Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. 15N Solution Preparation and Application in Subplots
2.4. Biomass Harvest
2.5. Nitrogen and 15N Analysis
2.6. Calculations and Statistics
3. Results
3.1. Total Dry Matter (TDM) Yield and Total Nitrogen Accumulation (TN) in 100 N Treatments
3.2. Land Equivalent Ratios (LERs) in 100 N Treatments
3.3. LERIC of Grain Yield in 0 N and 100 N Treatments
3.4. Grain Dry Matter (GDM) and Grain Dry Matter Nitrogen (GDMN)
3.5. Grain N Content of Sole Crops and Intercrops
3.6. Nitrogen Fertilizer Uptake and Use Efficiency, and Nitrogen Fixation
4. Discussion
4.1. Biomass Accumulation and Land Productivity in Sole Crops and Intercrops
4.2. Grain Dry Matter, N Yield, and LER in 0 and 100 N Treatments
4.3. Nitrogen Recovery and Nitrogen Fixation in Sole and Intercrops
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corre-Hellou, G.; Dibet, A.; Hauggaard-Nielsen, H.; Crozat, Y.; Gooding, M.; Ambus, P.; Dahlmann, C.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. The competitive ability of pea-barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crop. Res. 2011, 122, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Danso, S.K.A.; Pálmason, F.; Hardarson, G. Is nitrogen transferred between field crops? examining the question through a sweet-blue lupin (Lupinus angustifolius l.)-oats (Avena sativa) intercrop. Soil Biol. Biochem. 1993, 25, 1135–1137. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Bulson, H.A.J.; Snaydon, R.W.; Stopes, C.E. Effects of plant density on intercropped wheat and field beans in an organic farming system. J. Agric. Sci. 1997, 128, 59–71. [Google Scholar] [CrossRef]
- Pálmason, F.; Danso, S.; Hardarson, G. Nitrogen accumulation in sole and mixed stands of sweet-blue lupin (Lupinus angustifolius L.), ryegrass and oats. Plant Soil 1992, 142, 135–142. [Google Scholar] [CrossRef]
- Ghaley, B.B.B.B.; Hauggaard-Nielsen, H.; Høgh-Jensen, H.; Jensen, E.S.S. Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutr. Cycl. Agroecosystems 2005, 73, 201–212. [Google Scholar] [CrossRef]
- Ali Raza, M.; Hayder Bin Khalid, M.; Zhang, X.; Yang Feng, L.; Khan, I.; Jawad Hassan, M.; Ahmed, M.; Ansar, M.; Kai Chen, Y.; Fang Fan, Y.; et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems OPEN. Sci. Rep. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sedlář, O.; Balík, J.; Kulhánek, M.; Černý, J.; Kos, M. Mehlich 3 extractant used for the evaluation of wheat-available phosphorus and zinc in calcareous soils. Plant Soil Environ. 2018. [Google Scholar] [CrossRef] [Green Version]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M. Optimizing soil nitrogen balance in a potato cropping system through legume intercropping. Nutr. Cycl. Agroecosystems 2020, 117, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Steen Jensen, E.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020. [Google Scholar] [CrossRef] [Green Version]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Tian, J.; Tang, M.; Xu, X.; Luo, S.; Condron, L.M.; Lambers, H.; Cai, K.; Wang, J. Soybean (Glycine max (L.) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum). Biol. Fertil. Soils 2020, 56, 1063–1075. [Google Scholar] [CrossRef]
- Rodriguez, C.; Carlsson, G.; Englund, J.E.; Flöhr, A.; Pelzer, E.; Jeuffroy, M.H.; Makowski, D.; Jensen, E.S. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. Eur. J. Agron. 2020, 118, 126077. [Google Scholar] [CrossRef]
- Pelzer, E.; Hombert, N.; Jeuffroy, M.H.; Makowski, D. Meta-analysis of the effect of nitrogen fertilization on annual cereal–legume intercrop production. Agron. J. 2014, 106, 1775–1786. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop. Res. 2001, 70, 101–109. [Google Scholar] [CrossRef]
- Jensen, E.S. Role of Grain Legume N₂ Fixation in the Nitrogen Cycling of Temperate Cropping Systems; Risø National Laboratory: Roskilde, Denmark, 1997; ISBN 8755021700. [Google Scholar]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crop. Res. 2001, 72, 185–196. [Google Scholar] [CrossRef]
- Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 2005, 266, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Thorsted, M.D.; Olesen, J.E.; Weiner, J. Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping. Field Crop. Res. 2006, 95, 280–290. [Google Scholar] [CrossRef]
- Pristeri, A.; Dahlmann, C.; Von Fragstein, P.; Gooding, M.J.; Hauggaard-Nielsen, H.; Kasyanova, E.; Monti, M. Yield performance of Faba bean-Wheat intercropping on spring and winter sowing in European organic farming system. In Proceedings of the Joint Organic Congress, Odense, Denmark, 30–31 May 2006. [Google Scholar]
- Hauggaard-Nielsen, H.; Andersen, M.K.; Jørnsgaard, B.; Jensen, E.S. Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crop. Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Dordas, C.A.; Vlachostergios, D.N.; Lithourgidis, A.S. Growth dynamics and agronomic-economic benefits of pea-oat and pea-barley intercrops. Crop Pasture Sci. 2012, 63, 45. [Google Scholar] [CrossRef]
- Sobkowicz, P.; Śniady, R. Nitrogen uptake and its efficiency in triticale (Triticosecale Witt.)—Field beans (Vicia faba var. minor L.) intercrop. Plant Soil Environ. 2004, 50, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Bedoussac, L.; Justes, E. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 2010, 330, 19–35. [Google Scholar] [CrossRef]
- Naudin, C.; Corre-Hellou, G.; Pineau, S.; Crozat, Y.; Jeuffroy, M.H. The effect of various dynamics of N availability on winter pea-wheat intercrops: Crop growth, N partitioning and symbiotic N2 fixation. Field Crop. Res. 2010, 119, 2–11. [Google Scholar] [CrossRef]
- Wallace, A.J.; Armstrong, R.D.; Grace, P.R.; Scheer, C.; Partington, D.L. Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutr. Cycl. Agroecosystems 2020, 116, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Efretuei, A.; Gooding, M.; White, E.; Spink, J.; Hackett, R. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland. Irish J. Agric. Food Res. 2016, 55, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Cernay, C.; Makowski, D.; Pelzer, E. Preceding cultivation of grain legumes increases cereal yields under low nitrogen input conditions. Environ. Chem. Lett. 2018, 16, 631–636. [Google Scholar] [CrossRef]
- Chalk, P.M. Dynamics of biologically fixed N in legume-cereal rotations: A review. Aust. J. Agric. Res. 1998, 49, 303–316. [Google Scholar] [CrossRef]
- Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol. 1986, 6, 699–756. [Google Scholar]
- Mead, R.; Willey, R.W. The concept of a ’land equivalent ratio’and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop. Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A. Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crop. Res. 2014, 166, 18–25. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil 2010, 330, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops—A field study employing 32p technique. Plant Soil 2001, 236, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Stomph, T.J.; Makowski, D.; Zhang, L.; van der Werf, W. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crop. Res. 2016, 198, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Stomph, T.J.; Makowski, D.; van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crop. Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat-winter pea intercrops. Field Crop. Res. 2011, 124, 25–36. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Jensen, E.S.; Bedoussac, L.; Carlsson, G.; Journet, E.-P.; Justes, E.; Hauggaard-Nielsen, H. Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustain. Agric. Res. 2015, 4, 42. [Google Scholar] [CrossRef]
- Chen, P.; Du, Q.; Liu, X.; Zhou, L.; Hussain, S.; Lei, L.; Song, C.; Wang, X.; Liu, W.; Yang, F.; et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE 2017, 12, e0184503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugschwandtner, R.W.; Kaul, H.P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crop. Res. 2015, 179, 113–119. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.Z.; Huang, G.B.; Chai, Q.; Yu, A.Z.; Huang, P. Grain yield and soil respiratory response to intercropping systems on arid land. Field Crop. Res. 2013, 144, 1–10. [Google Scholar] [CrossRef]
TDM 30 (t ha−1) | TDM 60 (t ha−1) | TDM 90 (t ha−1) | TN 30 (kg ha−1) | TN 60 (kg ha−1) | TN 90 (kg ha−1) | |
---|---|---|---|---|---|---|
IC pea | 0.34 ± 0.04 | 4.52 ± 0.76 | 4.81 ± 0.79 | 17.7 ± 2.59 | 98.6 ± 19.09 | 128.4 ± 23.49 |
IC barley | 0.60 ± 0.05 | 3.89 ± 0.27 | 3.47 ± 0.21 | 13.5 ± 1.84 | 56.2 ± 4.09 | 54.1 ± 3.31 |
IC total | 0.94 ± 0.05 a | 8.41 ± 0.55 a | 8.28 ± 0.61 a | 31.20 ± 2.56 a | 154.80 ± 15.33 a | 182.50 ± 20.60 a |
SC pea | 0.87 ± 0.05 a | 6.81 ± 1.06 a | 7.54 ± 1.12 a | 37.1 ± 3.42 a | 165.9 ± 25.49 a | 204.3 ± 16.06 a |
SC barley | 0.86 ± 0.13 a | 6.11 ± 0.39 b | 6.25 ± 0.59 a | 22.2 ± 2.45 b | 86.4 ± 7.15 b | 87.3 ± 10.49 b |
LSD0.05 | 0.27 | 1.64 | 2.15 | 7.04 | 54.25 | 47.61 |
CV% | 17.60 | 13.30 | 16.20 | 13.50 | 23.10 | 17.40 |
Treatment | 0 N | 100 N |
---|---|---|
LERP | 0.61 ± 0.05 | 0.56 ± 0.09 |
LERB | 0.53 ± 0.14 | 0.54 ± 0.04 |
LERIC | 1.14 ± 0.16 | 1.10 ± 0.08 |
Grain Yield | Crop Treatment | Nitrogen Application (kg N ha−1) | Yield Change with N Application (%) | |
---|---|---|---|---|
0 N | 100 N | |||
GDM (Mg ha−1) | SC pea | 5.39 ± 0.52 a | 5.18 ± 0.17 a | −3.9 |
SC barley | 3.05 ± 0.52 b | 3.95 ± 0.32 b | 29.5 | |
IC pea | 3.31 ± 0.25 | 2.92 ± 0.49 | −11.8 | |
IC barley | 1.62 ± 0.25 | 2.11 ± 0.13 | 30.2 | |
IC total | 4.93 ± 0.14 a | 5.03 ± 0.36 a | 2.0 | |
LSD0.05 | 1.28 | 1.10 | ||
CV% | 16 | 13.4 | ||
GDMN (kg ha −1) | SC pea | 187.57 ± 8.22 a | 169.73 ± 6.10 a | −17.8 |
SC barley | 37.25 ± 8.45 b | 61.12 ± 7.0 b | 63.8 | |
IC pea | 120.5 ± 9.70 | 106.41±19.16 | −11.7 | |
IC barley | 23.90 ± 2.42 | 38.54 ± 1.94 | 61.1 | |
IC total | 144.4 ± 8.21 a | 145.0 ± 17.24 a | 0.4 | |
LSD0.05 | 61.30 | 42.76 | ||
CV% | 26.9 | 19.7 |
Treatment | 0 N | 100 N |
---|---|---|
SC pea | 3.48 ± 0.00 a | 3.28 ± 0.09 a |
SC barley | 1.19 ± 0.05 b | 1.54 ± 0.07 b |
IC pea | 3.64 ± 0.03 a | 3.63 ± 0.07 c |
IC barley | 1.53 ± 0.14 c | 1.83 ± 0.03 d |
LSD0.05 | 0.29 | 0.29 |
CV% | 4.9 | 5.1 |
Crop System | Fertilizer N Yield (kg ha−1) | %NDFF | %NUE | ||||||
---|---|---|---|---|---|---|---|---|---|
30 DAE | 60 DAE | Total | 30 DAE | 60 DAE | Total | 30 DAE | 60 DAE | Total | |
IC pea | 12.09 ± 2.29 | 6.74 ± 2.00 | 18.83 ± 3.94 | 9.42 ± 0.91 | 5.25 ± 0.62 | 14.67 ± 3.07 | 24.18 ± 4.59 | 13.48 ± 4.01 | 37.66 ± 7.88 |
IC barley | 16.68 ± 1.01 | 6.55 ± 0.82 | 23.23 ± 1.61 | 30.84 ± 3.28 | 12.12 ± 1.34 | 42.96 ± 2.98 | 33.35 ± 2.02 | 13.11 ± 1.65 | 46.46 ± 3.22 |
IC total | 28.77 ± 2.67 a | 13.29 ± 1.63 a | 42.06 ± 4.11 a | 15.76 ± 1.73 a | 7.28 ± 0.79 a | 23.05 ± 2.38 a | 57.54 ± 5.34 a | 26.59 ± 3.27 a | 42.06 ± 8.21 a |
SC pea | 18.67 ± 6.89 b | 13.85 ± 3.47 a | 32.51 ± 4.64 a | 8.67 ± 3.06 a | 6.43 ± 1.41 a | 15.10 ± 1.98 a | 37.33 ± 13.78 b | 27.70 ± 6.94 a | 32.51 ± 9.28 a |
SC barley | 26.04 ± 1.23 a | 18.11 ± 2.35 a | 44.15 ± 1.67 a | 29.83 ± 2.83 b | 20.75 ± 2.80 b | 50.58 ± 2.52 b | 52.08 ± 2.47 a | 36.22 ± 4.71 a | 44.15 ± 3.39 a |
LSD0.05 | 5.267 | 9.48 | 13.22 | 14.09 | 12.17 | 21.29 | 10.53 | 18.96 | 26.45 |
CV% | 13.6 | 35.7 | 20.3 | 15.0 | 24.7 | 14.9 | 13.6 | 35.7 | 20.3 |
Treatments | %NDFF | %NDFA | %NDFS |
---|---|---|---|
SC pea | 15.1 ± 4.31 a | 67.9 ± 5.48 a | 17.0 ± 2.42 a |
SC barley | 50.6 ± 3.88 b | 49.4 ± 3.88 b | |
IC pea | 14.7 ± 3.07 | 70.1 ± 1.71 | 15.2 ± 4.28 |
IC barley | 43.0 ± 2.98 | 57.0 ± 2.98 | |
IC total | 28.8 ± 2.03 c | 35.1 ± 0.86 b | 36.1 ± 2.69 b |
LSD0.05 | 7.68 | 14.545 | 13.92 |
CV% | 13.00 | 24.80 | 9.00 |
Cereal Species | Legume Species | Location | Fertiliser (kg N ha−1) | LERCereal | LERLegume | Total LER | Intercrop Densities (of % Sole Crop) | Reference |
---|---|---|---|---|---|---|---|---|
Durum wheat | Winter pea | France | 0 | 0.50 | 0.64 | 1.14 | 50:50 | [40] |
France | 0 | 0.58 | 0.62 | 1.20 | ||||
Spring wheat | Field pea | Denmark | 0 | 1.00 | 0.34 | 1.34 | 50:50 | [6] |
40 | 0.62 | 0.34 | 0.96 | |||||
Spring barley | Field pea | Denmark | 0 | 0.74 | 0.37 | 1.11 | 50:50 | [15] |
50 | 0.83 | 0.19 | 1.02 | |||||
Barley | pea | Denmark | 5 | 1.26 | 33:50 | [18] | ||
40 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowden, R.J.; Shah, A.N.; Lehmann, L.M.; Kiær, L.P.; Henriksen, C.B.; Ghaley, B.B. Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark. Sustainability 2020, 12, 9335. https://doi.org/10.3390/su12229335
Cowden RJ, Shah AN, Lehmann LM, Kiær LP, Henriksen CB, Ghaley BB. Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark. Sustainability. 2020; 12(22):9335. https://doi.org/10.3390/su12229335
Chicago/Turabian StyleCowden, Reed John, Ambreen Naz Shah, Lisa Mølgaard Lehmann, Lars Pødenphant Kiær, Christian Bugge Henriksen, and Bhim Bahadur Ghaley. 2020. "Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark" Sustainability 12, no. 22: 9335. https://doi.org/10.3390/su12229335
APA StyleCowden, R. J., Shah, A. N., Lehmann, L. M., Kiær, L. P., Henriksen, C. B., & Ghaley, B. B. (2020). Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark. Sustainability, 12(22), 9335. https://doi.org/10.3390/su12229335