-030-17819-2. [Google Scholar]
- Achak, M.; Alaoui Bakri, S.; Chhiti, Y.; M’hamdi Alaoui, F.E.; Barka, N.; Boumya, W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 2020, 761, 143192. [Google Scholar] [CrossRef]
- Wang, X.W.; Li, J.; Guo, T.; Zhen, B.; Kong, Q.; Yi, B.; Li, Z.; Song, N.; Jin, M.; Xiao, W.; et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th hospital of the Chinese people’s liberation army. Water Sci. Technol. 2005, 52, 213–221. [Google Scholar] [CrossRef]
- Panchal, D.; Prakash, O.; Bobde, P.; Pal, S. SARS-CoV-2: Sewage surveillance as an early warning system and challenges in developing countries. Environ. Sci. Pollut. Research 2021, 28, 22221–22240. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Hanna, K. Existence of SARS-CoV-2 in wastewater: Implications for its environmental transmission in developing communities. Environ. Sci. Technol. 2020, 54, 7758–7759. [Google Scholar] [CrossRef] [PubMed]
- Street, R.; Malema, S.; Mahlangeni, N.; Mathee, A. Wastewater surveillance for COVID-19: An African perspective. Sci. Total Environ. 2020, 743, 140719. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef]
- Farkas, K.; Hillary, L.S.; Malham, S.K.; McDonald, J.E.; Jones, D.L. Wastewater and public health: The potential of wastewater surveillance for monitoring COVID-19. Curr. Opin. Environ. Sci. Health 2020, 17, 14–20. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Collivignarelli, C.; Carnevale Miino, M.; Abbà, A.; Pedrazzani, R.; Bertanza, G. SARS-CoV-2 in sewer systems and connected facilities. Process Saf. Environ. Prot. 2020, 143, 196–203. [Google Scholar] [CrossRef]
- Carducci, A.; Federigi, I.; Liu, D.; Thompson, J.R.; Verani, M. Making waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. Water Res. 2020, 179, 115907. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Cuevas-Ferrando, E.; Randazzo, W.; Falcó, I.; Allende, A.; Sánchez, G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 758, 143870. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Ferrando, E.; Pérez-Cataluña, A.; Allende, A.; Guix, S.; Randazzo, W.; Sánchez, G. Recovering coronavirus from large volumes of water. Sci. Total Environ. 2020, 762, 143101. [Google Scholar] [CrossRef]
- Bhatt, A.; Arora, P.; Prajapati, S.K. Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. J. Environ. Chem. Eng. 2020, 8, 104429. [Google Scholar] [CrossRef] [PubMed]
- Poch, M.; Garrido-Baserba, M.; Corominas, L.; Perelló-Moragues, A.; Monclús, H.; Cermerón-Romero, M.; Melitas, N.; Jiang, S.C.; Rosso, D. When the fourth water and digital revolution encountered COVID-19. Sci. Total Environ. 2020, 744, 140980. [Google Scholar] [CrossRef]
- Kopperi, H.; Tharak, A.; Hemalatha, M.; Kiran, U.; Gokulan, C.G.; Mishra, R.K.; Mohan, S.V. Defining the methodological approach for wastewater based epidemiological studies–surveillance of SARS-CoV-2. Environ. Technol. Innov. 2021, 23, 101696. [Google Scholar] [CrossRef] [PubMed]
Authors | Country | Number of Patients | Comments |
---|---|---|---|
[26] | China | 73 | The viral RNA test results remained positive in faecal matter forlonger than in pharyngeal swab samples. |
[28] | China | 305 | Based on a comparison between two series of patients, there was a higher positivity rate for the group with severe symptoms vs. those with mild symptoms (94.6% vs. 82.5%) |
[29] | Singapore | 18 | Using PCR, the virus was detected in the faecal matter of four out of eight patients. |
[20] | China | 84 | Faecal samples from a higher proportion of patients with diarrhea (69%) were positive for virus RNA than from patients without diarrhea (17%). |
[30] | China | 42 | The presence of SARS-CoV-2 RNA in the faeces of COVID-19 patients was not associated with gastrointestinal symptoms or disease severity. Faecal samples from 67% of patients remained positive for viral RNA after pharyngeal swabs were negative. |
[31] | USA | 1 | Analysis of faecal matter obtained on day 7 of the disease yielded positive results. |
[22] | China | 10 | Rectal smears from eight children consistently tested positive even after their nasopharyngeal tests were negative, increasing the possibility of faecal-oral transmission. |
Author | Country | WWTP | Hospital Effluent | Sewer Network | Surface Water | Drinking Water | Component of the UWC | Study Objective |
---|---|---|---|---|---|---|---|---|
[50] | Argentina | X | X | Wastewater from a pumping system and a water surface | Identify the presence of SARS-CoV-2 in surface waters and use the results as an epidemiological tool. | |||
[51] | Argentina | X | Wastewater of one WWTP | Compare various methods to determine RNA SARS-CoV-2. | ||||
[43] | Australia | X | X | Wastewater of two WWTPs and non-treated wastewater | Evaluate the presence of SARS-CoV-2 in wastewater and apply results as an epidemiological tool. | |||
[52] | Australia | X | Wastewater of one WWTP | Comparison of decay of SARS-CoV-2 of three types of wastewaters (treated and non-treated). | ||||
[53] | Australia | X | Wastewater of one WWTP | Improve methods to detect SARS-CoV-2. | ||||
[54] | Australia | X | Wastewater of three WWTPs | Evaluation as an epidemiological tool | ||||
[55] | Australia | X | Wastewater of three sewer networks | Evaluation of new method for SARS-CoV-2 measurement in wastewaters | ||||
[56] | Bangladesh | X | Wastewater from a sewer | Evaluation of the genetic load in sewers waters | ||||
[57] | Belgium | X | Wastewater from four hospitals | Evaluation of a measurement kit for SARS-CoV-2 in hospital wastewaters | ||||
[58] | Belgium | X | Wastewater of eight WWTP | Comparison of bioanalytics methods for RNA SARS-CoV-2 analysis. | ||||
[59] | Brazil | X | Wastewater at the sewer | Use as an epidemiological tool to evaluate the virus presence in wastewaters. | ||||
[60] | Brazil | X | X | X | Wastewater of two WWTPs, eight sewer locations and wastewater of two hospitals | Use as an epidemiological tool to evaluate the virus presence in wastewaters. | ||
[61] | Brazil | X | Wastewater of two WWTPs | Risk evaluation for WWTP workers using QMRA. | ||||
[62] | Brazil | X | Wastewater of two WWTPs | Risk evaluation for WWTP workers using QMRA. | ||||
[63] | Brazil | X | X | Wastewater of two WWTPs, 17 sewer specific locations | Use as an epidemiological tool to evaluate the virus presence in wastewaters. | |||
[64] | Brazil | X | X | X | Wastewater of one WWTP, 17 sewer networks and a river | Evaluation of presences of SARS-CoV-2 in different types of waters. | ||
[65] | Canada | Wastewater of one WWTP (treatment processes) | Comparison of methods to identify proteins of SARS-CoV-2 in wastewaters. | |||||
[66] | Canada | X | Solids at the sieving system and primary treatment at a WWTP | Detection of SARs-V-2 RNA en solids resulting from primary clarification of wastewaters | ||||
[67] | Canada | X | Wastewater of five WWTPs | Detection of Genomic variants of SARS-CoV-2 in wastewaters based on PCR | ||||
[68] | Canada | X | Wastewater of one WWTP | Evaluation of inter-laboratory result variability for SARS-CoV-2 analysis. | ||||
[69] | Canada | X | X | Wastewater of sewer network and lake | Use as an epidemiological tool to evaluate the virus presence. | |||
[70] | Canada | X | Wastewater of three hospitals | Evaluation of a relationship between SARS-CoV-2 dynamics COVID-19 related hospitalizations. | ||||
[71] | Canada | X | Wastewater from two hospitals | Evaluation of the prevalence of SARS-CoV-2 contact surfaces and wastewaters of two hospitals. | ||||
[72] | Canada | X | X | Wastewater of one WWTP and a sewer network | Evaluation and use of a new extraction method for ARS-CoV-2 analysis. | |||
[73] | Chile | X | Wastewater at three sewer points | Evaluation of microbiome profiles using nanopores and their relationships with SARS-CoV-2. | ||||
[74] | Chile | X | Wastewater at two sewer points | Use as an epidemiological tool to evaluate the virus presence. | ||||
[75] | China | X | X | X | Wastewater of two WWTPs, rivers, lakes and 24 hospitals | Use as an epidemiological tool to evaluate the virus presence. | ||
[76] | China | X | Wastewater from one hospital following the treatment | Evaluation of the viral load of RNA SARS-CoV-2 of a hospital septic tank and and its treatment by disinfection. | ||||
[77] | China | X | X | Wastewater of four WWTP and six hospitals | Use as an epidemiological tool to evaluate the virus presence. | |||
[78] | Czech Republic | X | Wastewater of 33 WWTPs | Use as an epidemiological tool to evaluate the virus presence. | ||||
[57] | Denmark | X | X | Wastewater of 11 WWTPs and two hospitals | Evaluation of a kit for SARS-CoV-2 analysis in hospital wastewaters and WWTPs. | |||
[79] | England | X | Wastewater of one WWTP | Use as an epidemiological tool to evaluate the virus presence. | ||||
[80] | England | X | Wastewater of one WWTP | Use as an epidemiological tool to evaluate the virus presence. | ||||
[81] | England | X | Wastewater of six WWTP | Use as an epidemiological tool to evaluate the virus presence. And evaluation of RNA removal in treatment processes. | ||||
[82] | Ecuador | X | River waters | Evaluation of SARS-CoV-2 presence in surface waters. | ||||
[83] | Finland | X | Wastewater of two WWTPs | Evaluation of characteristics and stability of SARS-CoV-2 RNA at different laboratory temperatures. | ||||
[84] | France | X | Wastewater of one WWTP | Use as an epidemiological tool to evaluate the virus presence based on PCR (RT-qPCR). | ||||
[85] | France | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters. | ||||
[57] | France | X | Wastewater of one WWTP | Efficiency evaluation of a kit for measuring SARS-CoV-2 concentrations in wastewaters of WWTPs. | ||||
[86] | France | X | Wastewater from two sewer networks | Correlations between RNA SARS-CoV-2 registered positive cases. | ||||
[87] | France | X | Wastewater of 10 WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[88] | Germany | X | Wastewater of nine WWTPs | Comparison of SARS-CoV-2 measurement methods. | ||||
[89] | Germany | X | Wastewater of two WWTPw | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[90] | Germany | X | Wastewater of one WWTP | Evaluation of methods for the detection of SARS-CoV-2 for wastewaters. | ||||
[91] | Germany | X | X | Wastewater of two WWTPs and a sewer network | Detection of new variants of SARS-CoV-2. | |||
[92] | Greece | X | Wastewater of 1 WWTP and analysis by sewer system modelling | Development of a mathematical model at different spatial levels, using physicochemical parameters to rationalize the quantitative measurements of RNA SARS-CoV-2. | ||||
[93] | Greece | X | Wastewater of one WWTP | Use different alternative methodology to detect SARS-CoV-2. | ||||
[94] | Hong Kong | X | X | X | Wastewater of one WWTP, a sewer network and a hospital sewer | Use as an epidemiological tool to evaluate the virus presence. | ||
[95] | Hungary | X | Wastewater of three WWTPs | Use as an epidemiological tool to evaluate the virus presence. | ||||
[96] | India | X | Wastewater of six WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[34] | India | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[45] | India | X | Wastewater of one WWTP (virus decay was estimated) | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[97] | India | X | X | Wastewater of six WWTPs, two hospital effluents | Correlations between SARS-CoV-2 levels in wastewaters and positive COVID-19 cases | |||
[98] | India | X | Water of five lakes from urban, peri-urban and rural zones | Evaluation of SARS-CoV-2 presence in lakes associated with different land uses. | ||||
[99] | India | X | X | Wastewater of one WWTP and eight wastewater pumping stations | Use as an epidemiological tool to evaluate the virus presence. | |||
[100] | India | X | X | X | Wastewater of six WWTPs, wastewater pumping stations and water surfaces | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||
[101] | India | X | Wastewater of two WWTPs | Comparison of SARS-CoV-2 removal by two wastewater treatments. | ||||
[102] | India | X | Wastewater of two WWTPs | Evaluation of treatment efficiency removal of SARS-CoV-2 | ||||
[103] | India | X | Wastewater of a sewer network | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[104] | Iran | X | Wastewater of two WWTPs | Evaluation of the presence of SARS-CoV-2 in wastewater and air samples and exposure risk assessment for WWTP workers using QMRA. | ||||
[105] | Iran | X | Wastewater of a sewer network | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[106] | Israel | X | X | X | Wastewater of 16 WWTPs, one hospital effluent, seven locations at the sewer system | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||
[107] | Israel | X | Wastewater of two WWTPs | Evaluation of RNA SARS-CoV-2 behaviors in an activated sludge treatment. | ||||
[108] | Italy | X | X | Wastewater of three WWTP and three receiving bodies | Quantification of RNA SARS-CoV-2 in wastewaters and source waters for epidemiological applications. | |||
[109] | Italy | X | Wastewater before treatment of three WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[110] | Italy | X | Wastewater of five WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[111] | Italy | X | Wastewater of two WWTPs | Evaluation of various methods for detection of SARS-CoV-2 in wastewaters. | ||||
[112] | Italy | X | X | Wastewater of two WWTPs and four pumping locations of a sewer system | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[113] | Italy | X | Wastewater of eight WWTPs | Alternative methods for measurement of SARS-CoV-2. | ||||
[114] | Japan | X | X | Wastewater of one WWTP and a river | Quantification of RNA SARS-CoV-2 in rivers receiving wastewater discharges. | |||
[48] | Japan | X | Wastewater of three WWTPs | Alternative methods for measurement of SARS-CoV-2. | ||||
[115] | Japan | X | Wastewater of four WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[116] | Mexico | X | Wastewater of two WWTPs | Correlations between RNA SARS-CoV-2 and registered positive cases. | ||||
[117] | Netherlands | X | Sewer system wastewater in six cities | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[118] | Netherlands | X | Wastewater of eight WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[119] | Netherlands | X | Sewer system wastewater | Emplean una metodología alternativa para la detección de SARS-CoV-2 con fines epidemiológicos. | ||||
[120] | Netherlands | X | Sewer system wastewater of an airport | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[121] | Pakistan | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[122] | Qatar | X | Wastewater of five WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[123] | Russia | X | Ten inspection boxes for wastewater | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[124] | Saudi Arabia | X | Wastewater of one hospital | Correlations between SARS-CoV-2 genes hospitalizations. Included gene detection in septic tank and activated sludge treatment effluents. | ||||
[125] | Saudi Arabia | X | Hospital wastewater effluent (at the septic tank and biological treatment) | Verification of the efficiency of the results as a tool for an epidemiological model. Also, the capacity of a water treatment system is evaluated. | ||||
[126] | Serbia | X | Three points in river waters | Evaluation of RNA SARS-CoV-2 levels in a river before and after a discharge of treated water from a WWTP | ||||
[127] | Singapore | X | Local sewer network | Use of wastewaters to evaluate COVID-19 in a residential building. | ||||
[128] | Slovenia | X | Non-treated wastewater of a hospital | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[129] | South Africa | X | Wastewater of four WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[130] | South Africa | X | Wastewater of four WWTPs | Quantification of RNA SARS-CoV-2 in 4 WWTP influents. | ||||
[131] | Spain | X | Wastewater of three WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications and evaluation of tertiary treatment impacts on SARS-CoV-2 removal. | ||||
[132] | Spain | X | Wastewater of six WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[133] | Spain | X | Wastewater of one WWTP | Quantification and behavior of RNA SARS-CoV-2 in water and sludge of a WWTP. | ||||
[134] | Spain | X | Wastewater of two WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[135] | Spain | X | Wastewater of a sewer network | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[136] | Spain | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[137] | Spain | X | Wastewater of two WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[138] | Spain | X | Wastewater of 32 WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. Evaluation of a technique to analyze SARS-CoV-2. | ||||
[139] | Spain | X | Wastewater of 32 WWTP | Evaluation of the relationship between positive cases of COVID-19 and SARS-CoV-2 levels in wastewaters. | ||||
[111] | Sweden | X | Wastewater of three WWTP | Evaluation of different methods for measuring SARS-CoV-2 in wastewaters. | ||||
[140] | Sweden | X | X | Wastewater of one WWTP and five locations at the sewer system | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[141] | Switzerland | X | Wastewater of three WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[142] | Switzerland | X | Wastewater of one WWTP | Method evaluation for the detection of SARS-CoV-2 in wastewaters | ||||
[143] | Turkey | X | X | Wastewater of seven WWTPs and manholes | Evaluation of SARS-CoV-2 presence in sludges from wastewater treatment. | |||
[144] | UAE | X | X | Wastewater of eleven WWTPs, manholes and sewer pumping systems | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[145] | UAE | X | X | Wastewater of three WWTPs, sewer system and nine pumping systems | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[146] | USA | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[147] | USA | X | Wastewater of one WWTP | Use as a tool for determination of SARS-CoV-2 genome. | ||||
[148] | USA | X | Wastewater of one WWTP | Use as a tool for determination of SARS-CoV-2 genome. | ||||
[149] | USA | X | Solids from sedimentation primary treatment of a WWTP | Evaluation of the presence of SARS-CoV-2 in sludge in a WWTP. | ||||
[150] | USA | X | Samples from four sewer interceptors | Determination of different genotypes of SARS-CoV-2. | ||||
[151] | USA | X | Wastewater of one WWTP | Description of an analytical technique to detect and quantify genetic material of SARS-CoV-2 | ||||
[152] | USA | X | Wastewater of nine WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[153] | USA | X | Wastewater of two WWTP | Used of concentration methods to evaluate SARS-CoV-2 RNA. | ||||
[154] | USA | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[155] | USA | X | X | Wastewater of one WWTP and a hospital | Comparison and validation of molecular techniques for monitoring of SARS-CoV-2 in wastewaters. | |||
[156] | USA | X | Wastewater of one WWTP | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[157] | USA | X | Wastewater of three interceptor sewer networks | Use of SARS-CoV-2 to anticipate pandemic infection peaks. | ||||
[158] | USA | X | Wastewater from a local sewer network | Evaluation of an alternative method to detect SARS-CoV-2. | ||||
[159] | USA | X | X | Wastewater of six WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[160] | USA | X | Wastewater of two WWTPs | Comparison of methods conducted in 32 laboratories to identify SARS-CoV-2. | ||||
[40] | USA | X | Wastewater of two WWTPs and solids from sedimentation primary treatment | Evaluation of SARS-CoV-2 in WWTP. | ||||
[161] | USA | X | Wastewater from a university sewer | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[162] | USA | X | Wastewater of one WWTP | Evaluation of different methods for SARS-CoV-2 analysis in wastewaters and sludge. | ||||
[163] | USA | X | X | Wastewater of 10 WWTPs and eight locations of the sewer system | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[164] | USA | X | Wastewater of two WWTPs | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[165] | USA | X | Wastewater from a local sewer network | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[166] | USA | X | Wastewater of 12 WWTPs | Determination of optimal monitoring frequency for epidemiological purposes. | ||||
[167] | USA | X | Wastewater from a university sewer network | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[168] | USA | X | X | X | Wastewater of two WWTPs, one river, one lake, three water treatment plants * | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||
[169] | USA | X | X | Wastewater of five WWTPs and one point in a local sewer system | Quantification of RNA SARS-CoV-2 in wastewaters for epidemiological applications. | |||
[170] | USA | X | Settled solids from seven WWTPs | Comparison of recorded CO-VID-19 rates with SARS-CoV-2 measurements and generation of a mass balance model between solids and SARS-CoV-2 RNA. | ||||
[142] | USA | X | Settled solids from one WWTP | Valuation of detection methods for SARS-CoV-2 in wastewaters. | ||||
[171] | USA | X | Wastewater of two WWTPs | Variability of RNA SARS-CoV-2 WWTP during different periods of the pandemic. | ||||
[172] | USA | X | Wastewater from a local sewer network | Correlation between COVID-19 in saliva RNA SARS-CoV-2 levels in wastewaters | ||||
[173] | USA | X | Wastewater from a local sewer network | Use as an epidemiological tool to evaluate the virus presence. | ||||
[174] | USA | X | Local sewer network | Quantification of de RNA SARS-CoV-2 in wastewaters for epidemiological applications. | ||||
[175] | USA | X | Settles solids from one WWTP | Evaluation of RNA SARS-CoV-2 in solids. | ||||
[176] | USA | X | X | Wastewater of a WWTP and wastewater catchment in 40 states | Use as an epidemiological tool to evaluate the virus presence. | |||
[177] | USA | X | Wastewater of 39 WWTP | Use as an epidemiological tool to evaluate the virus presence. | ||||
[178] | USA | X | Wastewater of 39 WWTP | Use as an epidemiological tool to evaluate the virus presence. | ||||
[179] | USA | X | Wastewater of 39 WWTP | Use as an epidemiological tool to evaluate the virus presence. | ||||
[180] | USA | X | Wastewater of six WWTPs | Comparison of different methods for SARS-CoV-2 quantification. | ||||
[181] | USA | X | Wastewater of 14 WWTPs | Use as an epidemiological tool to evaluate the virus presence. | ||||
[182] | USA | X | Wastewater of nine WWTPs | Use as an epidemiological tool to evaluate the virus presence. |
Component of UWC | Benefits | Outcomes |
---|---|---|
Wastewater treatment plant | High research opportunities, due to the variability of existing treatments and the combinations that can be generated. Allows monitoring of solids generated in primary and secondary treatments, where highly reliable results are obtained. Relevant for epidemiological control studies, since the wastewater contributing areas are known facilitating SARS-CoV-2 evaluations in conditions where it is not possible to monitor various locations of the sewer network. Allow to observe the dynamics of viral loads (growth and decay), which is useful for epidemiological analysis purposes. | In combined sewer networks the dilution rate can be very high, which could generate variability in the measurements. |
Hospital efluent | High research opportunities, due to the variability of existing hospital water treatments. Optimal control location for quantification and establishing relationships between viral loads and number of infected by COVID-19. | Does not allow a wide spatial scale to be considered for epidemiological surveillance strategies. Does not allow to identify areas with asymptomatic infected persons |
Sewer network | Opportunity to evaluate specific areas, such as educational centers, residential, commercial and industrial areas, among others, which allows the development of very specific epidemiological surveillance strategies. Allows to evaluate the behavior and the spatio-temporal dynamics in large wastewater drainage areas. High opportunity to expand research to improve knowledge about the behavior of the pandemic, and on the environmental alterations of SARS-CoV-2 at different spatial and temporal scales. | In combined sewer systems, the dilution rate can be very high, which generates variability in the measurements. |
Surface Water | Allows identifying the dynamics of viral loads, which could be used as an epidemiological tool. Many watersheds are bordering between cities, provinces (states) and countries, which increases the opportunities to conduct epidemiological evaluations at large scales. | In waterbodies receiving large number of wastewater discharges, it is very difficult to identify the contributing areas of the viral loads, since it’s hard to disaggregate the measured concentrations of SARS -CoV-2- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Guzmán, C.; Domínguez-Sánchez, M.A.; Rodríguez, M.; Pulicharla, R.; Mora-Cabrera, K. The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature. Sustainability 2021, 13, 9010. https://doi.org/10.3390/su13169010
Peña-Guzmán C, Domínguez-Sánchez MA, Rodríguez M, Pulicharla R, Mora-Cabrera K. The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature. Sustainability. 2021; 13(16):9010. https://doi.org/10.3390/su13169010
Chicago/Turabian StylePeña-Guzmán, Carlos, María Andrea Domínguez-Sánchez, Manuel Rodríguez, Rama Pulicharla, and Karen Mora-Cabrera. 2021. "The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature" Sustainability 13, no. 16: 9010. https://doi.org/10.3390/su13169010
APA StylePeña-Guzmán, C., Domínguez-Sánchez, M. A., Rodríguez, M., Pulicharla, R., & Mora-Cabrera, K. (2021). The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature. Sustainability, 13(16), 9010. https://doi.org/10.3390/su13169010