Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Basic Statistics Analysis of Network DEA Factors
Factor (Unit) | Average | Standard Deviation | Median Value | MAX | MIN |
Number of routes | 12,467.63 | 24,784.65 | 5756 | 181,268 | 950 |
Number of airports | 35.07 | 49.25 | 16.5 | 230 | 1 |
Population | 99,646.91 | 254,176.8 | 32,271.72 | 1,386,395 | 343.40 |
GDP | 19,029.11 | 37,719.47 | 6687.38 | 198,870.3 | 190.80 |
Tourist attraction | 4.68 | 0.38 | 4.70 | 5.40 | 3.80 |
Inverse HHI index (airline) | 0.87 | 0.08 | 0.89 | 0.96 | 0.53 |
RPK | 121,937.1 | 243,302.5 | 34,863 | 1,551,965 | 1088 |
CTK | 19,645.45 | 37,644.45 | 5810.5 | 184,130 | 109 |
Inverse HHI index (route) | 0.90 | 0.07 | 0.92 | 0.97 | 0.56 |
Amount of added value | 41.59 | 105.42 | 14.60 | 778.40 | 0.12 |
Appendix B. IM Efficiency Evaluation Results. DMU, Decision-Making Unit
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 33 | 0.34 | 25 | - | - |
Australia | 0.85 | 45 | 0.52 | 16 | - | - |
Austria | 0.87 | 36 | 0.28 | 29 | - | - |
Belgium | 0.93 | 23 | 0.39 | 21 | - | - |
Brazil | 0.86 | 42 | 0.17 | 47 | - | - |
Canada | 0.68 | 55 | 0.36 | 24 | - | - |
Chile | 0.86 | 41 | 0.18 | 44 | - | - |
China | 1.00 | 1 | 0.21 | 37 | - | - |
Hong Kong | 1.00 | 1 | 0.25 | 30 | - | - |
Colombia | 0.87 | 39 | 0.20 | 40 | - | - |
Czech Republic | 0.88 | 32 | 0.19 | 42 | - | - |
Egypt | 0.82 | 50 | 0.24 | 33 | - | - |
Ethiopia | 1.00 | 1 | 0.11 | 53 | - | - |
Finland | 1.00 | 1 | 0.16 | 48 | - | - |
France | 0.80 | 52 | 0.71 | 9 | - | - |
Germany | 0.84 | 48 | 0.48 | 17 | - | - |
Greece | 0.84 | 49 | 1.00 | 1 | - | - |
Hungary | 0.99 | 20 | 0.07 | 56 | - | - |
Iceland | 1.00 | 1 | 0.16 | 49 | - | - |
India | 0.90 | 29 | 0.25 | 31 | - | - |
Indonesia | 0.88 | 35 | 0.23 | 35 | - | - |
Ireland | 1.00 | 1 | 0.15 | 50 | - | - |
Israel | 1.00 | 1 | 0.55 | 13 | - | - |
Italy | 0.84 | 47 | 1.00 | 1 | - | - |
Japan | 0.78 | 53 | 0.80 | 6 | - | - |
Jordan | 0.88 | 34 | 0.18 | 43 | - | - |
Kenya | 0.91 | 24 | 0.21 | 38 | - | - |
Latvia | 1.00 | 1 | 0.17 | 46 | - | - |
Lebanon | 1.00 | 1 | 0.77 | 8 | - | - |
Luxembourg | 1.00 | 1 | 0.38 | 22 | - | - |
Malaysia | 0.85 | 43 | 0.10 | 54 | - | - |
Malta | 1.00 | 1 | 0.78 | 7 | - | - |
Korea | 0.87 | 37 | 0.37 | 23 | - | - |
Mexico | 0.53 | 56 | 1.00 | 1 | - | - |
Morocco | 0.84 | 46 | 0.40 | 20 | - | - |
Netherlands | 0.89 | 30 | 0.21 | 39 | - | - |
New Zealand | 0.75 | 54 | 0.55 | 14 | - | - |
Nigeria | 1.00 | 1 | 0.47 | 19 | - | - |
Panama | 1.00 | 1 | 0.23 | 36 | - | - |
Peru | 0.87 | 38 | 0.17 | 45 | - | - |
Philippines | 0.90 | 27 | 0.15 | 51 | - | - |
Poland | 0.90 | 26 | 0.24 | 34 | - | - |
Portugal | 0.85 | 44 | 0.33 | 26 | - | - |
Romania | 0.89 | 31 | 0.28 | 28 | - | - |
Russia | 0.99 | 21 | 0.14 | 52 | - | - |
Rwanda | 1.00 | 1 | 0.08 | 55 | - | - |
Saudi Arabia | 0.98 | 22 | 0.54 | 15 | - | - |
Singapore | 1.00 | 1 | 0.30 | 27 | - | - |
South Africa | 1.00 | 1 | 0.25 | 32 | - | - |
Spain | 0.82 | 51 | 1.00 | 1 | - | - |
Switzerland | 0.91 | 25 | 0.48 | 18 | - | - |
Thailand | 0.86 | 40 | 0.57 | 12 | - | - |
Turkey | 1.00 | 1 | 0.68 | 10 | - | - |
UAE | 1.00 | 1 | 0.19 | 41 | - | - |
United Kingdom | 0.90 | 28 | 0.58 | 11 | - | - |
United States | 1.00 | 1 | 1.00 | 1 | - | - |
Appendix C. RPM: Efficiency Evaluation Results for Different Weights
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 31 | 0.02 | 35 | 0.48 | 39 |
Australia | 0.82 | 46 | 0.15 | 18 | 0.52 | 20 |
Austria | 0.87 | 34 | 0.01 | 45 | 0.47 | 43 |
Belgium | 0.93 | 23 | 0.02 | 36 | 0.49 | 35 |
Brazil | 0.86 | 38 | 0.03 | 33 | 0.48 | 40 |
Canada | 0.66 | 50 | 0.17 | 14 | 0.47 | 52 |
Chile | 0.86 | 37 | 0.02 | 44 | 0.47 | 48 |
China | 1.00 | 1 | 0.21 | 11 | 0.61 | 5 |
Hong Kong | 1.00 | 1 | 0.25 | 10 | 0.63 | 4 |
Colombia | 0.86 | 36 | 0.02 | 42 | 0.47 | 46 |
Czech Republic | 0.88 | 30 | 0.00 | 55 | 0.47 | 45 |
Egypt | 0.82 | 47 | 0.01 | 46 | 0.46 | 55 |
Ethiopia | 1.00 | 1 | 0.02 | 39 | 0.51 | 24 |
Finland | 1.00 | 1 | 0.02 | 43 | 0.51 | 26 |
France | 0.48 | 53 | 0.71 | 4 | 0.55 | 14 |
Germany | 0.58 | 51 | 0.48 | 6 | 0.54 | 16 |
Greece | 0.83 | 44 | 0.04 | 32 | 0.47 | 47 |
Hungary | 0.99 | 20 | 0.01 | 53 | 0.50 | 32 |
Iceland | 1.00 | 1 | 0.16 | 16 | 0.58 | 9 |
India | 0.90 | 26 | 0.06 | 26 | 0.50 | 29 |
Indonesia | 0.88 | 33 | 0.05 | 29 | 0.49 | 36 |
Ireland | 1.00 | 1 | 0.14 | 19 | 0.57 | 10 |
Israel | 1.00 | 1 | 0.06 | 27 | 0.53 | 17 |
Italy | 0.83 | 45 | 0.09 | 23 | 0.49 | 34 |
Japan | 0.45 | 55 | 0.80 | 3 | 0.56 | 12 |
Jordan | 0.88 | 32 | 0.01 | 50 | 0.47 | 44 |
Kenya | 0.91 | 24 | 0.01 | 52 | 0.48 | 38 |
Latvia | 1.00 | 1 | 0.01 | 47 | 0.51 | 28 |
Lebanon | 1.00 | 1 | 0.04 | 30 | 0.52 | 19 |
Luxembourg | 1.00 | 1 | 0.09 | 24 | 0.54 | 15 |
Malaysia | 0.85 | 41 | 0.02 | 40 | 0.47 | 50 |
Malta | 1.00 | 1 | 0.20 | 12 | 0.60 | 6 |
Korea | 0.86 | 39 | 0.10 | 22 | 0.51 | 27 |
Mexico | 0.46 | 54 | 0.26 | 9 | 0.39 | 56 |
Morocco | 0.84 | 43 | 0.02 | 37 | 0.46 | 53 |
Netherlands | 0.81 | 48 | 0.15 | 17 | 0.52 | 23 |
New Zealand | 0.55 | 52 | 0.31 | 7 | 0.46 | 54 |
Nigeria | 1.00 | 1 | 0.00 | 56 | 0.50 | 31 |
Panama | 1.00 | 1 | 0.11 | 21 | 0.56 | 13 |
Peru | 0.87 | 35 | 0.01 | 48 | 0.47 | 51 |
Philippines | 0.90 | 28 | 0.02 | 38 | 0.48 | 37 |
Poland | 0.90 | 27 | 0.01 | 49 | 0.48 | 41 |
Portugal | 0.85 | 42 | 0.02 | 34 | 0.47 | 49 |
Romania | 0.89 | 29 | 0.00 | 54 | 0.47 | 42 |
Russia | 0.99 | 21 | 0.04 | 31 | 0.52 | 22 |
Rwanda | 1.00 | 1 | 0.01 | 51 | 0.50 | 30 |
Saudi Arabia | 0.97 | 22 | 0.07 | 25 | 0.53 | 18 |
Singapore | 1.00 | 1 | 0.30 | 8 | 0.65 | 2 |
South Africa | 1.00 | 1 | 0.02 | 41 | 0.51 | 25 |
Spain | 0.39 | 56 | 1.00 | 1 | 0.56 | 11 |
Switzerland | 0.91 | 25 | 0.05 | 28 | 0.50 | 33 |
Thailand | 0.86 | 40 | 0.12 | 20 | 0.52 | 21 |
Turkey | 1.00 | 1 | 0.16 | 15 | 0.58 | 8 |
UAE | 1.00 | 1 | 0.19 | 13 | 0.59 | 7 |
United Kingdom | 0.68 | 49 | 0.57 | 5 | 0.64 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
Appendix D. RPM: Efficiency Evaluation Results for the Same Weight
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 30 | 0.02 | 35 | 0.48 | 39 |
Australia | 0.82 | 46 | 0.15 | 18 | 0.52 | 20 |
Austria | 0.87 | 33 | 0.01 | 45 | 0.47 | 43 |
Belgium | 0.93 | 23 | 0.02 | 36 | 0.49 | 35 |
Brazil | 0.86 | 39 | 0.03 | 33 | 0.48 | 40 |
Canada | 0.66 | 50 | 0.17 | 14 | 0.47 | 52 |
Chile | 0.86 | 36 | 0.02 | 44 | 0.47 | 48 |
China | 1.00 | 1 | 0.21 | 11 | 0.61 | 5 |
Hong Kong | 1.00 | 1 | 0.25 | 10 | 0.63 | 4 |
Colombia | 0.86 | 37 | 0.02 | 42 | 0.47 | 46 |
Czech Republic | 0.88 | 29 | 0.00 | 55 | 0.47 | 45 |
Egypt | 0.82 | 47 | 0.01 | 46 | 0.46 | 55 |
Ethiopia | 1.00 | 1 | 0.02 | 39 | 0.51 | 24 |
Finland | 1.00 | 1 | 0.02 | 43 | 0.51 | 26 |
France | 0.48 | 53 | 0.71 | 4 | 0.55 | 14 |
Germany | 0.58 | 51 | 0.48 | 6 | 0.54 | 16 |
Greece | 0.83 | 44 | 0.04 | 32 | 0.47 | 47 |
Hungary | 0.99 | 20 | 0.01 | 53 | 0.50 | 31 |
Iceland | 1.00 | 1 | 0.16 | 16 | 0.58 | 9 |
India | 0.88 | 32 | 0.07 | 26 | 0.50 | 32 |
Indonesia | 0.87 | 34 | 0.05 | 28 | 0.49 | 36 |
Ireland | 1.00 | 1 | 0.14 | 19 | 0.57 | 10 |
Israel | 1.00 | 1 | 0.06 | 27 | 0.53 | 17 |
Italy | 0.83 | 45 | 0.09 | 23 | 0.49 | 34 |
Japan | 0.45 | 55 | 0.80 | 3 | 0.56 | 12 |
Jordan | 0.88 | 31 | 0.01 | 50 | 0.47 | 44 |
Kenya | 0.91 | 24 | 0.01 | 52 | 0.48 | 38 |
Latvia | 1.00 | 1 | 0.01 | 47 | 0.51 | 28 |
Lebanon | 1.00 | 1 | 0.04 | 30 | 0.52 | 19 |
Luxembourg | 1.00 | 1 | 0.09 | 24 | 0.54 | 15 |
Malaysia | 0.85 | 41 | 0.02 | 40 | 0.47 | 50 |
Malta | 1.00 | 1 | 0.20 | 12 | 0.60 | 6 |
Korea | 0.86 | 38 | 0.10 | 22 | 0.51 | 27 |
Mexico | 0.46 | 54 | 0.26 | 9 | 0.39 | 56 |
Morocco | 0.84 | 43 | 0.02 | 37 | 0.46 | 53 |
Netherlands | 0.81 | 48 | 0.15 | 17 | 0.52 | 23 |
New Zealand | 0.55 | 52 | 0.31 | 7 | 0.46 | 54 |
Nigeria | 1.00 | 1 | 0.00 | 56 | 0.50 | 30 |
Panama | 1.00 | 1 | 0.11 | 21 | 0.56 | 13 |
Peru | 0.87 | 35 | 0.01 | 48 | 0.47 | 51 |
Philippines | 0.90 | 27 | 0.02 | 38 | 0.48 | 37 |
Poland | 0.90 | 26 | 0.01 | 49 | 0.48 | 41 |
Portugal | 0.85 | 42 | 0.02 | 34 | 0.47 | 49 |
Romania | 0.89 | 28 | 0.00 | 54 | 0.47 | 42 |
Russia | 0.99 | 21 | 0.04 | 31 | 0.52 | 22 |
Rwanda | 1.00 | 1 | 0.01 | 51 | 0.50 | 29 |
Saudi Arabia | 0.97 | 22 | 0.07 | 25 | 0.53 | 18 |
Singapore | 1.00 | 1 | 0.30 | 8 | 0.65 | 2 |
South Africa | 1.00 | 1 | 0.02 | 41 | 0.51 | 25 |
Spain | 0.39 | 56 | 1.00 | 1 | 0.56 | 11 |
Switzerland | 0.91 | 25 | 0.05 | 29 | 0.50 | 33 |
Thailand | 0.86 | 40 | 0.12 | 20 | 0.52 | 21 |
Turkey | 1.00 | 1 | 0.16 | 15 | 0.58 | 8 |
UAE | 1.00 | 1 | 0.19 | 13 | 0.59 | 7 |
United Kingdom | 0.68 | 49 | 0.57 | 5 | 0.64 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
Appendix E. RSM Efficiency Evaluation Results
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.29 | 49 | 0.16 | 30 | 0.05 | 37 |
Australia | 0.48 | 25 | 0.52 | 11 | 0.25 | 9 |
Austria | 0.35 | 43 | 0.11 | 39 | 0.04 | 42 |
Belgium | 0.52 | 21 | 0.17 | 29 | 0.09 | 31 |
Brazil | 0.38 | 41 | 0.16 | 31 | 0.06 | 36 |
Canada | 0.53 | 20 | 0.34 | 15 | 0.18 | 15 |
Chile | 0.39 | 36 | 0.09 | 45 | 0.04 | 45 |
China | 1.00 | 1 | 0.21 | 24 | 0.21 | 11 |
Hong Kong | 1.00 | 1 | 0.25 | 20 | 0.25 | 8 |
Colombia | 0.32 | 46 | 0.10 | 43 | 0.03 | 46 |
Czech Republic | 0.47 | 26 | 0.04 | 54 | 0.02 | 53 |
Egypt | 0.26 | 55 | 0.10 | 41 | 0.03 | 49 |
Ethiopia | 0.61 | 16 | 0.07 | 50 | 0.04 | 41 |
Finland | 0.58 | 17 | 0.08 | 47 | 0.05 | 38 |
France | 0.48 | 24 | 0.71 | 5 | 0.34 | 5 |
Germany | 0.58 | 18 | 0.48 | 12 | 0.28 | 7 |
Greece | 0.42 | 34 | 0.30 | 17 | 0.12 | 25 |
Hungary | 0.56 | 19 | 0.05 | 52 | 0.03 | 47 |
Iceland | 1.00 | 1 | 0.16 | 33 | 0.16 | 19 |
India | 0.43 | 31 | 0.24 | 21 | 0.10 | 29 |
Indonesia | 0.41 | 35 | 0.22 | 22 | 0.09 | 30 |
Ireland | 1.00 | 1 | 0.14 | 36 | 0.14 | 23 |
Israel | 0.63 | 15 | 0.22 | 23 | 0.14 | 24 |
Italy | 0.27 | 51 | 0.61 | 7 | 0.17 | 18 |
Japan | 0.45 | 29 | 0.80 | 4 | 0.36 | 4 |
Jordan | 0.31 | 48 | 0.12 | 37 | 0.04 | 44 |
Kenya | 0.26 | 54 | 0.10 | 42 | 0.03 | 50 |
Latvia | 0.45 | 30 | 0.06 | 51 | 0.03 | 51 |
Lebanon | 0.63 | 14 | 0.18 | 27 | 0.11 | 28 |
Luxembourg | 0.90 | 8 | 0.10 | 44 | 0.09 | 32 |
Malaysia | 0.43 | 32 | 0.09 | 46 | 0.04 | 43 |
Malta | 0.78 | 11 | 0.26 | 19 | 0.20 | 12 |
Korea | 0.49 | 23 | 0.37 | 14 | 0.18 | 14 |
Mexico | 0.13 | 56 | 0.90 | 3 | 0.12 | 26 |
Morocco | 0.47 | 27 | 0.15 | 34 | 0.07 | 35 |
Netherlands | 0.73 | 12 | 0.21 | 25 | 0.15 | 20 |
New Zealand | 0.33 | 45 | 0.52 | 10 | 0.17 | 16 |
Nigeria | 0.32 | 47 | 0.03 | 55 | 0.01 | 55 |
Panama | 0.88 | 9 | 0.16 | 32 | 0.14 | 22 |
Peru | 0.39 | 37 | 0.07 | 48 | 0.03 | 48 |
Philippines | 0.36 | 42 | 0.11 | 40 | 0.04 | 39 |
Poland | 0.27 | 53 | 0.07 | 49 | 0.02 | 52 |
Portugal | 0.46 | 28 | 0.18 | 28 | 0.08 | 33 |
Romania | 0.29 | 50 | 0.04 | 53 | 0.01 | 54 |
Russia | 0.52 | 22 | 0.14 | 35 | 0.07 | 34 |
Rwanda | 0.83 | 10 | 0.01 | 56 | 0.01 | 56 |
Saudi Arabia | 0.39 | 39 | 0.40 | 13 | 0.15 | 21 |
Singapore | 1.00 | 1 | 0.30 | 18 | 0.30 | 6 |
South Africa | 0.34 | 44 | 0.12 | 38 | 0.04 | 40 |
Spain | 0.39 | 38 | 1.00 | 1 | 0.39 | 2 |
Switzerland | 0.38 | 40 | 0.31 | 16 | 0.12 | 27 |
Thailand | 0.42 | 33 | 0.56 | 9 | 0.23 | 10 |
Turkey | 0.27 | 52 | 0.62 | 6 | 0.17 | 17 |
UAE | 1.00 | 1 | 0.19 | 26 | 0.19 | 13 |
United Kingdom | 0.68 | 13 | 0.57 | 8 | 0.39 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
References
- Aviation Benefits Beyond Borders; Air Transport Action Group: Geneva, Switzerland, September 2020; Available online: https://aviationbenefits.org/media/167186/abbb2020_full.pdf (accessed on 26 October 2020).
- Annual Review 2019; IATA: Montreal, QC, Canada, 2019; Available online: https://www.iata.org/en/publications/annual-review/ (accessed on 26 October 2020).
- Biosafety for Air Transport: A Roadmap for Restarting Aviation v.3; IATA: Montreal, QC, Canada, 2020; Available online: https://www.iata.org/contentassets/5c8786230ff34e2da406c72a52030e95/roadmap-safely-restarting-aviation.pdf (accessed on 26 October 2020).
- Humphreys, B.; Morrell, P. The potential impacts of the EU/US Open Sky Agreement: What will happen at Heathrow after spring 2008. J. Air Transp. Manag. 2009, 15, 72–77. [Google Scholar] [CrossRef]
- Martín, J.C.; Roman, C. An application of DEA to measure the efficiency of Spanish airports prior to privatization. J. Air Transp. Manag. 2001, 7, 149–157. [Google Scholar] [CrossRef]
- Melecký, L.; Staníčková, M. National efficiency evaluation of Visegrad countries in comparison with Austria and Germany by selected DEA models. Proc. 30th Int. Conf. Math. Methods Econ. 2012, 575–580. [Google Scholar]
- Barros, C.P.; Dieke, P.U. Performance evaluation of Italian airports: A data envelopment analysis. J. Air Transp. Manag. 2007, 13, 184–191. [Google Scholar] [CrossRef]
- Gillen, D.; Lall, A. Developing measures of airport productivity and performance: An application of data envelopment analysis. Transp. Res. Part E Logist. Transp. Rev. 1997, 33, 261–273. [Google Scholar] [CrossRef]
- Good, D.H.; Röller, L.H.; Sickles, R.C. Airline efficiency differences between Europe and the US: Implications for the pace of EC integration and domestic regulation. Eur. J. Oper. Res. 1995, 80, 508–518. [Google Scholar] [CrossRef]
- Martín, J.C.; Mendoza, C.; Román, C. A DEA travel–tourism competitiveness index. Soc. Indic. Res. 2017, 130, 937–957. [Google Scholar] [CrossRef]
- Merkert, R.; Hensher, D.A. The impact of strategic management and fleet planning on airline efficiency—A random effects Tobit model based on DEA efficiency scores. Transp. Res. Part A Policy Pract. 2011, 45, 686–695. [Google Scholar] [CrossRef]
- Porter, M.E. The Competitive Advantage of Nations: With a New Introduction; Free Press: New York, NY, USA, 1990. [Google Scholar]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; Campbell, R.H., Skinner, A.S., Eds.; Liberty Fund, Inc.: Indianapolis, IN, USA, 1981. [Google Scholar]
- Ricardo, D. The Works and Correspondence of David Ricardo; Liberty Fund: Indianapolis, IN, USA, 1951; Volume 11. [Google Scholar]
- Cho, D.S. A dynamic approach to international competitiveness: The case of Korea. Asia Pac. Bus. Rev. 1994, 1, 17–36. [Google Scholar] [CrossRef]
- Moon, H.C.; Rugman, A.M.; Verbeke, A. A generalized double diamond approach to the global competitiveness of Korea and Singapore. Int. Bus. Rev. 1998, 7, 135–150. [Google Scholar] [CrossRef]
- Cho, D.S.; Moon, H.C.; Kim, M.Y. Does one size fit all? A dual double diamond approach to country-specific advantages. Asian Bus. Manag. 2009, 8, 83–102. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis; Springer Nature Switzerland AG: Cham, Switzerland, 2000; pp. 1–40. [Google Scholar]
- Aviation Benefits Beyond Borders; Air Transport Action Group: Geneva, Switzerland, October 2018; Available online: https://aviationbenefits.org/media/166711/abbb18_full-report_web.pdf (accessed on 26 October 2020).
- Chiang, K. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar]
- ICAO Annual Report 2018. Available online: https://www.icao.int/annual-report-2018/Pages/default.aspx (accessed on 26 October 2020).
- FAA STRATEGIC PLAN FY 2019–2022; Federal Aviation Administration: Washington, DC, USA, February 2018. Available online: https://www.faa.gov/about/plans_reports/media/FAA_Strategic_Plan_Final_FY2019-2022.pdf (accessed on 26 October 2020).
- GCAA Strategic Plan 2017–2021; UAE General Civil Aviation Authority: Abu Dhabi, UAE, 2020. Available online: https://www.academia.edu/33034924/GCAA_STRATEGY_PLAN (accessed on 26 October 2020).
Model | Equation | |
---|---|---|
IM_Front | Program | |
Productivity | ||
IM_Behind | Program | |
Productivity | ||
RSM | Program | |
Productivity | ||
RPM_Same Weights | Program | |
Productivity | ||
RPM_Different Weights | Program | |
Productivity |
Type | Factor | Unit | Definition |
---|---|---|---|
Inputs | Number of routes | - | Number of routes between airports by country (international + domestic) |
Number of airports | - | Number of airports by country | |
Population | Thousand | Population by country | |
GDP | USD 100 million | PPP-based GDP by country | |
Tourist attraction | - | Travel and tourism competitiveness index (World Economic Forum) | |
Inverse HHI index (airline) | - | Inverse market concentration of airlines by country | |
Intermediates | RPK | - | Revenue per kilometers |
CTK | - | Cargo tonne-kilometers | |
Inverse HHI index (route) | - | Inverse market concentration of routes by country | |
Outputs | Amount of added value | - | Aggregate aviation added value (Air Transport Action Group) |
Category | Front-Stage Productivity | Behind-Stage Productivity | Total Productivity |
---|---|---|---|
IM-Model | 0.9064 | 0.3886 | - |
RSM-Model | 0.5274 | 0.2720 | 0.1404 |
RPM-Model (Same weight) | 0.8702 | 0.1508 | 0.5226 |
RPM-Model (Different weight) | 0.8710 | 0.1507 | 0.5228 |
Model | p-Value | |
---|---|---|
RPM (With different weight) | = | <2.2 × 10−16 |
= | 3.141 × 10−14 | |
= | 8.08 × 10−14 | |
RSM | = | 1.362 × 10−8 |
= | <2.2 × 10−16 | |
= | 0.000571 |
Category | Pearson Correlation Coefficient | |||
---|---|---|---|---|
Front-Stage Productivity | Behind-Stage Productivity | Total Productivity | ||
IM-Model | RPM-Model (DW) | 0.8369 | 0.5952 | - |
IM-Model | RSM-Model | 0.5675 | 0.8188 | - |
RPM-Model (DW) | RSM-Model | 0.3903 | 0.8318 | 0.8680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.H.; Choi, S.; Han, I.H. Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability 2020, 12, 10323. https://doi.org/10.3390/su122410323
Song KH, Choi S, Han IH. Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability. 2020; 12(24):10323. https://doi.org/10.3390/su122410323
Chicago/Turabian StyleSong, Ki Han, Solsaem Choi, and Ik Hyun Han. 2020. "Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA" Sustainability 12, no. 24: 10323. https://doi.org/10.3390/su122410323
APA StyleSong, K. H., Choi, S., & Han, I. H. (2020). Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability, 12(24), 10323. https://doi.org/10.3390/su122410323