Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production
Abstract
:1. Introduction
2. Models and Data Sets
2.1. Overview of Models
2.1.1. Support Vector Machine Regression
2.1.2. Artificial Neural Networks
2.1.3. Gradient Boosting Regression Tree
- Initialize
- Compute
- Fit a regression tree to target giving terminal regions , for ( is a tree consisting of J leaf nodes).The new multiplier is updated based on the tree and .
- The new tree is updated byI is the indicator function which equals to 1 if x is in the region . In this paper, we prevent over-fitting by controlling the learning rate and subsample. We set the learning rate to 0.01 and subsampling rate to 0.75.
- Output by updating the following equation until m reaches M.
2.1.4. Extreme Gradient Boosting
2.2. Datasets and Modeling Scenarios
2.3. Training, Validation, and Test Approaches
- (i)
- Cross-validation correlation coefficient (Corr, see Equation (15)),
- (ii)
- Mean-square-error (MSE, see Equation (16))
- (iii)
- Coefficient of determination (, see Equation (17))
3. Results
3.1. Predictive Accuracy
3.1.1. Influences of Input Variables
3.1.2. Influences of Modeling Algorithms
3.1.3. Influences of Sample Sizes
3.2. Predictive Efficiency
3.3. Key Influential Factors
4. Discussion
4.1. Syntheses of Machine Learning Modeling Comparison
4.2. Application of Machine Learning Based Modeling Approaches for Supply Chain Management and Environmental Policies
5. Conclusions and Recommendations for Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Del Grosso, S.; Parton, W.; Mosier, A.; Walsh, M.; Ojima, D.; Thornton, P. DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J. Environ. Qual. 2006, 35, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Bricker, S.; Longstaff, B.; Dennison, W.; Jones, A.; Boicourt, K.; Wicks, C.; Woerner, J. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algea 2008, 8, 21–32. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Garnier, J.; Leach, A.M.; Galloway, J.N. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 2014, 118, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Sobota, D.J.; Compton, J.E.; McCrackin, M.L.; Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 2015, 10, 025006. [Google Scholar] [CrossRef]
- Anyamba, A.; Small, J.; Britch, S.; Tucker, C.; Pak, E.; Reynolds, C.; Crutchfield, J.; Linthicum, K. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns. PLoS ONE 2014, 9, e92538. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2014, 68. [Google Scholar] [CrossRef]
- Karmakar, R.; Das, I.; Dutta, D.; Rakshit, A. Potential Effects of Climate Change on Soil Properties: A Review. Sci. Int. 2016, 4, 51–73. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.; Huisman, J. Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Lee, E.K.; Zhang, W.J.; Zhang, X.; Alder, P.R.; Lin, S.; Feingold, B.J.; Khwaja, H.A.; Romeiko, X.X. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. Sci. Total Environ. 2020, 714, 136697. [Google Scholar] [CrossRef]
- Smith, T.M.; Goodkind, A.L.; Kim, T.; Pelton, R.E.O.; Suh, K.; Schmitt, J. Subnational mobility and consumption- based environmental accounting of US corn in animal protein and ethanol supply chains. Proc. Natl. Acad. Sci. USA 2017, 114, 7891–7899. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Collinge, B.; Lanids, A.; Shrake, S.; Bilec, M. Regional life cycle assessment of soybean derived biodiesel for transportation fleet. Energy Policy 2012, 48, 295–303. [Google Scholar] [CrossRef]
- Xue, X.; Landis, A.E. Eutrophication potential of food consumption patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef] [PubMed]
- ISO. Environmental Management and Life Cycle Assessment: Principles and Framework. Available online: https://www.iso.org/standard/37456.html (accessed on 20 May 2019).
- ISO. Environmental Management and Life Cycle Assessment: Requirements and Guidelines. Available online: https://www.iso.org/standard/38498.html (accessed on 20 May 2019).
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Lee, E.K.; Zhang, X.; Adler, P.; Romeiko, X.X. Spatially and temporally explicit life cycle global warming, eutrophication, and acidification impacts from corn production in the U.S. Midwest. J. Clean. Prod. 2020, 242, 118465. [Google Scholar] [CrossRef]
- Henderson, A.D.; Asselin-Balencon, A.; Heller, M.; Lessard, L.; Vionnet, S.; Jolliet, O. Spatial Variability and Uncertainty of Water Use Impacts from US Feed and Milk Production. Environ. Sci. Technol. 2017, 51, 2382–2391. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Bolte, J.P.; Murthy, G.S. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems. Sci. Total Environ. 2018, 625, 428–439. [Google Scholar] [CrossRef]
- Xue, X.; Pang, Y.; Landis, A. Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol. Renew. Energy 2014, 66, 454–460. [Google Scholar] [CrossRef]
- Adom, F.; Maes, A.; Workman, C.; Clayton-Nierderman, Z.; Thoma, G.; Shonnard, D. Regional carbon footprint analysis of dairy feeds for milk production in the USA. Int. J. Life Cycle Assess. 2012, 17, 520–534. [Google Scholar] [CrossRef]
- Cronin, K.R.; Runge, T.M.; Zhang, X.; Izaurralde, R.C.; Reinemann, D.J.; Sinistore, J.C. Spatially Explicit Life Cycle Analysis of Cellulosic Ethanol Production Scenarios in Southwestern Michigan. BioEnergy Res. 2017, 10, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dale, B.E. Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresour. Technol. 2008, 99, 5250–5260. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Dale, B.E. Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products. J. Ind. Ecology 2004, 7, 147–162. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Environmental aspects of ethanol derived from no-tilled corn grain: Nonrenewable energy consumption and greenhouse gas emissions. Biomass Bioenergy 2005, 28, 475–489. [Google Scholar] [CrossRef]
- Landis, A.E.; Miller, S.A.; Theis, T.L. Life Cycle of the Corn-Soybean Agroecosystem for Biobased Production. Environ. Sci. Technol. 2007, 41, 1457–1464. [Google Scholar] [CrossRef]
- Romeiko, X.X. A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China. Sustainability 2019, 11, 2743. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Landis, A.E. Effect of agricultural practices on biofuels’ environmental footprints. In Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and Technology, ISSST’09, Phoenix, AZ, USA, 18–20 May 2009; pp. 1–4. [Google Scholar]
- Gabrielle, B.; Gagnaire, N. Life-cycle assessment of straw use in bio-ethanol production: A case study based on biophysical modelling. Biomass Bioenergy 2008, 32, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Zaher, U.; Stockle, C.; Painter, K.; Higgins, S. Life cycle assessment of the potential carbon credit from no- and reduced-tillage winter wheat-based cropping systems in Eastern Washington State. Agric. Syst. 2013, 122, 73–78. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.; Jenkins, R. Life cycle assessment of corn grain and corn stover in the United States. Int. J. Life Cycle Assess. 2009, 14, 160–174. [Google Scholar] [CrossRef]
- Dufossé, K.; Gabrielle, B.; Drouet, J.L.; Bessou, C. Using Agroecosystem Modeling to Improve the Estimates of N2O Emissions in the Life-Cycle Assessment of Biofuels. Waste Biomass Valorization 2013, 4, 593–606. [Google Scholar] [CrossRef]
- Gilhespy, S.L.; Anthony, S.; Cardenas, L.; Chadwick, D.; Prado, A.D.; Li, C.; Misselbrook, T.; Rees, R.M.; Salas, W.; Sanz-Cobena, A.; et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecol. Model. 2014, 292, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Adler, P.; Del Grosso, S.; Parton, W. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 2007, 17, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Perlman, J.; Hijmans, R.J..; Horwath, W.R. A metamodelling approach to estimate global n2o emissions from agricultural soils. Glob. Ecol. Biogeogr. 2014, 23, 912–924. [Google Scholar]
- Zhang, X.; Izaurralde, R.; Manowitz, D.; West, T.; Post, M.; Thomson, A.; Bandaru, V.; Nichols, J.; Williams, J. An Integrated Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production. Glob. Chang. Biol. Bioenergy 2010, 2, 258–277. [Google Scholar] [CrossRef]
- Necpálova, M.; Anex, R.P.; Fienen, M.N.; Grosso, S.J.; Castellano, M.J.; Sawyer, J.E.; Iqbal, J.; Pantoja, J.L.; Barkerd, D.W. Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling. Ecol. Model. 2014, 66, 110–130. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Nong, D.; Paustian, K. Surrogate-based multi-objective optimization of management options for agricultural landscapes using artificial neural networks. Ecol. Model. 2019, 400, 1–13. [Google Scholar] [CrossRef]
- Giljum, S.; Wieland, H.; Lutter, F.S.; Eisenmenger, N.; Schandl, H.; Owen, A. The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO. J. Ind. Ecology 2019, 23. [Google Scholar] [CrossRef]
- Bratsas, C.; Koupidis, K.; Salanova Grau, J.M.; Giannakopoulos, K.; Kaloudis, A.; Aifadopoulou, G. A Comparison of Machine Learning Methods for the Prediction of Traffic Speed in Urban Places. Sustainability 2019, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Aggarwal, H.; Centobelli, P.; Cerchione, R. Extracting Knowledge from Big Data for Sustainability: A Comparison of Machine Learning Techniques. Sustainability 2019, 11, 6669. [Google Scholar] [CrossRef] [Green Version]
- Dick, M.; Silva, M.A.d.; Dewes, H. Mitigation of environmental impacts of beef cattle production in southern Brazil e Evaluation using farm-based life cycle assessment. J. Clean. Prod. 2015, 87, 58–67. [Google Scholar] [CrossRef]
- Marvuglia, A.; Kanevski, M.; Benetto, E. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space. Environ. Int. 2015, 83, 72–85. [Google Scholar] [CrossRef]
- Ramakrishnan, N.; Marwah, M.; Shah, A.; Patnaik, D.; Hossain, M.S.; Sundaravaradan, N.; Patel, C. Data Mining Solutions for Sustainability Problems. IEEE Potentials 2012, 31, 28–34. [Google Scholar] [CrossRef]
- Slapnik, M.; Istenič, D.; Pintar, M.; Udovč, A. Extending life cycle assessment normalization factors and use of machine learning—A Slovenian case study. Ecol. Indic. 2015, 50, 161–172. [Google Scholar] [CrossRef]
- Sousa, I.; Eisenhard, J.L.; Wallace, D. Approximate life-cycle assessment of product concepts using learning systems. J. Ind. Ecology 2001, 4, 61–81. [Google Scholar] [CrossRef]
- Sundaravaradan, N.; Patnaik, D.; Ramakrishnan, N.; Marwah, M.; Shah, A. Discovering life cycle assessment trees from impact factor databases. In Proceedings of the Twenty-fifth AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011. [Google Scholar]
- Hou, P.; Cai, J.; Qu, S.; Xu, M. Estimating Missing Unit Process Data in Life Cycle Assessment Using a Similarity-Based Approach. Environ. Sci. Technol. 2018, 52, 5259–5267. [Google Scholar] [CrossRef]
- Song, R.; Keller, A.A.; Suh, S. Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environ. Sci. Technol. 2017, 51, 10777–10785. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Rajaeifar, M. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agric. Syst. 2014, 123, 120–127. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Yousefi, M.; Movahedi, M. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 2013, 52, 333–338. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Hosseinzadeh-Bandbafha, H.; Shamshirband, S. Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. J. Clean. Prod. 2016, 133, 924–931. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.; Hosseinzadeh-Bandbafha, H. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Sci. Total Environ. 2018, 631–632, 1279–1294. [Google Scholar] [CrossRef]
- Pahlavan, R.; Omid, M.; Akram, A. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 2012, 37, 171–176. [Google Scholar] [CrossRef]
- Elhami, B.; Khanali, M.; Akram, A. Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran. Inf. Process. Agric. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- USDA. Corn & Other Feedgrains. Available online: https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/ (accessed on 20 October 2019).
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [Google Scholar] [CrossRef] [Green Version]
- Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Neural Network Design; Martin Hagan: Stillwater, OK, USA, 2014. [Google Scholar]
- Palani, S.; Liong, S.Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Gong, P. Geological mapping. Photogramm. Eng. Rem. Sens. 1996, 62, 513–523. [Google Scholar]
- Bengio, Y.; others. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Topping, B.; Khan, A.; Bahreininejad, A. Parallel training of neural networks for finite element mesh decomposition. Comput. Struct. 1997, 63, 693–707. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; KDD’16; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- NOAA. National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov (accessed on 20 May 2019).
- NCDC. National Climatic Data Center. Available online: https://www.ncdc.noaa.gov (accessed on 20 May 2019).
- USDA. Soil Survey Geographic (SSURGO) Database. Available online: https://sdmdataaccess.sc.egov.usda.gov (accessed on 20 May 2019).
- USDA. National Agricultural Statistics Service: Quick Stats-Crop Yield Data. Available online: https://quickstats.nass.usda.gov (accessed on 20 May 2019).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Snyder, C.; Bruulsema, T.; Jensen, T.; Fixen, P. Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Johnson, J.; Franzluebbers, A.; Weyers, S.; Reicosky, D. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Ecoinvent. EcoInvent Data v2.2. Ecoinvent Reports No. 1-25. 2012. Available online: https://www.ecoinvent.org (accessed on 20 May 2019).
- Stehfest, E.; Bouwman, A. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Hoyle, F.; Barton, L.; Stefanova, K.; Murphy, D. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 2016, 231, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Adler, P.; Del Grosso, S.; Inman, D.; Jenkins, R.; Spatari, S.; Zhang, Y. Mitigation Opportunities for Life-Cycle Greenhouse Gas Emissions during Feedstock Production across Heterogeneous Landscapes. In Managing Agricultural Greenhouse Gasses: Coordinated Agricultural Research through GRACEnet to Address Our Changing Climate; Elsevier Inc.: New York, NY, USA, 2012; pp. 203–219. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N 2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Congreves, K.; Wagner-Riddle, C.; Si, B.; Clough, T. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol. Biochem. 2018, 117, 5–15. [Google Scholar] [CrossRef]
- Rabalais, N.; Diaz, R.; Levin, L.; Turner, R.; D, G.; J, Z. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef] [Green Version]
- Sinha, E.; Michalak, A.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.; Marino, R. Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Allan, J.D.; Scavia, D. Influence of Climate and Human Activities on the Relationship between Watershed Nitrogen Input and River Export. Environ. Sci. Technol. 2009, 43, 1916–1922. [Google Scholar] [CrossRef]
- Gentry, L.; SILVER, T.; Below, F.; Royer, T.; Mcisaac, G. Nitrogen Mass Balance of a Tile-Drained Agricultural Watershed in East-Central Illinois. J. Environ. Qual. 2009, 38, 1841–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieder, W.; Cleveland, C.; Townsend, A. Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Glob. Chang. Biol. 2011, 17, 3195–3207. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Hu, Y.; Xi, X.; Tang, Y.; Chen, J.; Fu, X.; Sun, Y. Water Organic Pollution and Eutrophication Influence Soil Microbial Processes, Increasing Soil Respiration of Estuarine Wetlands: Site Study in Jiuduansha Wetland. PLoS ONE 2015, 10, e0126951. [Google Scholar] [CrossRef] [PubMed]
- Amery, F.; Vandecasteele, B. Wat Weten We over Fosfor en Landbouw? Beschikbaarheid van Fosfor in Bodem en Bemesting. Available online: https://www.vlaanderen.be/publicaties/wat-weten-we-over-fosfor-en-landbouw-deel-1-beschikbaarheid-van-fosfor-in-bodem-en-bemesting (accessed on 20 October 2019).
Scenarios | Algorithms | Model Inputs (Features) |
---|---|---|
S1A | LM | monthly temperature (12 covariates), |
S2A | SVR | monthly precipitation (12 covariates), |
S3A | MLP | soil organic content, soil texture (3 covariates), |
S4A | GBRT | Nitrogen fertilizer rate, phosphorus fertilizer rate, |
S5A | XGBoost | percentage of conventional, no tillage (2 covariates) |
S1B | LM | seasonal temperature (4 covariates), |
S2B | SVR | seasonal precipitation (4 covariates), |
S3B | MLP | soil organic content, soil texture (3 covariates), |
S4B | GBRT | Nitrogen fertilizer rate, phosphorus fertilizer rate, |
S5B | XGBoost | percentage of conventional, no tillage (2 covariates) |
Predictors (Xs) | Data Description | Data Sources |
---|---|---|
Temperature (°C) | Monthly mean temperature (Jan-Dec) | NOAA [69] |
Precipitation (mm) | Monthly mean precipitation (Jan-Dec) | NOAA [69] |
Soil organic content (%) | Percentage of soil organic content measured in soil depth up to 6 m | USDA SSURGO [71] |
Soil type: Clay, Sand, Silt (%) | Percentage of soil types | USDA SSURGO [71] |
Nitrogen and phosphorus fertilizers | fertilizer application rate (lbs/acre) | USDA NASS [72] |
Farming practices (NT & CT) | Farming practices in fractions (No Tillage & Conventional Tillage) | USDA [72] |
Outcomes (Ys) | ||
Life cycle GW values | Life-cycle GW (kg CO2-eq. kg corn−1) | Lee et al. [17] |
Life cycle EU values | Life-cycle EU (mg N-eq. kg corn−1) | Lee et al. [17] |
Scenario A | S1A | S2A | S3A | S4A | S5A | |
LM | SVR | MLP | GBRT | XGBoost | ||
GW | CV corr | 0.45 | 0.68 | 0.64 | 0.80 | 0.78 |
MSE | 0.58 | 0.40 | 0.44 | 0.27 | 0.28 | |
0.20 | 0.45 | 0.40 | 0.63 | 0.61 | ||
EU | CV corr | 0.65 | 0.80 | 0.74 | 0.87 | 0.86 |
MSE | 20 | 14 | 18 | 10 | 9 | |
0.42 | 0.60 | 0.50 | 0.75 | 0.73 | ||
Scenario B | S1B | S2B | S3B | S4B | S5B | |
LM | SVR | MLP | GBRT | XGBoost | ||
GW | CV corr | 0.35 | 0.63 | 0.64 | 0.78 | 0.76 |
MSE | 0.55 | 0.38 | 0.37 | 0.28 | 0.30 | |
0.11 | 0.39 | 0.40 | 0.61 | 0.58 | ||
EU | CV corr | 0.63 | 0.74 | 0.74 | 0.84 | 0.83 |
MSE | 22 | 17 | 18 | 10 | 11 | |
0.39 | 0.53 | 0.49 | 0.71 | 0.62 |
LM | SVR | MLP | GBRT | XGBoost | ||
---|---|---|---|---|---|---|
GW | Training | 0.02 | 4.11 | 65.4 | 112 | 33.8 |
Predicting | 7 × 105 | 0.13 | 1 × 103 | 0.09 | 0.06 | |
EU | Training | 0.03 | 4.72 | 33.1 | 128 | 41.6 |
Predicting | 6 × 105 | 0.04 | 5 × 104 | 0.02 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeiko, X.X.; Guo, Z.; Pang, Y.; Lee, E.K.; Zhang, X. Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability 2020, 12, 1481. https://doi.org/10.3390/su12041481
Romeiko XX, Guo Z, Pang Y, Lee EK, Zhang X. Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability. 2020; 12(4):1481. https://doi.org/10.3390/su12041481
Chicago/Turabian StyleRomeiko, Xiaobo Xue, Zhijian Guo, Yulei Pang, Eun Kyung Lee, and Xuesong Zhang. 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production" Sustainability 12, no. 4: 1481. https://doi.org/10.3390/su12041481
APA StyleRomeiko, X. X., Guo, Z., Pang, Y., Lee, E. K., & Zhang, X. (2020). Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability, 12(4), 1481. https://doi.org/10.3390/su12041481