Carbon Balance under Organic Amendments in the Wheat-Maize Cropping Systems of Sloppy Upland Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Setup
2.3. Soil Sampling and Measurements
2.4. Leaf Photosynthesis Measurement
2.5. Soil CO2 Emissions Measurements
2.6. Field Crop Productivity Measurements
2.7. Data Analysis
3. Results
3.1. Climate Conditions
3.2. Soil Temperature and Soil Water-Filled Pore Space
3.3. Soil Ammonia Nitrogen, Nitrate Nitrogen and Dissolved Organic Carbon
3.4. Change in Leaf Photosynthesis Rate
3.5. Change in Crop Productivity
3.6. Carbon Fluxes
3.6.1. Seasonal Variation of Soil CO2 Emissions
3.6.2. Seasonal Crop C Uptakes
3.6.3. Sediment C Loss and Soil Dissolved Organic Carbon Loss Fluxes
3.6.4. Seasonal and Annual C Balance
3.7. Relationships between Crop C Uptake and C Components and Crop Productivity
4. Discussion
4.1. Changes in Leaf Photosynthesis and Crop C Uptake under Organic Amendments
4.2. Effects of Organic Amendments on Soil CO2 Emissions
4.3. Influence of Organic Amendments on C Balance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R.L.; Thompson, M. Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 2008, 143, 115–122. [Google Scholar] [CrossRef]
- Pagliari, P.H.; Laboski, C.A. Investigation of the inorganic and organic phosphorus forms in animal manure. J. Environ. Qual. 2012, 41, 901–910. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Q.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Zhai, L.M.; Liu, H.B.; Zhang, J.Z.; Huang, J.; Wang, B.R. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Huang, T.; Yang, H.; Huang, C.; Ju, X. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crop Res. 2017, 204, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, G.; Zhuang, H.; Wang, K. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew. Sustain. Energy Rev. 2008, 12, 1402–1418. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Zhao, H.; Sun, B.; Lu, F.; Hu, L. Extension of residue retention increases net greenhouse gas mitigation in China’s croplands. J. Clean. Prod. 2017, 165, 1–12. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Feng, S.; Lucas, M.; Wu, G.; Li, Y.; Li, C.; Jiang, G. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China. Renew. Sustain. Energy Rev. 2010, 14, 3132–3139. [Google Scholar] [CrossRef]
- Sarma, B.; Borkotoki, B.; Narzari, R.; Kataki, R.; Gogoi, N. Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. J. Clean. Prod. 2017, 152, 157–166. [Google Scholar] [CrossRef]
- Gong, Z. Chinese Soil Taxonomy; Science Press: Beijing, China, 2001. [Google Scholar]
- Li, Z.; Tang, S.; Zhang, X.; He, Y. Purple Soil in China (1); Science Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Zhu, B.; Wang, T.; Kuang, F.; Luo, Z.; Tang, J.; Xu, T. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 2009, 73, 1419–1426. [Google Scholar] [CrossRef]
- He, X.; Bao, Y.; Nan, H.; Xiong, D.; Wang, L.; Liu, Y.; Zhao, J. Tillage pedogenesis of purple soils in southwestern China. J. Mt. Sci. 2009, 6, 205–210. [Google Scholar] [CrossRef]
- Hua, K.; Zhu, B.; Wang, X. Dissolved organic carbon loss fluxes through runoff and sediment on sloping upland of purple soil in the Sichuan Basin. Nutr. Cycl. Agroecosyst. 2014, 98, 125–135. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Z.; Zhang, X. Phosphorus fractions and release potential of ditch sediments from different land uses in a small catchment of the upper Yangtze River. J. Soils Sedim. 2012, 12, 278–290. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zhang, J.; Müller, C.; Cai, Z. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, B. Nitrate loss via overland flow and interflow from a sloped farmland in the hilly area of purple soil, China. Nutr. Cycl. Agroecosyst. 2011, 90, 309–319. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Bergmann, J.; Wang, Y.; Butterbach-Bahl, K. N2O and CH4 emissions, and NO3- leaching on a crop-yield basis from a subtropical rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer. Ecosystems 2014, 17, 286–301. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Meyer-Aurich, A.; Olesen, J.E.; Chirinda, N.; Hermansen, J.E. Carbon footprints of crops from organic and conventional arable crop rotations-using a life cycle assessment approach. J. Clean. Prod. 2014, 64, 609–618. [Google Scholar] [CrossRef]
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- Wang, W.; Liao, Y.; Wen, X.; Guo, Q. Dynamics of CO2 fluxes and environmental responses in the rain-fed winter wheat ecosystem of the Loess Plateau, China. Sci. Total Environ. 2013, 461, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Herbert, S.; Jin, J.; Zhang, Q.; Wang, G. Responses of photosynthetic rates and yield/quality of main crops to irrigation and manure application in the black soil area of Northeast China. Plant Soil 2004, 261, 55–60. [Google Scholar] [CrossRef]
- Lone, P.; Khan, N. The effects of rate and timing of N fertilizer on growth, photosynthesis, N accumulation and yield of mustard (Brassica juncea) subjected to defoliation. Environ. Exp. Bot. 2007, 60, 318–323. [Google Scholar] [CrossRef]
- Edet, M.A.; Tijani-Eniola, H.; Lagoke, S.; Tarawali, G. Relationship of cassava growth parameters with yield, yield related components and harvest time in Ibadan, Southwestern Nigeria. J. Nat. Sci. Res. 2015, 5, 87–93. [Google Scholar]
- Escobar-Gutiérrez, A.J.; Combe, L. Senescence in field-grown maize: From flowering to harvest. Field Crop. Res. 2012, 134, 47–58. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies Hayama: Kanoyama Town, Japan, 2006; Volume 5. [Google Scholar]
- Zheng, X.; Mei, B.; Wang, Y.; Xie, B.; Wang, Y.; Dong, H.; Xu, H.; Chen, G.; Cai, Z.; Yue, J. Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008, 311, 211–234. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wang, Y.H. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 2003, 20, 842–844. [Google Scholar]
- Meng, L.; Cai, Z.C.; Ding, W.X. Carbon contents in soils and crops as affected by long-term fertilization. Acta Pedol. Sin. 2005, 42, 776. [Google Scholar]
- Jans, W.W.; Jacobs, C.M.; Kruijt, B.; Elbers, J.A.; Barendse, S.; Moors, E.J. Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology. Agric. Ecosyst. Environ. 2010, 139, 316–324. [Google Scholar] [CrossRef]
- Schipper, L.A.; Parfitt, R.L.; Fraser, S.; Littler, R.A.; Baisden, W.T.; Ross, C. Soil order and grazing management effects on changes in soil C and N in New Zealand pastures. Agric. Ecosyst. Environ. 2014, 184, 67–75. [Google Scholar] [CrossRef]
- Tong, X.; Li, J.; Yu, Q.; Lin, Z. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain. PLoS ONE 2014, 9, e89469. [Google Scholar] [CrossRef]
- Song, J.; Hui, Y.; Yu, C.; Zhang, Q.; Zhou, Y.; Li, Y.; Liu, X.; Zhu, L.; Hui, D.; Wan, S. Carbon balance under four double-season cropping systems in North China Plain. Plant Soil 2017, 421, 319–336. [Google Scholar] [CrossRef]
- Hollinger, S.E.; Bernacchi, C.J.; Meyers, T.P. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric. For. Meteorol. 2005, 130, 59–69. [Google Scholar] [CrossRef]
- Antonietta, M.; Fanello, D.D.; Acciaresi, H.; Guiamet, J.J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crop. Res. 2014, 155, 111–119. [Google Scholar] [CrossRef]
- Ren, B.; Liu, W.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Sci. Nat. 2017, 104, 12. [Google Scholar] [CrossRef]
- Jiang, D.; Dai, T.; Jing, Q.; Cao, W.; Zhou, Q.; Zhao, H.; Fan, X. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat. Photosynthetica 2004, 42, 439–446. [Google Scholar] [CrossRef]
- Cechin, I.; Fumis, T.F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci. 2004, 166, 1379–1385. [Google Scholar] [CrossRef]
- Marchiori, P.E.; Machado, E.C.; Ribeiro, R.V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crop. Res. 2014, 155, 30–37. [Google Scholar] [CrossRef]
- Rosenthal, D.M.; Slattery, R.A.; Miller, R.E.; Grennan, A.K.; Cavagnaro, T.R.; Fauquet, C.M.; Gleadow, R.M.; Ort, D.R. Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Glob. Chang. Biol. 2012, 18, 2661–2675. [Google Scholar] [CrossRef]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Long, S.P.; ZHU, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Rossi, M.; Bermudez, L.; Carrari, F. Crop yield: Challenges from a metabolic perspective. Curr. Opin. Plant Biol. 2015, 25, 79–89. [Google Scholar] [CrossRef]
- Huang, S.; Peng, X.; Huang, Q.; Zhang, W. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma 2010, 154, 364–369. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Moureaux, C.; Debacq, A.; Hoyaux, J.; Suleau, M.; Tourneur, D.; Vancutsem, F.; Bodson, B.; Aubinet, M. Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). Glob. Chang. Biol. 2008, 14, 1353–1366. [Google Scholar] [CrossRef]
- Tariyal, K. Total Carbon Stock in Agricultural System Having Crop Rotation in Tarai Region of Northern India. Octa J. Environ. Res. 2014, 2, 127–138. [Google Scholar]
- La Scala, N., Jr.; Marques, J., Jr.; Pereira, G.; Corá, J. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biol. Biochem. 2000, 32, 1469–1473. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Kruse, M.L.; Sawyer, J.E. Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn-soybean rotation. J. Environ. Qual. 2008, 37, 325–332. [Google Scholar] [CrossRef]
- Yuste, C.J.; Baldocchi, D.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Chang. Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, C.; Kilburn, M.R.; Clode, P.L.; Fuchslueger, L.; Koranda, M.; Cliff, J.B.; Solaiman, Z.M.; Murphy, D.V. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs. direct root exudation. New Phytol. 2015, 205, 1537–1551. [Google Scholar] [CrossRef]
- Moyano, F.E.; Kutsch, W.L.; Rebmann, C. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric. For. Meteorol. 2008, 148, 135–143. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, L.; Du, E.; Hu, H.; Li, Y.; Chen, D.; Fang, J. Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. J. Plant Ecol. 2013, 6, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Béziat, P.; Ceschia, E.; Dedieu, G. Carbon balance of a three crop succession over two croplands sites in South West France. Agric. For. Meteorol. 2009, 149, 1628–1645. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.; Saunders, M.; Walmsley, D.; Jones, M.; Smith, P. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agric. Ecosyst. Environ. 2010, 139, 293–301. [Google Scholar] [CrossRef]
- Lal, R. Offsetting China’s CO2 emissions by soil carbon sequestration. Clim. Chang. 2004, 65, 263–275. [Google Scholar] [CrossRef]
Parameters | Treatments | Wheat Season | Maize Season | Annual | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | ±SE | CV (%) | Max | Min | Mean | ± SE | CV (%) | Max | Min | Mean | ± SE | CV (%) | ||
NH4+-N (mg N kg−1) | OM | 11.45 | 0.39 | 2.20 | 0.27 | 86.05 | 6.01 | 0.38 | 2.15 | 0.21 | 62.18 | 11.45 | 0.37 | 2.18 | 0.18 | 76.03 |
CR | 5.22 | 0.27 | 1.71 | 0.15 | 58.93 | 3.90 | 0.45 | 1.82 | 0.13 | 42.98 | 5.29 | 0.23 | 1.77 | 0.10 | 54.46 | |
NPK | 11.59 | 0.66 | 2.83 | 0.31 | 75.87 | 3.62 | 0.10 | 1.66 | 0.12 | 45.65 | 11.59 | 0.10 | 2.28 | 0.19 | 77.31 | |
OMNPK | 10.71 | 0.66 | 2.43 | 0.28 | 79.29 | 3.70 | 0.16 | 1.83 | 0.14 | 44.57 | 10.71 | 0.16 | 2.17 | 0.18 | 76.41 | |
CRNPK | 11.01 | 0.86 | 2.69 | 0.30 | 77.04 | 4.50 | 0.36 | 2.01 | 0.15 | 44.15 | 11.01 | 0.36 | 2.39 | 0.19 | 71.49 | |
NO3−-N (mg N kg−1) | OM | 74.51 | 2.45 | 25.91 | 2.77 | 72.97 | 89.44 | 3.06 | 25.82 | 3.34 | 80.30 | 100.17 | 1.73 | 25.76 | 2.21 | 79.38 |
CR | 21.38 | 1.17 | 8.91 | 0.72 | 53.50 | 22.85 | 1.80 | 11.31 | 0.78 | 43.25 | 26.24 | 0.97 | 9.96 | 0.57 | 52.10 | |
NPK | 131.35 | 8.15 | 47.81 | 5.14 | 74.54 | 51.35 | 1.46 | 12.80 | 1.51 | 73.18 | 131.35 | 1.46 | 32.00 | 3.49 | 101.00 | |
OMNPK | 101.23 | 2.22 | 32.63 | 3.19 | 69.46 | 74.03 | 3.49 | 20.43 | 2.35 | 71.25 | 101.23 | 2.22 | 27.09 | 2.19 | 75.34 | |
CRNPK | 87.97 | 2.13 | 34.80 | 3.34 | 70.20 | 53.06 | 2.59 | 15.89 | 1.46 | 57.17 | 87.97 | 1.79 | 26.18 | 2.25 | 80.39 | |
DOC (mg C kg−1) | OM | 150.87 | 67.16 | 95.88 | 2.76 | 19.75 | 143.37 | 56.80 | 96.78 | 3.28 | 20.77 | 170.86 | 56.80 | 96.38 | 2.20 | 21.07 |
CR | 130.06 | 38.00 | 81.60 | 3.16 | 26.43 | 113.14 | 43.91 | 83.38 | 2.53 | 19.15 | 130.38 | 33.22 | 82.44 | 2.10 | 23.66 | |
NPK | 130.55 | 48.01 | 81.84 | 2.85 | 23.85 | 103.07 | 37.47 | 76.32 | 2.61 | 21.33 | 130.55 | 32.81 | 79.35 | 2.01 | 23.41 | |
OMNPK | 145.22 | 49.41 | 92.22 | 3.05 | 22.76 | 127.18 | 51.29 | 89.59 | 3.01 | 20.76 | 145.68 | 44.92 | 91.07 | 2.18 | 22.21 | |
CRNPK | 158.40 | 61.15 | 99.06 | 3.10 | 21.48 | 132.81 | 52.48 | 99.07 | 2.61 | 16.33 | 159.36 | 49.30 | 99.09 | 2.11 | 19.70 |
Year | Treatments | Wheat Season | Maize Season | Annual | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil CO2 Emission | Crop C Uptake | DOC loss Fluxes | Soil CO2 Emission | Crop C Uptake | Sediment C Loss | DOC Loss Fluxes | Soil CO2 Emission | Crop C Uptake | Sediment C Loss | DOC Loss Fluxes | ||
2016–2017 | ||||||||||||
OM | 223 ± 19.82ab | 389 ± 35.26a | 0.02 ± 0.00a | 363 ± 23.15a | 441 ± 38.12a | 24.00 ± 1.84ab | 0.19 ± 0.05a | 678 ± 45.82a | 830 ± 58.52a | 24.00 ± 1.84ab | 0.21 ± 0.05a | |
CR | 224 ± 19.72ab | 187 ± 8.65b | 0.01 ± 0.00a | 304 ± 32.01ab | 239 ± 15.19b | 13.79 ± 3.45b | 0.21 ± 0.02a | 563 ± 12.74ab | 426 ± 12.57b | 13.79 ± 3.45b | 0.22 ± 0.02a | |
NPK | 134 ± 12.80c | 328 ± 17.07a | 0.02 ± 0.01a | 204 ± 19.96c | 486 ± 32.19a | 30.72 ± 6.04a | 0.16 ± 0.02a | 362 ± 38.89c | 814 ± 46.44a | 30.72 ± 6.04a | 0.18 ± 0.02a | |
OMNPK | 183 ± 7.29bc | 374 ± 5.51a | 0.01 ± 0.01a | 252 ± 12.21bc | 479 ± 19.06a | 25.17 ± 3.44ab | 0.17 ± 0.02a | 487 ± 16.26b | 853 ± 14.43a | 25.17 ± 3.44ab | 0.18 ± 0.02a | |
CRNPK | 280 ± 21.71a | 349 ± 13.62a | 0.01 ± 0.01a | 270 ± 13.20bc | 525 ± 19.91a | 21.57 ± 0.19b | 0.15 ± 0.06a | 602 ± 28.31ab | 873 ± 14.19a | 21.57 ± 0.19b | 0.17 ± 0.07a | |
2017–2018 | ||||||||||||
OM | 257 ± 23.47a | 368 ± 5.55a | 0 | 361 ± 7.10a | 508 ± 33.17a | 74.63 ± 16.16a | 0.26 ± 0.02a | 739 ± 24.77a | 876 ± 35.09a | 74.63 ± 16.16a | 0.26 ± 0.02a | |
CR | 199 ± 15.27b | 162 ± 6.94d | 0 | 294 ± 24.15b | 334 ± 30.09b | 19.62 ± 1.35b | 0.27 ± 0.03a | 527 ± 38.26b | 496 ± 28.06c | 19.62 ± 1.35b | 0.27 ± 0.03a | |
NPK | 102 ± 7.80c | 254 ± 6.98c | 0 | 203 ± 11.82c | 391 ± 33.71ab | 71.04 ± 18.04a | 0.27 ± 0.04a | 337 ± 25.78c | 645 ± 40.63b | 71.04 ± 18.04a | 0.27 ± 0.04a | |
OMNPK | 193 ± 19.86b | 288 ± 12.99b | 0 | 268 ± 8.84b | 435 ± 6.17ab | 70.37 ± 13.90a | 0.27 ± 0.07a | 512 ± 32.22b | 723 ± 14.57b | 70.37 ± 13.90a | 0.27 ± 0.07a | |
CRNPK | 225 ± 14.26ab | 284 ± 10.12b | 0 | 309 ± 11.62b | 451 ± 43.13ab | 36.55 ± 13.82ab | 0.26 ± 0.04a | 565 ± 25.50b | 735 ± 48.48b | 36.55 ± 13.82ab | 0.26 ± 0.04a | |
Mean (2016–2018) | ||||||||||||
OM | 240 ± 17.77a | 378 ± 19.35a | 0.011 ± 0.00a | 362 ± 8.03a | 475 ± 25.25a | 49.31 ± 6.92a | 0.23 ± 0.01a | 708 ± 25.95a | 853 ± 43.82a | 49.31 ± 6.92a | 0.24 ± 0.01a | |
CR | 212 ± 11.33ab | 174 ± 4.18d | 0.007 ± 0.00a | 299 ± 5.12b | 287 ± 15.96b | 16.70 ± 2.53b | 0.24 ± 0.03a | 545 ± 14.05bc | 461 ± 15.14c | 16.70 ± 2.53b | 0.25 ± 0.03a | |
NPK | 118 ± 10.29c | 291 ± 7.67c | 0.010 ± 0.00a | 203 ± 14.92d | 439 ± 20.03a | 50.88 ± 8.90a | 0.21 ± 0.03a | 350 ± 31.71d | 729 ± 25.65b | 50.88 ± 8.90a | 0.22 ± 0.03a | |
OMNPK | 188 ± 6.96b | 331 ± 9.85b | 0.006 ± 0.00a | 260 ± 9.78c | 457 ± 7.84a | 47.77 ± 10.93a | 0.22 ± 0.03a | 499 ± 17.10c | 788 ± 3.33ab | 47.77 ± 10.93a | 0.22 ± 0.03a | |
CRNPK | 252 ± 17.59a | 316 ± 4.33bc | 0.006 ± 0.00a | 290 ± 6.57bc | 488 ± 21.71a | 29.06 ± 7.60ab | 0.20 ± 0.05a | 583 ± 23.27b | 804 ± 18.88ab | 29.06 ± 7.60ab | 0.21 ± 0.05a |
Treatments | C Balance Components (g C m−2) | |||||||
---|---|---|---|---|---|---|---|---|
F Amendments | Grain C Uptake | Shoot C Uptake | Root C Uptake | Soil CO2 Emissions | Sediment C Loss | DOC Loss Fluxes | C Balance | |
Wheat season | ||||||||
OM | 819 | 153 ± 2.52a | 192 ± 17.04a | 34 ± 3.28a | 240 ± 17.77a | 0 | 0.011 ± 0.00a | 460 ± 12.82a |
CR | 260 | 64 ± 3.46d | 93 ± 3.67c | 17 ± 1.20c | 212 ± 11.33ab | 0 | 0.007 ± 0.00a | 1 ± 7.94b |
NPK | 0 | 128 ± 5.69c | 142 ± 4.41b | 20 ± 1.45bc | 118 ± 10.29c | 0 | 0.010 ± 0.00a | -226 ± 15.73d |
OMNPK | 328 | 141 ± 2.33b | 164 ± 12.99ab | 27 ± 2.19ab | 188 ± 6.96b | 0 | 0.006 ± 0.00a | 26 ± 4.93b |
CRNPK | 189 | 126 ± 1.53c | 162 ± 5.55ab | 29 ± 2.52a | 252 ± 17.59a | 0 | 0.006 ± 0.00a | -160 ± 17.70c |
Maize season | ||||||||
OM | 883 | 188 ± 12.20a | 237 ± 14.59a | 50 ± 1.15a | 362 ± 8.03a | 49.31 ± 6.92a | 0.23 ± 0.01a | 334 ± 20.68a |
CR | 268 | 127 ± 2.96b | 136 ± 11.00b | 23 ± 0.58d | 299 ± 5.12b | 16.70 ± 2.53b | 0.24 ± 0.03a | -152 ± 10.53c |
NPK | 0 | 202 ± 17.99a | 208 ± 14.11a | 28 ± 2.96c | 203 ± 14.92d | 50.88 ± 8.90a | 0.21 ± 0.03a | -428 ± 39.35e |
OMNPK | 553 | 205 ± 4.16a | 220 ± 5.09a | 32 ± 1.73c | 260 ± 9.78c | 47.77 ± 10.93a | 0.22 ± 0.03a | 72 ± 16.45b |
CRNPK | 195 | 217 ± 5.41a | 232 ± 14.78a | 39 ± 0.58b | 290 ± 6.57bc | 29.06 ± 7.60ab | 0.20 ± 0.05a | -301 ± 6.14d |
Annual | ||||||||
OM | 1702 | 341 ± 12.57a | 429 ± 28.62a | 84 ± 4.18a | 708 ± 25.95a | 49.31 ± 6.92a | 0.24 ± 0.01a | 687 ± 32.84a |
CR | 528 | 191 ± 3.53b | 230 ± 13.32c | 40 ± 1.76d | 545 ± 14.05bc | 16.70 ± 2.53b | 0.25 ± 0.03a | -186 ± 9.96c |
NPK | 0 | 331 ± 21.67a | 350 ± 16.02b | 48 ± 3.84d | 350 ± 31.71d | 50.88 ± 8.90a | 0.22 ± 0.03a | -683 ± 61.37e |
OMNPK | 881 | 346 ± 6.39a | 384 ± 8.17ab | 58 ± 0.88c | 499 ± 17.10c | 47.77 ± 10.93a | 0.22 ± 0.03a | 47 ± 23.77b |
CRNPK | 384 | 343 ± 6.64a | 393 ± 9.74ab | 68 ± 3.38b | 583 ± 23.27b | 29.06 ± 7.60ab | 0.21 ± 0.05a | -503 ± 11.56d |
C Balance Components | Crop C Uptake | Grain C Uptake | Shoot C Uptake | Root C Uptake | Soil CO2 Emission | Sediment C Loss | DOC Loss Fluxes |
---|---|---|---|---|---|---|---|
Wheat season | |||||||
Crop C uptake (g C m−2) | 1 | ||||||
Grain uptake (g m−2) | 0.88*** | 1 | |||||
Shoot uptake (g C m−2) | 0.36 * | −0.09ns | 1 | ||||
Root uptake (g C m−2) | 0.66 *** | 0.68 *** | 0.07ns | 1 | |||
Soil CO2 emission (g C m−2) | 0.01ns | −0.05ns | 0.21ns | 0.39 * | 1 | ||
Maize season | |||||||
Crop C uptake (g C m−2) | 1 | ||||||
Grain uptake (g m−2) | 0.90 *** | 1 | |||||
Shoot uptake (g C m−2) | 0.42 * | 0.06ns | 1 | ||||
Root uptake (g C m−2) | 0.62 *** | 0.45 ** | 0.37 * | 1 | |||
Soil CO2 emission (g C m−2) | −0.12ns | −0.16ns | −0.08ns | 0.50 ** | 1 | ||
Sediment C loss (g C m−2) | 0.24ns | 0.36 * | −0.45 * | 0.02ns | 0.06ns | 1 | |
DOC loss fluxes (g C m−2) | 0.61 *** | 0.68 *** | −0.196ns | 0.31ns | −0.03ns | 0.51 ** | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bah, H.; Zhou, M.; Kizito, S.; Xiao, R.; Raza, S.T.; Dong, Z.; Zhu, B. Carbon Balance under Organic Amendments in the Wheat-Maize Cropping Systems of Sloppy Upland Soil. Sustainability 2020, 12, 2747. https://doi.org/10.3390/su12072747
Bah H, Zhou M, Kizito S, Xiao R, Raza ST, Dong Z, Zhu B. Carbon Balance under Organic Amendments in the Wheat-Maize Cropping Systems of Sloppy Upland Soil. Sustainability. 2020; 12(7):2747. https://doi.org/10.3390/su12072747
Chicago/Turabian StyleBah, Hamidou, Minghua Zhou, Simon Kizito, Ren Xiao, Syed Turab Raza, Zhixin Dong, and Bo Zhu. 2020. "Carbon Balance under Organic Amendments in the Wheat-Maize Cropping Systems of Sloppy Upland Soil" Sustainability 12, no. 7: 2747. https://doi.org/10.3390/su12072747
APA StyleBah, H., Zhou, M., Kizito, S., Xiao, R., Raza, S. T., Dong, Z., & Zhu, B. (2020). Carbon Balance under Organic Amendments in the Wheat-Maize Cropping Systems of Sloppy Upland Soil. Sustainability, 12(7), 2747. https://doi.org/10.3390/su12072747