Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
2. Research Method and Data Description
2.1. Road Sections
2.2. Pavement Condition
- Surface Defects
- ○
- Ravelling & Loss of Surface Aggregate
- ○
- Flushing
- Surface Deformations
- ○
- Rippling and Shoving
- ○
- Wheel Track Rutting
- ○
- Distortion
- Cracking
- ○
- Longitudinal Wheel Track Single and Multiple, Alligator
- ○
- Centerline Single and Multiple, Alligator
- ○
- Pavement Edge Single and Multiple, Alligator
- ○
- Transverse Single and Multiple, Alligator
- ○
- Longitudinal-Meander or Mid-lane
2.3. Pavement Structure
2.4. Traffic and Climate Variables
- Annual Average Daily Traffic (AADT) in vehicles per day (vpd).
- Annual Average Daily Truck Traffic (AADTT) in vpd.
- Equivalent Single Axle Load (ESAL) in thousands (KESAL).
- Annual Average Precipitation (AAP) in mm, calculated as the average annual rain precipitation (mm) during pavement age (pa).
- Annual Average Height of Snow (AAS), estimated as the average annual snow precipitation (mm) during pa.
- Annual Average Temperature (AAT), obtained as the average annual air temperature (°C) during pa.
- Annual Average Range of Temperature (AART), estimated as the average of the annual range of air temperature (°C), calculated for each year as the temperature difference between the coldest and warmest month–during pa.
- Standard Deviation of Temperature (SDT), calculated as the standard deviation of the air temperature (°C) during pa.
- Annual Average Wind (W), obtained as the annual average wind speed (km/h) during pa.
- Annual Average Humidity (H), estimated as the annual average humidity (%) during pa.
2.5. Model Calibration
3. Analysis and Results
3.1. Influence of Pavement Age
3.2. Influence of Pavement Structure
3.3. Influence of Traffic Load
3.4. Influence of Climate Conditions
3.5. Global Influence
4. Discussion
5. Conclusions and Further Research
Author Contributions
Funding
Conflicts of Interest
References
- Bull, A. Traffic Congestion: The Problem and How to Deal with It; (No. 87); United Nations Publications: New York, NY, USA, 2003. [Google Scholar]
- Hajj, E.Y.; Loria, L.; Sebaaly, P.E. Performance evaluation of asphalt pavement preservation activities. Transp. Res. Rec. 2010, 2150, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Santero, N.J.; Horvath, A. Global warming potential of pavements. Environ. Res. Lett. 2009, 4, 034011. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research trends in pavement management during the first years of the 21st century: A bibliometric analysis during the 2000–2013 period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef] [Green Version]
- Prozzi, J.A.; Madanat, S.M. Development of pavement performance models by combining experimental and field data. J. Infrastruct. Syst. 2004, 10, 9–22. [Google Scholar] [CrossRef]
- Ragnoli, A.; De Blasiis, M.R.; Di Benedetto, A. Pavement distress detection methods: A review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Osorio, A.; Chamorro, A.; Tighe, S.; Videla, C. Calibration and validation of condition indicator for managing urban pavement networks. Transp. Res. Rec. 2014, 2455, 28–36. [Google Scholar] [CrossRef]
- Cantisani, G.; Pantuso, A.; Mascio, P. Sustainable pavement management system in urban areas considering the vehicle operating costs. Sustainability 2017, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S.; Bellinger, W.Y. Distress Identification Manual for the Long-Term Pavement Performance Project; Publication No. FHWA-RD-03-031; Federal Highway Administration, United States Department of Transportation: Washington, DC, USA, 2003. [Google Scholar]
- Perera, R.W.; Kohn, S.D. LTPP Data Analysis: Factors Affecting Pavement Smoothness. NCHRP Web Document 40. 2001. Available online: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w40-a.pdf (accessed on 9 November 2019).
- Madanat, S.M.; El Nakat, Z.; Sathaye, N. Development of Empirical-Mechanistic Pavement Performance Models Using Data from the Washington State PMS Database; Research Rep. UCPRC-RR-2005-05; University of California: Davis, CA, USA; Pavement Research Center: Davis, CA, USA, 2005. [Google Scholar]
- Arambula, E.; George, R.; Xiong, W.; Hall, G. Development and validation of pavement performance models for the state of Maryland. Transp. Res. Rec. 2011, 2225, 25–31. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Gao, S. Roughness progression model for asphalt pavements using long-term pavement performance data. J. Transp. Eng. 2014, 140, 830–843. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Mindra, N.; Railean, A.; Rojí, E. Rigid pavement performance models by means of Markov Chains with half-year step time. Int. J. Pavement Eng. 2019, 20, 830–843. [Google Scholar] [CrossRef]
- Shafizadeh, K.; Mannering, F. Acceptability of pavement roughness on urban highways by driving public. Transp. Res. Rec. 2003, 1860, 187–193. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys; (No. ASTM D6433-11); American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2003. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). Pavement Management Guide; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2001. [Google Scholar]
- Litzka, J.; Leben, B.; Torre, F.L.; Weninger-Vycudil, A.; Antunes, M.L.; Kokot, D.; Mladenović, G.; Brittain, S.; Viner, H. The Way Forward for Pavement Performance Indicators Across Europe. COST Action 354: Performance Indicators for Road Pavements; European Cooperation in Science and Technology: Brussels, Belgium, 2008. [Google Scholar]
- Osorio-Lird, A.; Chamorro, A.; Videla, C.; Tighe, S.; Torres-Machi, C. Application of Markov chains and Monte Carlo simulations for developing pavement performance models for urban network management. Struct. Infrastruct. Eng. 2018, 14, 1169–1181. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. A skid resistance prediction model for an entire road network. Constr. Build. Mater. 2020, 262, 120041. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Rojí, E.; Gonzalo-Orden, H. IRI Performance Models for Flexible Pavements in Two-Lane Roads until First Maintenance and/or Rehabilitation Work. Coatings 2020, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Huang, B.; Richards, S.H. Calibration and Application of Treatment Performance Models in a Pavement Management System in Tennessee. J. Transp. Eng. 2015, 141, 04014076. [Google Scholar] [CrossRef]
- Hassan, R.; Lin, O.; Thananjeyan, A. A comparison between three approaches for modelling deterioration of five pavement surfaces. Int. J. Pavement Eng. 2017, 18, 26–35. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Rojí, E. Skid resistance prediction for new two-lane roads. Proc. Inst. Civ. Eng. Transp. 2019, 172, 264–273. [Google Scholar] [CrossRef]
- Ziari, H.; Maghrebi, M.; Ayoubinejad, J.; Waller, T. Prediction of Pavement Performance: Application of Support Vector Regression with Different Kernels. Transp. Res. Rec. 2016, 2589, 135–145. [Google Scholar] [CrossRef]
- Moreira, A.V.; Tinoco, J.; Oliveira, J.R.M.; Santos, A. An application of Markov chains to predict the evolution of performance indicators based on pavement historical data. Int. J. Pavement Eng. 2018, 19, 937–948. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Bejan, S.; Gonzalo-Orden, H. Transition probability matrices for flexible pavement deterioration models with half-year cycle time. Int. J. Civ. Eng. 2018, 16, 1045–1056. [Google Scholar] [CrossRef]
- García-Segura, T.; Montalbán-Domingo, L.; Llopis-Castelló, D.; Lepech, M.D.; Sanz, M.A.; Pellicer, E. Incorporating pavement deterioration uncertainty into pavement management optimization. Int. J. Pavement Eng. 2020, 1–12. [Google Scholar] [CrossRef]
- Qiao, Y.; Flintsch, G.W.; Dawson, A.R.; Parry, T. Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. 2013, 2349, 100–107. [Google Scholar] [CrossRef]
- Hasan, M.R.M.; Hiller, J.E.; You, Z. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. Int. J. Pavement Eng. 2016, 17, 647–658. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C.; Mannering, F.L. Analysis of pavement overlay and replacement performance using random parameters hazard-based duration models. J. Infrastruct. Syst. 2015, 21, 04014024. [Google Scholar] [CrossRef]
- Alaswadko, N.; Hassan, R. Rutting progression models for light duty pavements. Int. J. Pavement Eng. 2016, 19, 37–47. [Google Scholar] [CrossRef]
- El-Raof, H.S.A.; El-Hakim, R.T.A.; El-Badawy, S.; Afify, H.A. Structural number prediction for flexible pavements using the long term pavement performance data. Int. J. Pavement Eng. 2018, 21, 841–855. [Google Scholar] [CrossRef]
- Rohde, G.T. Determining pavement structural number from FWD testing. In Transportation Research Record; Transportation Research Board: Washington, DC, USA, 1994; p. 1448. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). Guide for Design of Pavement Structures; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 1993. [Google Scholar]
- Adlinge, S.S.; Gupta, A.K. Pavement deterioration and its causes. Int. J. Innov. Res. Dev. 2013, 2, 437–450. [Google Scholar]
- Almeida, A.; Moreira, J.J.; Silva, J.P.; Viteri, C.G. Impact of traffic loads on flexible pavements considering Ecuador’s traffic and pavement condition. Int. J. Pavement Eng. 2019, 1–8. [Google Scholar] [CrossRef]
- Berrar, D. Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 542–545. [Google Scholar]
- Simon, R. Resampling strategies for model assessment and selection. In Fundamentals of Data Mining in Genomics and Proteomics; Springer: Boston, MA, USA, 2007; pp. 173–186. [Google Scholar]
Variable | Average | Standard Deviation | Coefficient of Variation | Minimum | Maximum | Range |
---|---|---|---|---|---|---|
AADT (vpd) | 5436.87 | 4894.40 | 0.90 | 1628 | 24,222 | 22,594 |
AADTT (vpd) | 633.13 | 561.00 | 0.89 | 105 | 3089 | 2984 |
KESAL | 282.90 | 208.67 | 0.74 | 16 | 1988 | 1972 |
AAP (mm) | 871.53 | 368.32 | 0.42 | 228.90 | 2030.20 | 1801.30 |
AAS (mm) | 851.73 | 715.47 | 0.84 | 0.00 | 3564.85 | 3564.85 |
AAT (°C) | 9.90 | 6.85 | 0.69 | 0.00 | 24.17 | 24.17 |
AART (°C) | 27.22 | 8.68 | 0.32 | 4.08 | 41.20 | 37.12 |
SDT (°C) | 9.50 | 2.96 | 0.31 | 1.45 | 14.71 | 13.26 |
W (km/h) | 13.40 | 2.81 | 0.21 | 6.62 | 23.34 | 16.72 |
H (%) | 71.27 | 3.09 | 0.04 | 56.90 | 76.00 | 19.10 |
PCI | pa | AADT | AADTT | KESAL | AAP | AAS | AAT | AART | ADT | W | H | SN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCI | −0.7079 | −0.2252 | −0.2012 | −0.1399 | −0.0809 | −0.1784 | −0.0601 | 0.0810 | 0.0739 | −0.0496 | 0.2374 | 0.1062 | |
pa | −0.7079 | 0.1116 | −0.0152 | −0.0983 | 0.1442 | −0.1095 | 0.3163 | −0.3082 | −0.3159 | 0.2530 | −0.2251 | −0.0757 | |
AADT | −0.2252 | 0.1116 | 0.7430 | 0.2746 | 0.3589 | −0.1732 | 0.4312 | −0.3977 | −0.3840 | −0.1353 | −0.1291 | 0.0583 | |
AADTT | −0.2012 | −0.0152 | 0.7430 | 0.7216 | 0.2753 | −0.0422 | 0.1018 | −0.0885 | −0.0717 | −0.3970 | −0.0492 | −0.0518 | |
KESAL | −0.1399 | −0.0983 | 0.2746 | 0.7216 | −0.1438 | 0.1314 | −0.3718 | 0.3840 | 0.3897 | −0.3454 | 0.1905 | −0.3107 | |
AAP | −0.0809 | 0.1442 | 0.3589 | 0.2753 | −0.1438 | −0.2494 | 0.5377 | −0.4327 | −0.4203 | −0.2831 | −0.0920 | 0.2018 | |
AAS | −0.1784 | −0.1095 | −0.1732 | −0.0422 | 0.1314 | −0.2494 | −0.6202 | 0.4866 | 0.4997 | −0.2371 | 0.3349 | 0.1323 | |
AAT | −0.0601 | 0.3163 | 0.4312 | 0.1018 | −0.3718 | 0.5377 | −0.6202 | −0.9317 | −0.9356 | 0.2273 | −0.3476 | 0.1026 | |
AART | 0.0810 | −0.3082 | −0.3977 | −0.0885 | 0.3840 | −0.4327 | 0.4866 | −0.9317 | 0.9977 | −0.3006 | 0.2212 | −0.2032 | |
ADT | 0.0739 | −0.3159 | −0.3840 | −0.0717 | 0.3897 | −0.4203 | 0.4997 | −0.9356 | 0.9977 | −0.3212 | 0.2165 | −0.1907 | |
W | −0.0496 | 0.2530 | −0.1353 | −0.3970 | −0.3454 | −0.2831 | −0.2371 | 0.2273 | −0.3006 | −0.3212 | −0.2440 | −0.0671 | |
H | 0.2374 | −0.2251 | −0.1291 | −0.0492 | 0.1905 | −0.0920 | 0.3349 | −0.3476 | 0.2212 | 0.2165 | −0.2440 | 0.0199 | |
SN | 0.1062 | −0.0757 | 0.0583 | −0.0518 | −0.3107 | 0.2018 | 0.1323 | 0.1026 | −0.2032 | −0.1907 | −0.0671 | 0.0199 |
Annual Precipitation | Annual Average Temperature | Annual Range of Temperature | ||||
---|---|---|---|---|---|---|
Wet | Dry | Warm | Cold | Freeze | Stable | Unstable |
>800 mm | ≤800 mm | >15 °C | [5; 15] °C | ≤5 °C | <20 °C | ≥20 °C |
Climatic Zone | Model | |
---|---|---|
WCU | 0.62 | |
DFU | 0.74 | |
WWS | 0.85 | |
WWU | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llopis-Castelló, D.; García-Segura, T.; Montalbán-Domingo, L.; Sanz-Benlloch, A.; Pellicer, E. Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability 2020, 12, 9717. https://doi.org/10.3390/su12229717
Llopis-Castelló D, García-Segura T, Montalbán-Domingo L, Sanz-Benlloch A, Pellicer E. Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability. 2020; 12(22):9717. https://doi.org/10.3390/su12229717
Chicago/Turabian StyleLlopis-Castelló, David, Tatiana García-Segura, Laura Montalbán-Domingo, Amalia Sanz-Benlloch, and Eugenio Pellicer. 2020. "Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration" Sustainability 12, no. 22: 9717. https://doi.org/10.3390/su12229717