Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management
Abstract
:1. Introduction
- (1)
- To illustrate the agricultural expansion pattern in the SSP during 1965–2015;
- (2)
- to analyze land-use changes related to agricultural expansion in the past five decades;
- (3)
- to track the ES changes in response to agricultural expansion as well as internal conversion of cultivated land quantitatively.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Handling
2.3. Data Analyses
2.3.1. Cultivated Land Change
2.3.2. Ecosystem Service Value Estimation
3. Results
3.1. Spatio-Temporal Change
3.1.1. Percentage Change
3.1.2. Annual Change Area
3.1.3. Land-Use Changes Related to Cultivated Land
3.2. Ecosystem Service Value
3.2.1. Temporal Changes of Ecosystem Service Value
3.2.2. Ecosystem Service Value Variations of Different Ecosystems
4. Discussion
4.1. Driving Force of Agricultural Expansion in the SSP
4.2. The Effect of Agricultural Expansion on Ecosystem Services
4.3. Management of Ecosystem Services for Future Sustainability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; De Groot, R.; Faber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Ouyang, Z.; Wang, R.; Zhao, J. Ecosystem services and their economic valuation. Chin. J. Appl. Ecol. 1999, 10, 635–640. [Google Scholar]
- Opdam, P.; Steingröver, E.; van Rooij, S. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; De Freitas, J.V.; Grainger, A.; Lindquist, E. Forest ecology and management dynamics of global forest area: Results from the FAO global forest resources assessment. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Sandker, M.; Finegold, Y.; Min, Z. Forest ecology and management projecting global forest area towards 2030. For. Ecol. Manag. 2015, 52, 124–133. [Google Scholar]
- Costanza, R.; Kubiszewski, I. The authorship structure of “ecosystem services” as a transdisciplinary field of scholarship. Ecosyst. Serv. 2012, 1, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Braat, L.C.; de Groot, R. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.H.; Bryceson, I.; Kolivras, K.N.; Faruque, F.; Rahman, M.M.; Haque, U. Natural disasters and land use/land-cover change in the southwest coastal areas of Bangladesh. Reg. Environ. Chang. 2015, 15, 241–250. [Google Scholar] [CrossRef]
- Roth, D.; Torres-Rojo, J.M.; Moreno-Sánchez, R.; Moreno-Sanchez, R. Estimation of human induced disturbance of the environment associated with 2002, 2008 and 2013. land use/cover patterns in Mexico. Appl. Geogr. 2016, 66, 22–34. [Google Scholar] [CrossRef]
- Bosso, L.; Ancillotto, L.; Smeraldo, S.; D’Arco, S.; Migliozzi, A.; Conti, P.; Russo, D. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 2018, 27, 756–769. [Google Scholar] [CrossRef] [Green Version]
- Kertész, Á.; Nagy, L.A.; Bertalan-Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Russo, D.; Bosso, L.; Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: Research frontiers and management implications. Agric. Ecosyst. Environ. 2018, 266, 31–38. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; García-Llorente, M.; Norström, A.; Meacham, M.; Peterson, G.; Castro, A.J. Integrating supply and demand in ecosystem service bundles characterization across Mediterranean transformed landscapes. Landsc. Ecol. 2019, 34, 1619–1633. [Google Scholar] [CrossRef]
- Liu, S.; Deng, L.; Dong, S.; Zhao, Q.; Yang, J.; Wang, C. Landscape connectivity dynamics based on network analysis in the Xishuangbanna Nature Reserve, China. Acta Oecol. 2014, 55, 66–77. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.; Crawford, J.W.; Field, D.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.D.R.D.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2015, 164, 80–99. [Google Scholar] [CrossRef]
- Daniel, D.W.; Smith, L.M.; Belden, J.; McMurry, S.T.; Swain, S. Effects of land-use change and fungicide application on soil respiration in playa wetlands and adjacent uplands of the U.S. High Plains. Sci. Total Environ. 2015, 514, 290–297. [Google Scholar] [CrossRef]
- Dubreuil, V.; Debortoli, N.S.; Funatsu, B.; Nédélec, V.; Durieux, L. Impact of land-cover change in the Southern Amazonia climate: A case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ. Monit. Assess. 2012, 184, 877–891. [Google Scholar] [CrossRef]
- Natkhin, M.; Dietrich, O.; Schäfer, M.P.; Lischeid, G. The effects of climate and changing land use on the discharge regime of a small catchment in Tanzania. Reg. Environ. Chang. 2015, 15, 1269–1280. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H.; Brunner, N.M. Analyzing land-use change scenarios for trade-offs among cultural ecosystem services in the Southern Rocky Mountains. Ecosyst. Serv. 2017, 26, 431–444. [Google Scholar] [CrossRef]
- Martinez, M.L.; Perez-Maqueo, O.; Vazquez, G.; Castillo-Campos, G.; Garcia-Franco, J.; Mehltreter, K.; Landgrave, R. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 2009, 258, 1856–1863. [Google Scholar] [CrossRef]
- Rodriguez-Echeverry, J.; Echeverria, C.; Oyarzun, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Lands. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Pommier, T.; Cantarel, A.A.M.; Grigulis, K.; Lavorel, S.; Legay, N.; Baxendale, C.; Clement, J.C. The added value of including key microbial traits to determine nitrogen-related ecosystem services in managed grasslands. J. Appl. Ecol. 2018, 55, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Lands. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Su, S.L.; Li, D.L.; Hu, Y.N.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol. Indic. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R.J. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Leitinger, G.; Kohler, M.; Schirpke, U.; Tappeiner, U. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Chang. 2017, 17, 2251–2264. [Google Scholar] [CrossRef]
- Gaglio, M.; Aschonitis, V.G.; Gissi, E.; Castaldelli, G.; Fano, E.A. Land use change effects on ecosystem services of river deltas and coastal wetlands: Case study in Volano-Mesola-Goro in Po river delta (Italy). Wetl. Ecol. Manag. 2017, 25, 67–86. [Google Scholar] [CrossRef]
- Zorrilla-Miras, P.; Palomo, I.; Gomez-Baggethun, E.; Martin-Lopez, B.; Lomas, P.L.; Montes, C. Effects of land-use change on wetland ecosystem services: A case study in the Donana marshes (SW Spain). Lands. Urban Plan. 2014, 122, 160–174. [Google Scholar] [CrossRef]
- Kroeger, T.; Casey, F. An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecol. Econ. 2007, 64, 321–332. [Google Scholar] [CrossRef]
- Wang, J.T.; Peng, J.; Zhao, M.Y.; Liu, Y.X.; Chen, Y.Q. Significant trade-off for the impact of grain-for-green programme on ecosystem services in north-western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Gamfeldt, L.; Snäll, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Fröberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I.; et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Viglizzo, E.F.; Frank, F.C.; Carreño, L.V.; Jobbágy, E.G.; Pereyra, H.; Clatt, J.; Pincén, D.; Ricard, M.F. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob. Chang. Biol. 2011, 17, 959–973. [Google Scholar] [CrossRef]
- Maeda, E.; Clark, B.J.; Pellikka, P.; Siljander, M. Modelling agricultural expansion in Kenya’s Eastern Arc Mountains biodiversity hotspot. Agric. Syst. 2010, 103, 609–620. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Ren, W.; Tao, B.; Lu, C.; Yang, J.; Pan, S. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Glob. Biogeochem. Cycles 2016, 30, 1246–1263. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Yu, L.; Yang, C.; Zhang, S. Paddy Field Expansion and Aggregation Since the Mid-1950s in a Cold Region and Its Possible Causes. Remote Sens. 2018, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Golding, N.; Zhou, H.; Wint, G.R.W.; Robinson, T.P.; Tatem, A.J.; Yu, H.J. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nat. Commun. 2014, 5, 4116. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Xiao, X.M.; Pfeiffer, D.U.; Epprecht, M.; Boles, S.; Czarnecki, C.; Slingenbergh, J. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2008, 105, 4769–4774. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.Q.; Zhang, S.W.; Liu, X.T.; Yu, L.X.; Chen, D.; Yang, J.C.; Yang, C.B.; Bu, K.; Chang, L.P. Monitoring spatiotemporal changes of marshes in the Sanjiang Plain, China. Ecol. Eng. 2017, 104, 184–194. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Jiang, M.; Xue, Z.; Lu, X.; Zou, Y. A consistent ecosystem services valuation method based on total economic value and equivalent value factors: A case study in the Sanjiang Plain, Northeast China. Ecol. Complex. 2017, 29, 40–48. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, B.; Zhang, S.Q.; Li, X.Y.; Liu, D.W.; Song, K.S.; Li, J.P.; Li, F.; Duan, H.T. Changes of land use and of ecosystem service values in Sanjiang Plain, northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.Q.; Zhang, S.W.; Liu, X.T.; Chen, D.; Chen, J.; Bu, K.; Yang, J.C.; Chang, L.P. The effects of spatiotemporal changes in land degradation on ecosystem services values in Sanjiang Plain, China. Remote Sens. 2016, 8, 917. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Liu, D.; Wand, Z.; Zhang, B.; Jin, C.; Li, F.; Liu, H. Analysis of cultivated land dynamics in the last 50 years in sanjiang plain and its driving forces. J. Soil Water Conserv. 2008, 22, 75–81. (In Chinese) [Google Scholar]
- Chen, J.; Sun, B.M.; Chen, D.; Wu, X.; Guo, L.Z.; Wang, G. Land Use changes and Their effects on the value of ecosystem services in the small Sanjiang Plain in China. Sci. World J. 2014, 2014, 752846. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 2005, 34, 450–455. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, N.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Jiyuan, L.; Mingliang, L.; Xiangzheng, D.; Dafang, Z.; Zengxiang, Z.; Di, L. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J.; Liu, M. Research activities on land-use/cover change in the past ten years in China using space technology. Chin. Geogr. Sci. 1999, 9, 330–334. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Liu, J.; Melillo, J.M.; Tian, H.; Zhuang, D.; Zhang, Z. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Dan, W.; Wei, H.; Zhang, S.W.; Kun, B.; Bao, X.; Yi, W.; Yue, L. Processes and prediction of land use/land cover changes (lucc) driven by farm construction: The case of naoli river basin in sanjiang plain. Environ. Earth Sci. 2015, 73, 4841–4851. [Google Scholar] [CrossRef]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Jin, W.; Ren, G.Y.; Qu, Y.; Liu, X.L. Change in Surface Mean Wind Speed of Northeast China during the Period of 1971–2010. Arid Zone Res. 2012, 29, 648–653. (In Chinese) [Google Scholar]
- Wang, Z.M.; Song, K.S.; Ma, W.H.; Ren, C.Y.; Zhang, B.; Liu, D.W.; Chen, J.M.; Song, C.C. Loss and fragmentation of marshes in the sanjiang plain, northeast China, 1954–2005. Wetlands 2011, 31, 945–954. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, S.K.; Li, Z.F.; Lu, X.G.; Yang, Q. Impacts on wetlands of large-scale land-use changes by agricultural development: The small sanjiang plain, China. Ambio 2004, 33, 306–310. [Google Scholar] [CrossRef]
- Liu, X.; Dong, G.; Wang, X.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Y. Characterizing the spatial pattern of marshlands in the sanjiang plain, northeast China. Ecol. Eng. 2013, 53, 335–342. [Google Scholar] [CrossRef]
- Pu, L.; Zhang, S.; Yang, J.; Yan, F.; Chang, L. Assessment of High-standard Farmland Construction Effectiveness in Liaoning Province During 2011–2015. Chin. Geogr. Sci. 2019, 29, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhang, S.; Su, F. Variations in ecosystem services in response to paddy expansion in the Sanjiang Plain, Northeast China. Int. J. Agric. Sustain. 2019. [Google Scholar] [CrossRef]
- Shi, P.J.; Yu, D.Y. Assessing urban environmental resources and services of Shenzhen, China: A landscape-based approach for urban planning and sustainability. Landsc. Urban Plan. 2014, 125, 290–297. [Google Scholar] [CrossRef]
- Liang, J.; Zhong, M.; Niu, C.-G.; Chen, G.; Hua, S.; Li, X.; Yuan, Y.; Wu, H.; Gao, X. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China. Sci. Total Environ. 2017, 579, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Ouyang, Z. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Halpern, B.S.; Kappel, C.V. Ecosystem service tradeoff analysis reveals the value of marine spatial planning for multiple ocean uses. Proc. Natl. Acad. Sci. USA 2012, 109, 4696–4701. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.; Bergh, J.C.V.D.; Söderqvist, T.; Barendregt, A.; Van Der Straaten, J.; Maltby, E.; Van Ierland, E.C. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 2000, 35, 7–23. [Google Scholar] [CrossRef]
- Olsson, P.; Folke, C.; Hahn, T. Social-Ecological Transformation for Ecosystem Management: The Development of Adaptive Co-management of a Wetland Landscape in Southern Sweden. Ecol. Soc. 2004, 9, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Y.; Ju, M. Wise Use of Wetlands: Current State of Protection and Utilization of Chinese Wetlands and Recommendations for Improvement. Environ. Manag. 2008, 41, 793–808. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.; Song, K.S.; Wang, Z.M. Study on water consumption and water budget in the Sanjiang Plain. J. Hydraul. Eng. 2010, 41, 155–163. (In Chinese) [Google Scholar]
- Jiang, Q.X.; Fu, Q.; Wang, Z.L.; Jiang, N. Spatial matching patterns of land and water resources in Sanjiang Plain. J. Nat. Resour. 2011, 26, 270–277. (In Chinese) [Google Scholar]
- Seabloom, E.W.; Valk, A.G. Plant diversity, composition, and invasion of restored and natural prairie pothole wetlands: Implications for restoration. Wetlands 2003, 23, 1–12. [Google Scholar] [CrossRef]
- Liu, X.P.; Wang, K.; Zhang, G. Perspectives and policies: Ecological industry substitutes in wetland restoration of the Middle Yangtze. Wetlands 2004, 24, 633–641. [Google Scholar]
- Willison, J.H.M.; Li, R.; Yuan, X. Conservation and ecofriendly utilization of wetlands associated with the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2013, 20, 6907–6916. [Google Scholar] [CrossRef]
- Yu, X.; Mingju, E.; Sun, M.; Xue, Z.; Lu, X.; Jiang, M.; Zou, Y. Wetland recreational agriculture: Balancing wetland conservation and agro-development. Environ. Sci. Policy 2018, 87, 11–17. [Google Scholar] [CrossRef]
Type | Period | Change Area (ha) | Annual Change Area (ha/year) |
---|---|---|---|
Paddy | 1965–1995 | 36,412.97 | 1213.77 |
1995–2015 | 844,206.05 | 42,210.30 | |
Dry farmland | 1965–1995 | 600,815.44 | 20,027.18 |
1995–2015 | −480,548.45 | −24,027.42 |
Ecosystems | 1965–1995 | 1995–2015 | Total |
---|---|---|---|
Dry farmland | −0.28 | −62.69 | −62.98 |
Forest | −2.00 | −1254.96 | −1256.96 |
Grassland | −50.32 | −3.77 | −54.09 |
Water | −0.01 | −12.83 | −12.84 |
Settlement | 0.00 | 1.75 | 1.75 |
Marsh | −392.52 | −2712.35 | −3104.88 |
Other | 0.00 | 0.73 | 0.73 |
Ecosystems | 1965–1995 | 1995–2015 | Total |
---|---|---|---|
Paddy | −0.28 | −62.69 | −62.98 |
Forest | −99.86 | −201.30 | −301.17 |
Grassland | −731.65 | 39.63 | −692.01 |
Water | −14.56 | 5.84 | −8.72 |
Settlement | −3.28 | −8.40 | −11.67 |
Marsh | −7545.34 | −1077.29 | −8622.63 |
Other | −0.08 | −45.54 | −45.62 |
Type | Cultivated Land | Forest | Grassland | Water | Settlement | Marsh | Other |
---|---|---|---|---|---|---|---|
Gas regulation | 106.59 | −96.55 | −53.07 | 0.09 | −1.51 | −293.46 | −7.84 |
Climate regulation | 50.88 | −565.74 | −295.36 | −0.18 | −0.83 | −838.93 | −4.22 |
Hydrological | 593.52 | −163.39 | −198.80 | −10.37 | 0.52 | −6141.64 | −2.69 |
Soil conservation | −247.10 | −230.77 | −53.66 | −0.10 | −3.17 | −408.02 | −12.40 |
Biodiversity | 19.38 | −209.82 | −126.01 | −0.22 | −0.30 | −2033.39 | −1.52 |
Agricultural | 123.55 | 110.06 | 69.83 | 0.07 | −1.94 | 124.98 | −9.95 |
Raw materials | −75.10 | −46.89 | 3.66 | 0.00 | −1.19 | −47.87 | −4.80 |
Freshwater supply | −641.97 | −263.30 | −37.33 | −10.67 | −1.37 | −861.04 | −0.79 |
Relaxation | 7.27 | −91.73 | −55.38 | −0.18 | −0.14 | −1228.13 | −0.70 |
Total | −62.98 | −1558.12 | −746.10 | −21.56 | −9.92 | −11,727.51 | −44.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, L.; Yan, F.; Zhang, S. Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management. Sustainability 2020, 12, 2430. https://doi.org/10.3390/su12062430
Chen J, Yu L, Yan F, Zhang S. Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management. Sustainability. 2020; 12(6):2430. https://doi.org/10.3390/su12062430
Chicago/Turabian StyleChen, Jing, Lingxue Yu, Fengqin Yan, and Shuwen Zhang. 2020. "Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management" Sustainability 12, no. 6: 2430. https://doi.org/10.3390/su12062430
APA StyleChen, J., Yu, L., Yan, F., & Zhang, S. (2020). Ecosystem Service Loss in Response to Agricultural Expansion in the Small Sanjiang Plain, Northeast China: Process, Driver and Management. Sustainability, 12(6), 2430. https://doi.org/10.3390/su12062430