Experimental and Numerical Analysis for Earth-Fill Dam Seepage
Abstract
:1. Introduction
1.1. Research Background
1.2. Study of Seepage Through Earth-Fill Dams
1.3. The Use of Physical and Numerical Models
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Tests
2.3. Mathematical Calculation Using L. Casagrande Solution
2.4. Numerical Modeling Using SEEP/W Software
3. Results and Analysis
3.1. Earth-Fill Dam Model with Toe Drain
3.2. Earth-Fill Dam Model with Maximum Drain Length
4. Discussion
4.1. Comparison of Results From Experimental, Mathematical, and Numerical Methods
4.2. Example of Seepage Analysis using SEEP/W Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Graf, W.L. Dam nation: A geographic census of american dams and their large-scale hydrologic impacts. Water Resour. Res. 1999. [Google Scholar] [CrossRef]
- Sayl, K.N.; Muhammad, N.S.; Yaseen, Z.M.; El-Shafie, A. Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach. Water Resour. Manag. 2016, 30, 3299–3313. [Google Scholar] [CrossRef]
- Yener Ozkan, M. A review of considerations on seismic safety of embankments and earth and rock-fill dams. Soil Dyn. Earthq. Eng. 1998. [Google Scholar] [CrossRef]
- Chahar, B.R. Determination of Length of a Horizontal Drain in Homogeneous Earth Dams. J. Irrig. Drain. Eng. 2004, 130, 530–536. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ameen, A.M.S.; Aldlemy, M.S.; Ali, M.; Abdulmohsin Afan, H.; Zhu, S.; Sami Al-Janabi, A.M.; Al-Ansari, N.; Tiyasha, T.; Tao, H. State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations. Sustainability 2020, 12, 1676. [Google Scholar] [CrossRef] [Green Version]
- Richards, K.S.; Reddy, K.R. Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 2007. [Google Scholar] [CrossRef]
- Calamak, M.; Yanmaz, A.M. Probabilistic assessment of slope stability for earth-fill dams having random soil parameters. In Proceedings of the 5th IAHR International Symposium on Hydraulic Structures, Brisbane, Australia, 25–28 September 2014; Engineers Australia: Barton, Australia, 2014. [Google Scholar]
- Athani, S.S.; Solanki, C.H.; Dodagoudar, G.R. Seepage and Stability Analyses of Earth Dam Using Finite Element Method. Aquat. Procedia 2015. [Google Scholar] [CrossRef]
- Fell, R.; Wan, C.F.; Cyganiewicz, J.; Foster, M. Time for development of internal erosion and piping in embankment dams. J. Geotech. Geoenviron. Eng. 2003. [Google Scholar] [CrossRef]
- Özer, A.T.; Bromwell, L.G. Stability assessment of an earth dam on silt/clay tailings foundation: A case study. Eng. Geol. 2012. [Google Scholar] [CrossRef]
- Riahi-Madvar, H.; Dehghani, M.; Akib, S.; Shamshirband, S.; Chau, K. Developing a mathematical framework in preliminary designing of detention rockfill dams for flood peak reduction. Eng. Appl. Comput. Fluid Mech. 2019. [Google Scholar] [CrossRef]
- Al-Janabi, A.M.S.; Ghazali, A.H.; Yusuf, B.; Mohammed, T.A. Permeable channel cross section for maximizing stormwater infiltration and seepage rates. J. Irrig. Drain. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Erfeng, Z.; Ji, L.; Yufeng, J. The seepage evolution law under the fault creep in right bank of Longyangxia Dam. Eng. Fail. Anal. 2014. [Google Scholar] [CrossRef]
- Jassam, M.G.; Abdulrazzaq, S.S. Theoretical Analysis of Seepage through Homogeneous and Non-homogeneous Saturated-Unsaturated Soil. J. Eng. 2019, 25, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Kermani, E.; Barani, G. Seepage Analysis through Earth Dam Based on Finite Difference Method. J. Basic Appl. Sci. Res. 2012, 2, 11621–11625. [Google Scholar]
- Al-Janabi, A.M.S. Study of Seepage through Earth-Fill Dam Using Physical and Numerical Models. Master’s Thesis, University Putra Malaysia, Seri Kembangan, Malaysia, 2013. [Google Scholar]
- Phatak, D.R.; Pathak, S.R.; Birid, K.C. Estimation of Phreatic Line Using Dimensional Analysis. In Proceedings of the Fifth International Conference on Case Histories in Geotechnical Engineering, New York, NY, USA, 13–17 April 2004. [Google Scholar]
- Stello, M.W. Seepage Charts for Homogeneous and Zoned Embankments. J. Geotech. Eng. 1987, 113, 996–1012. [Google Scholar] [CrossRef]
- Casagrande, A. Seepage Through Dams. J. N. Engl. Water Works Assoc. 1937, 1, 131–172. [Google Scholar]
- Chen, S.; Zhong, Q.; Cao, W. Breach mechanism and numerical simulation for seepage failure of earth-rock dams. Sci. China Technol. Sci. 2012. [Google Scholar] [CrossRef]
- Cho, S.E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng. Geol. 2012. [Google Scholar] [CrossRef]
- Mansuri, B.; Salmasi, F. Effect of Horizontal Drain Length and Cutoff Wall on Seepage and Uplift Pressure in Heterogeneous Earth Dam with Numerical Simulation. J. Civil Eng. Urban. 2013, 3, 114–121. [Google Scholar]
- Alekseevich, A.N.; Sergeevich, A.A. Numerical modelling of tailings dam thermal-seepage regime considering phase transitions. Model. Simul. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, G.L.; Vasudevan, A.K. Seepage velocity and piping resistance of coir fiber mixed soils. J. Irrig. Drain. Eng. 2008. [Google Scholar] [CrossRef]
- Hofmann, J.R.; Hofmann, P.A. Darcy’ s Law and Structural Explanation in Hydrology. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association; The University of Chicago Press: Chicago, IL, USA, 1992; Volume 1, pp. 23–35. [Google Scholar]
- Sherard, J.L.; Woodward, R.J.; Gizienski, S.J. Earth and Earth Rock Dams: Engineering Problems of Design and Construction; John Wiley & Sons Inc: Hoboken, NJ, USA, 1963; ISBN 9780471785477. [Google Scholar]
- Das, B.M. Advanced Soil Mechanics, 5th ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351215176. [Google Scholar]
- Malekpour, A.; Farsadizadeh, D.; Hosseinzadeh Dalir, A.; Sadrekarimi, J. Effect of horizontal drain size on the stability of an embankment dam in steady and transient seepage conditions. Turk. J. Eng. Environ. Sci. 2012, 36, 139–152. [Google Scholar] [CrossRef]
- Vaskinn, K.A.; Løvoll, A.; Höeg, K.; Morris, M.; Hanson, G.J.; Hassan, M.A. Physical modeling of breach formation: Large scale field tests. Prec. Dam Saf. 2004, 1–16. Available online: https://pdfs.semanticscholar.org/29c4/fc2938493ad843240e87a6a63e9d1633847b.pdf (accessed on 22 March 2020).
- Chahar, B.R.; Graillot, D.; Gaur, S. Storm-Water Management through Infiltration Trenches. J. Irrig. Drain. Eng. 2012, 138, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Abdul Jabbar Jamel, A.; Ibrahim Ali, M. Influence of Cavity Under Hydraulic Structures on Seepage Characteristics. Int. J. Eng. Technol. 2018, 7, 461. [Google Scholar] [CrossRef]
- Ullah, A.; Kassim, A.; Alam, I.; Junaid, M.; Ahmad, I.S. Efficiency analysis of seepage of Baz Ali small dam, Kurram Agency using clay blanket and cut-off wall with sand filter. Bull. Geol. Soc. Malays. 2019, 67, 113–118. [Google Scholar] [CrossRef]
- Chahar, B.R. Closure to “Determination of Length of a Horizontal Drain in Homogeneous Earth Dams” by Bhagu R. Chahar. J. Irrig. Drain. Eng. 2006, 132, 89–90. [Google Scholar] [CrossRef]
- Casagrande, A. Seepage through dams. Natl. Acad. Sci. Eng. Med. 1937, 51, 131–172. [Google Scholar]
- Pham-Van, S.; Hinkelmann, R.; Nehrig, M.; Martinez, I. A comparison of model concepts and experiments for seepage processes through a dike with a fault zone. Eng. Appl. Comput. Fluid Mech. 2011. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2018, 569, 387–408. [Google Scholar] [CrossRef]
Models | q (m3/s/m) | ||||
---|---|---|---|---|---|
Physical | L. Casagrande | SEEP/W | |||
Well Compacted | Low Compacted | Well Compacted | Low Compacted | ||
Toe drain | 1.277 × 10−6 | 6.459 × 10−10 | 1.292 × 10−7 | 8.092 × 10−10 | 1.621 × 10−7 |
Horizontal drain | 4.441 × 10−7 | 1.126 × 10−9 | 2.253 × 10−7 | 2.185 × 10−9 | 4.373 × 10−7 |
Design Details | Configuration | ||||||
---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | (f) | (g) | |
Type | Homogenous | Zoned | |||||
Height (m) | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
Crest W(m) | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
NFB (m) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
U/S Slope (H:V) | 2.5:1 | 2.5:1 | 2.5:1 | 2:1 | 2:1 | 2:1 | 2:1 |
D/S Slope (H:V) | 2:1 | 2:1 | 2:1 | 2:1 | 2:1 | 2:1 | 2:1 |
Dam Material | ========== Silty sand ========== | - | |||||
Shell | - | - | - | - | ===== Sand or gravel ===== | ||
Core | - | - | - | - | ======= Silty sand ======= | ||
Core type | - | - | - | - | Central | Central | Inclined |
Core slope | - | - | - | - | 1:1 | 1:0.5 | 1:1 U/S 1:0.5 D/S |
Core height | - | - | - | - | 8.5 | 8.5 | 8.5 |
Core Crest | - | - | - | - | 3 | 3 | 3 |
Type of drainage | Toe drain | Horizontal /Blanket (thickness of 1.25 and 0.5 m) | Chimney and horizontal | ||||
LMax = 16 m | LMin = 8 m | LMid = 12 m |
Models | Drain Details | Normal Water Level | Maximum Water Level | ||
---|---|---|---|---|---|
Seepage Line | Seepage q (m3/s/m) | Seepage line | Seepage q (m3/s/m) | ||
a | Small toe drain (L = 2.5m) | Intersected | 3.817 × 10−6 | Intersected | 3.265 × 10−6 |
Toe drain (L = 5.0 m) | Small space | 4.395 × 10−6 | Small space | 4.695 × 10−6 | |
b | Drainage thickness = 1.25 m | OK | 7.55 × 10−6 | OK | 9.244 × 10−6 |
Drainage thickness = 0.5 m | OK | 7.655 × 10−6 | OK | 9.3 × 10−6 | |
c | Drainage thickness = 1.25 m | OK | 4.9 × 10−6 | OK | 5.86 × 10−6 |
Drainage thickness = 0.5 m | OK | 5.02 × 10−6 | OK | 5.99 × 10−6 | |
d | LMid with 0.5 m thickness | OK | 5.23 × 10−6 | OK | 6.18 × 10−6 |
Toe drain | Intersected | 3.38 × 10−6 | Intersected | 5.15 × 10−6 |
Models | Core Detail | Required Core Material (m3/m) | Shell Permeability | Normal Water Level | Maximum Water Level | ||
---|---|---|---|---|---|---|---|
Seepage Line | Seepage q (m3/s/m) | Seepage Line | Seepage q (m3/s/m) | ||||
e | Central 1:1 (H:V) | 97.75 | Kshell = 10 Kcore | OK | 8.45 × 10−6 | OK | 9.85 × 10−6 |
Kshell = 100 Kcore | OK | 8.73 × 10−6 | OK | 1.01 × 10−5 | |||
Kshell = 1000 Kcore | OK | 8.75 × 10−6 | OK | 1.02 × 10−5 | |||
f | Central 0.5:1 (H:V) | 61.63 | Kshell = 10 Kcore | OK | 1.23 × 10−5 | OK | 1.41 × 10−5 |
Kshell = 100 Kcore | OK | 1.16 × 10−5 | OK | 1.51 × 10−5 | |||
Kshell = 1000 Kcore | OK | 1.32 × 10−5 | OK | 1.48 × 10−5 | |||
g | Inclined | 43.56 | Kshell = 10 Kcore | OK | 2.75 × 10−5 | OK | 3.05 × 10−5 |
Kshell = 100 Kcore | OK | 2.9 × 10−5 | OK | 3.24 × 10−5 | |||
Kshell = 1000 Kcore | OK | 2.62 × 10−5 | OK | 3.41 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Janabi, A.M.S.; Ghazali, A.H.; Ghazaw, Y.M.; Afan, H.A.; Al-Ansari, N.; Yaseen, Z.M. Experimental and Numerical Analysis for Earth-Fill Dam Seepage. Sustainability 2020, 12, 2490. https://doi.org/10.3390/su12062490
Al-Janabi AMS, Ghazali AH, Ghazaw YM, Afan HA, Al-Ansari N, Yaseen ZM. Experimental and Numerical Analysis for Earth-Fill Dam Seepage. Sustainability. 2020; 12(6):2490. https://doi.org/10.3390/su12062490
Chicago/Turabian StyleAl-Janabi, Ahmed Mohammed Sami, Abdul Halim Ghazali, Yousry Mahmoud Ghazaw, Haitham Abdulmohsin Afan, Nadhir Al-Ansari, and Zaher Mundher Yaseen. 2020. "Experimental and Numerical Analysis for Earth-Fill Dam Seepage" Sustainability 12, no. 6: 2490. https://doi.org/10.3390/su12062490
APA StyleAl-Janabi, A. M. S., Ghazali, A. H., Ghazaw, Y. M., Afan, H. A., Al-Ansari, N., & Yaseen, Z. M. (2020). Experimental and Numerical Analysis for Earth-Fill Dam Seepage. Sustainability, 12(6), 2490. https://doi.org/10.3390/su12062490