Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies
Abstract
:1. Introduction
2. Study Area
2.1. “Val Basento” Site of National Interest (SNI)
2.2. “Valle Basento–Ferrandina Scalo” Natura 2000 Site
3. Methodology
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2019. Available online: https://ipbes.net/global-assessment. (accessed on 15 December 2019).
- European Commission. Our life insurance, our natural capital: an EU biodiversity strategy to 2020. Landsc. Ecol. Manag. 2015, 20, 37–40. Available online: https://ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/EP_resolution_april2012.pdf (accessed on 20 December 2019).
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.H.; Isaac, N.J.B.; August, T.A.; Woodcock, B.A.; Roy, D.B.; Bullock, J.M. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 2015, 6, 10122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldron, A.; Miller, D.C.; Redding, D.; Mooers, A.; Kuhn, T.S.; Nibbelink, N.; Roberts, J.T.; Tobias, J.A.; Gittleman, J.L. Reductions in global biodiversity loss predicted from conservation spending. Nature 2017, 551, 364–367. [Google Scholar] [CrossRef]
- Kati, V.; Hovardas, T.; Dieterich, M.; Ibisch, P.L.; Mihok, B.; Selva, N. The challenge of implementing the European network of protected areas Natura 2000. Conserv. Biol. 2015, 29, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Bastian, O. The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecol. Indic. 2013, 24, 12–22. [Google Scholar] [CrossRef]
- Doak, D.F.; Bakker, V.J.; Goldstein, B.E.; Hale, B. Tutorial reading 1—What is the future of conservation? Trends Ecol. Evol. 2014, 29, 77–81. [Google Scholar] [CrossRef]
- Donald, P.F.; Sanderson, F.J.; Burfield, I.J.; Bierman, S.M.; Gregory, R.D.; Waliczky, Z. International conservation policy delivers benefits for birds in Europe. Science 2007, 317, 810–813. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Madrinán, L.F.; Soukup, T.; Schwick, C.; Kienast, F. Landscape fragmentation in Europe (EEA Report, Report No.: 2). Copenhagen, EEA: Bern: Federal Office for the Environment FOEN, European Environment Agency EEA. 2011. Available online: https://www.eea.europa.eu/publications/landscape-fragmentation-in-europe (accessed on 20 December 2019).
- European Environment Agency. EU 2010 Biodiversity Baseline. Post-2010 EU biodiversity policy; Luxembourg. 2010. Available online: https://www.eea.europa.eu/publications/eu-2010-biodiversity-baseline (accessed on 20 December 2019).
- Nolte, C.; Leverington, F.; Kettner, A. Protected area management effectiveness assessments in Europe; Bundesamt für Naturschutz (BfN) Federal Agency for Nature Conservation: Bonn, Germany, 2010; ISBN 978-3-89624-006-4. [Google Scholar]
- Brambilla, M.; Bergero, V.; Bassi, E.; Falco, R. Current and future effectiveness of Natura 2000 network in the central Alps for the conservation of mountain forest owl species in a warming climate. Eur. J. Wildl. Res. 2015, 61, 35–44. [Google Scholar] [CrossRef]
- Dimitrakopoulos, P.G.; Memtsas, D.; Troumbis, A.Y. Questioning the effectiveness of the Natura 2000 Special Areas of Conservation strategy: The case of Crete. Glob. Ecol. Biogeogr. 2004, 13, 199–207. [Google Scholar] [CrossRef]
- Pellegrino, D.; Schirpke, U.; Marino, D. How to support the effective management of Natura 2000 sites? J. Environ. Plan. Manag. 2017, 60, 383–398. [Google Scholar] [CrossRef]
- Beunen, R.; de Vries, J.R. The governance of Natura 2000 sites: The importance of initial choices in the organisation of planning processes. J. Environ. Plan. Manag. 2011, 54, 1041–1059. [Google Scholar] [CrossRef]
- Dudley, N.; Jo Mulongoy, K.; Cohen, S.; Stolton, S.; Victor Barber, C.; Babu Gidda, S.; Nigel Dudley, C. Towards Effective Protected Area Systems. An Action Guide to Implement the Convention on Biological Diversity Programme of Work on Protected Areas; Secretariat of the Convention on Biological Diversity: Montreal, CA, USA, 2005; Volume 108. [Google Scholar]
- Achim Steiner, J.M. The World’s protected areas: Status, values and prospects in the 21st century. Choice Rev. Online 2009, 46, 3865. [Google Scholar]
- Apostolopoulou, E.; Drakou, E.G.; Pediaditi, K. Participation in the management of Greek Natura 2000 sites: Evidence from a cross-level analysis. J. Environ. Manag. 2012, 113, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Winkel, G.; Blondet, M.; Borrass, L.; Frei, T.; Geitzenauer, M.; Gruppe, A.; Jump, A.; de Koning, J.; Sotirov, M.; Weiss, G.; et al. The implementation of Natura 2000 in forests: A trans- and interdisciplinary assessment of challenges and choices. Environ. Sci. Policy 2015, 52, 23–32. [Google Scholar] [CrossRef]
- Stringer, L.C.; Paavola, J. Participation in environmental conservation and protected area management in Romania: A review of three case studies. Environ. Conserv. 2013, 40, 138–146. [Google Scholar] [CrossRef]
- Natura 2000 and Spatial Planning. Final report for the European Commission (DG ENV) (Project 07.0202/2015/716477/ETU/ENV. B.3). Available online: https://www.wur.nl/upload_mm/9/5/2/7368439e-42ea-427a-8aec-f5d7d5827442_02635_Natura%202000_V5.pdf (accessed on 20 December 2019).
- Leone, F.; Zoppi, C.; Leone, F.; Zoppi, C. Conservation Measures and Loss of Ecosystem Services: A Study Concerning the Sardinian Natura 2000 Network. Sustainability 2016, 8, 1061. [Google Scholar] [CrossRef] [Green Version]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Alcamo, J.; Bennett, E.M. Millennium Ecosystem Assessment (Program). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003; ISBN 9781559634038. [Google Scholar]
- Ten Brink, P. The Economics of Ecosystems and Biodiversity in National and International Policy Making; Patrick ten Brink: Earthscan, London and Washingtonk, UK, 2012; ISBN 9781849775496. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1 Guidance on the Application of the Revised Structure; Barton in Fabis, Nottingham, NG11 0AE, U. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 20 December 2019).
- Arcidiacono, A.; Ronchi, S.; Salata, S. Ecosystem Services Assessment Using InVEST as a Tool to Support Decision Making Process: Critical Issues and Opportunities. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2015, 9158, 35–49. [Google Scholar]
- Documenti Sullo Stato di Avanzamento delle Procedure di Bonifica Ministero dell’Ambiente e della Tutela del Territorio e del Mare. Available online: https://www.minambiente.it/bonifiche/documenti-sullo-stato-di-avanzamento-delle-procedure-di-bonifica (accessed on 20 December 2019).
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
- Cortina, C.; Boggia, A. Development of policies for Natura 2000 sites: A multi-criteria approach to support decision makers. J. Environ. Manag. 2014, 141, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, M.; Hermoso, V.; Bremerich, V.; Langhans, S.D. Evaluation of habitat protection under the European Natura 2000 conservation network—The example for Germany. PLoS ONE 2018, 13, e0208264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for Urban Areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions: An Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, art22. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Satterfield, T.; Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Liu, J.; Zhuang, Z.; Huang, Q.; Li, M. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China. Sci. Rep. 2017, 7, 46073. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Scorza, F.; Pilogallo, A.; Saganeiti, L.; Murgante, B.; Pontrandolfi, P. Comparing the territorial performances of Renewable Energy Sources’ plants with an integrated Ecosystem Services loss assessment: A case study from the Basilicata region (Italy). Sustain. Cities Soc. 2020, 56, 102082. [Google Scholar] [CrossRef]
- The Natural Capital Project Habitat Quality—InVEST 3.6.0 Documentation. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/habitat_quality.html (accessed on 13 November 2019).
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Golden, H.E.; Lane, C.R.; Amatya, D.M.; Bandilla, K.W.; Raanan Kiperwas, H.; Knightes, C.D.; Ssegane, H.; Lüke, A.; Hack, J.; Brauman, K.A.; et al. The Use of Scenario Analysis to Assess Water Ecosystem Services in Response to Future Land Use Change in the Willamette River Basin, Oregon. J. Environ. Manag. 2014, 53, 4–14. [Google Scholar]
- Gong, J.; Xie, Y.; Cao, E.; Huang, Q.; Li, H. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef] [Green Version]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Scorza, F.; Murgante, B.; Las Casas, G.; Fortino, Y.; Pilogallo, A. Investigating Territorial Specialization in Tourism Sector by Ecosystem Services Approach; Springer: Berlin/Heidelberg, Germany, 2019; pp. 161–179. [Google Scholar]
- Mazzariello, A.; Pilogallo, A.; Scorza, F.; Murgante, B.; Las Casas, G. Carbon Stock as an Indicator for the Estimation of Anthropic Pressure on Territorial Components. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Verlag: Berlin, Germany, 2018; Volume 10964, pp. 697–711. ISBN 9783319951737. [Google Scholar]
- Pilogallo, A.; Saganeiti, L.; Scorza, F.; Las Casas, G. Tourism Attractiveness: Main Components for a Spacial Appraisal of Major Destinations According with Ecosystem Services Approach; Springer: Berlin/Heidelberg, Germany, 2018; pp. 712–724. [Google Scholar]
- Pilogallo, A.; Saganeiti, L.; Scorza, F.; Murgante, B. Ecosystem Services Approach to Evaluate Renewable Energy Plants Effects; Springer: Berlin/Heidelberg, Germany, 2019; pp. 281–290. [Google Scholar]
- Scorza, F. Improving EU Cohesion Policy: The Spatial Distribution Analysis of Regional Development Investments Funded by EU Structural Funds 2007/2013 in Italy. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); ICCSA: Ho Chi Minh City, Vietnam, 2013; Volume 7973 LNCS, pp. 582–593. ISBN 9783642396458. [Google Scholar]
- Maltby, L.; van den Brink, P.J.; Faber, J.H.; Marshall, S. Advantages and challenges associated with implementing an ecosystem services approach to ecological risk assessment for chemicals. Sci. Total Environ. 2018, 621, 1342–1351. [Google Scholar] [CrossRef]
- Tallis, H.; Mooney, H.; Andelman, S.; Balvanera, P.; Cramer, W.; Karp, D.; Polasky, S.; Reyers, B.; Ricketts, T.; Running, S.; et al. A Global System for Monitoring Ecosystem Service Change. Bioscience 2012, 62, 977–986. [Google Scholar] [CrossRef] [Green Version]
- Balletto, G.; Milesi, A.; Fenu, N.; Borruso, G.; Mundula, L. Military Training Areas as Semicommons: The Territorial Valorization of Quirra (Sardinia) from Easements to Ecosystem Services. Sustainability 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
Sensitivity for each LULC | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arable Land | Woodlands | Freshwaters | Residential Buildings | Secondary Roads | Landfills and Mining Areas | Green Areas | Renewable Energy Sources (RES) | Primary Roads | Industrial Buildings | Railways | Grassland | ||
Habitat suitability | 0,7 | 1 | 1 | 0,1 | 0,1 | 0,1 | 0,3 | 0,1 | 0,05 | 0,001 | 0,1 | 0,8 | |
Habitat suitability (SCI/SPA) | 0,8 | 1 | 1 | 0,1 | 0,1 | 0,1 | 0,4 | 0,1 | 0,05 | 0,001 | 0,1 | 0,9 | |
Threats | Agriculture | 0 | 0,6 | 0,4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Landfills and mining areas | 0,6 | 1 | 1 | 0 | 0 | 0 | 0,3 | 0 | 0 | 0 | 0 | 0,6 | |
Industrial buildings | 0,6 | 0,8 | 0,9 | 0 | 0 | 0 | 0,5 | 0 | 0 | 0 | 0 | 0,7 | |
RES fields | 0,8 | 0,9 | 0,7 | 0 | 0 | 0 | 0,4 | 0 | 0 | 0 | 0 | 0,9 | |
Residential buildings | 0,6 | 1 | 0,8 | 0 | 0 | 0 | 0,4 | 0 | 0 | 0 | 0 | 0,6 | |
Primary roads | 0,7 | 0,9 | 0,7 | 0 | 0 | 0 | 0,3 | 0 | 0 | 0 | 0 | 0,7 | |
Secondary roads | 0,6 | 0,7 | 0,5 | 0 | 0 | 0 | 0,4 | 0 | 0 | 0 | 0 | 0,6 | |
Railways | 0,7 | 0,9 | 0,7 | 0 | 0 | 0 | 0,3 | 0 | 0 | 0 | 0 | 0,7 | |
Industrial areas with implemented prevention measures | 0,6 | 0,7 | 0,7 | 0,6 | 0,4 | 0,4 | 0,5 | 0,1 | 0,4 | 0,2 | 0,4 | 0,9 | |
Industrial areas with reclamation plan presented but not approved | 0,8 | 1 | 1 | 0,8 | 0,5 | 0,5 | 0,6 | 0,2 | 0,5 | 0,3 | 0,5 | 1 | |
Industrial areas with reclamation plan approved | 0,8 | 1 | 1 | 0,8 | 0,5 | 0,5 | 0,6 | 0,2 | 0,5 | 0,3 | 0,5 | 1 |
Threat | (Km) | Distance-Decay Function | Weight | |||
---|---|---|---|---|---|---|
I Scenario (Current Trend) | II Scenario (Mid-Term Scenario) | III Scenario (Long-Term Scenario) | ||||
Agriculture | 1.5 | exponential | 0.3 | 0.3 | 0.3 | |
Industrial Buildings | 2 | exponential | 0.6 | 0.6 | 0.6 | |
Landfills and mining areas | 2 | exponential | 0.8 | 0.8 | 0.8 | |
Primary roads | 1 | exponential | 0.6 | 0.6 | 0.6 | |
Secondary roads | 0.6 | exponential | 0.4 | 0.4 | 0.4 | |
Renewable energy sources (RES) farms | 1 | exponential | 0.4 | 0.4 | 0.4 | |
Railways | 0.8 | exponential | 0.5 | 0.5 | 0.5 | |
Residential buildings | 1.5 | exponential | 0.2 | 0.2 | 0.2 | |
Industrial areas included by the SNI perimeter | Industrial areas with implemented prevention measures | 3 | exponential | 0.6 | 0.6 | 0.6 |
Industrial areas with reclamation plan presented but not approved | 3 | exponential | 1 | 1 | 0.6 | |
Industrial areas with reclamation plan approved | 3 | exponential | 1 | 0.6 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scorza, F.; Pilogallo, A.; Saganeiti, L.; Murgante, B. Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies. Sustainability 2020, 12, 2928. https://doi.org/10.3390/su12072928
Scorza F, Pilogallo A, Saganeiti L, Murgante B. Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies. Sustainability. 2020; 12(7):2928. https://doi.org/10.3390/su12072928
Chicago/Turabian StyleScorza, Francesco, Angela Pilogallo, Lucia Saganeiti, and Beniamino Murgante. 2020. "Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies" Sustainability 12, no. 7: 2928. https://doi.org/10.3390/su12072928
APA StyleScorza, F., Pilogallo, A., Saganeiti, L., & Murgante, B. (2020). Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies. Sustainability, 12(7), 2928. https://doi.org/10.3390/su12072928