A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Methodology
2.2.1. Sample Sites and Water Quality
2.2.2. Image Data, Preprocessing and Classification
2.2.3. GIS Analysis
2.2.4. Statistical Analysis
3. Results
3.1. Variation of Land Use pattern between 2000 and 2017
3.2. Characteristics of Physicochemical Water Quality in the Mitidja Watershed
3.3. Multivariate Correlation Analysis between Land Use and Water Quality
3.3.1. Single Factor Correlation Analysis
3.3.2. Multiple Linear Regression Analysis
3.4. Time Correlation between Water Quality and Land Use Index
4. Discussions
4.1. Correlation Analysis between Land Use and Water Quality in the Mitidja Basin
4.1.1. Based on Watershed Scale
4.1.2. Based on Seven Catchments
4.2. Relationship between Land Urbanization and Water Quality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szewrański, S.; Chruściński, J.; Van Hoof, J.; Kazak, J.K.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. A location intelligence system for the assessment of pluvial flooding risk and the identification of storm water pollutant sources from roads in suburbanized areas. Water 2018, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Muangthong, S.; Shrestha, S. Assessment of surface water quality using multivariate statistical techniques: Case study of the Nampong River and Songkhram River, Thailand. Environ. Monit. Assess. 2015, 187, 548. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Dwivedi, A.; Suresh, K.M. Use of water quality index and multivariate statistical techniques for the assessment of spatial variations in water quality of a small river. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, Z.; Ding, X.; Shen, Z.Y.; Wu, X.; Liu, F. Effect of land use/cover change on pollution load of non-point source in upper reach of Yangtze River Basin. Environ. Sci. 2006, 27, 2407–2414. [Google Scholar]
- Li, X. A review of international researches on land use/land cover change. Acta Geogr. Sin. 1996, 51, 553–558. [Google Scholar]
- Bu, H.M.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar] [CrossRef]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; de Cicco, V.; Martín-Benito, J.M.T.; Hedo, J.; Lucas-Borjad, M.E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego água Limpa, São Paulo (Brazil). Sci. Total Environ. 2017, 9, 622–623. [Google Scholar] [CrossRef] [Green Version]
- Batbayar, G.; Pfeiffer, M.; Kappas, M.; Karthe, D. Development and application of GIS-based assessment of land-use impacts on water quality: A case study of the Kharaa River Basin. Ambio 2019, 10, 1154–1168. [Google Scholar] [CrossRef]
- Griffith, J.A. Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air Soil Pollut. 2002, 138, 181–197. [Google Scholar] [CrossRef]
- Hu, J.; Liu, M.; Zhou, W.; Xu, C.; Yang, X.-J.; Zhang, S.-W.; Wang, L. Correlations between water quality and land use pattern in Taihu Lake basin. Chin. J. Ecol. 2011, 30, 1190–1197. [Google Scholar]
- Tu, J. Spatial and temporal relationships between water quality and land use in northern Georgia, USA. J. Integr. Environ. Sci. 2011, 8, 151–170. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Li, L.; Xu, Z.X. Relationship of land use/cover on water quality in the Liao River basin, China. Procedia Environ. Sci. 2012, 13, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, H.; Wu, W.; Legesse, A.; Yirsaw, E.; Bekele, B. Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern rift escarpment of Ethiopia. Environ. Monit. Assess. 2018, 190, 166. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using remote sensing and GIS: A case study of simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar]
- Xia, L.; Liu, R.; Zao, Y. Correlation analysis of landscape pattern and water quality in Baiyangdian Watershed. Procedia Environ. Sci. 2012, 13, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Jiabo, C.; Jun, L.; Miguel, F. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in east China. PLoS ONE 2014, 9, e102714. [Google Scholar]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.; Pickett, S.T.A.; Li, W.; Han, L. Spatial - temporal variations of water quality and its relationship to land use and land cover in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 449. [Google Scholar]
- Sliva, L.; Williams, D.D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res. 2001, 35, 3462–3472. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Li, Z. Surface water quality and land use in Wisconsin, USA–a GIS approach. J. Integr. Environ. Sci. 2009, 6, 69–89. [Google Scholar] [CrossRef]
- Schoonover, J.E.; Lockaby, B.G.; Pan, S. Changes in chemical and physical properties of stream water across an urban-rural gradient in Western Georgia. Urban Ecosyst. 2005, 8, 107–124. [Google Scholar] [CrossRef]
- Conway, T.M. Impervious surface as an indicator of pH and specific conductance in the urbanizing coastal zone of New Jersey, USA. J. Environ. Manag. 2007, 85, 308–316. [Google Scholar] [CrossRef]
- Eugene, T.R.; Rabalais, N.N. Linking landscape and water quality in the Mississippi river basin for 200 years. BioScience 2003, 53, 563–572. [Google Scholar]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Little, J.L.; Saffran, K.A.; Fent, L. Land use and water quality relationships in the lower little bow river watershed, Alberta, Canada. Water Qual. Res. J. Can. 2003, 38, 563–584. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.; Liu, R.; Cao, M. The influence of topography and land use on water quality of Xiangxi River in Three Gorges reservoir region. Environ. Geol. 2009, 58, 937–942. [Google Scholar] [CrossRef]
- Mehaffey, M.H.; Nash, M.S.; Wade, T.G.; Ebert, D.W.; Jones, K.B.; Rager, A. Linking land cover and water quality in New York city’s water supply watersheds. Environ. Monit. Assess. 2005, 107, 29–44. [Google Scholar] [CrossRef]
- Nepomuscene, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth 2018, 105, 247–264. [Google Scholar]
- Yimer, H.D.; Mengistou, S. Water quality parameters macroinvertebrates index of biotic integrity of the Jimma wetlands, Southwestern Ethiopia. J. Wetl. Ecol. 2009, 3, 77–93. [Google Scholar] [CrossRef]
- Pratt, B.; Chang, H. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J. Hazard. Mater. 2012, 209–210, 48–58. [Google Scholar] [CrossRef]
- Li, S.; Gu, S.; Tan, X.; Zhang, Q. Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone. J. Hazard. Mater. 2009, 165, 317–324. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Oguchi, T.; Neal, C. Exploring the linkages between river water chemistry and watershed characteristics using GIS-based catchment and locality analyses. Reg. Environ. Chang. 2002, 3, 36–50. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, X.; Zhao, M.; Wang, F.; Liu, L. The application of a binary division procedure to the classification of forest subcategories using MODIS time-series data during 2000–2010 in China. Int. J. Remote Sens. 2016, 37, 2433–2450. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Jin, C.; Xia, J.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xiao, X.; Jin, C.; Xia, J.; Li, X. Spatial differentiation of urban wind and thermal environment in different grid sizes. Urban Clim. 2019, 28, 1–13. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature: A case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [Google Scholar] [CrossRef]
No. | Scene | Sensor | Platform | Pixel Size | Acquisition Date |
---|---|---|---|---|---|
1 | P196 R35 | TM | Landsat 5 | 30 m | 19/08/2000 |
2 | P196 R34 | TM | Landsat 5 | 30 m | 19/08/2000 |
3 | P196 R34 | ETM+ | Landsat 7 | 30 m | 07/08/2010 |
4 | P196 R35 | ETM+ | Landsat 7 | 30 m | 07/08/2010 |
5 | P196 R34 | OLI | Landsat 8 | 30 m | 09/07/2017 |
6 | P196 R35 | OLI | Landsat 8 | 30 m | 07/06/2017 |
No. | Class Name | Description |
---|---|---|
1 | Agriculture | Crop fields and fallow lands |
2 | Settlements | Residential, commercial, industrial, transportation, roads, mixed urban |
3 | Bare soil/rocks | Land areas of exposed soil and barren area influenced by human influence |
4 | Vegetation | Mixed forest lands |
5 | Water bodies | River, open water, lakes, ponds and reservoirs |
Year | Catchment | Settlement | Agriculture | Vegetation | Water | Bare Soil | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area/ha | Per/% | Area/ha | Per/% | Area/ha | Per/% | Area/ha | Per/% | Area/ha | Per/% | ||
2000 | Catchment -1 | 289 | 1.8 | 6748.3 | 43.1 | 6426.7 | 41 | 319.1 | 2 | 1890.5 | 12.1 |
Catchment -2 | 569.1 | 3.8 | 2014.7 | 13.4 | 2283.3 | 15.1 | 159.2 | 1.1 | 10,050 | 66.7 | |
Catchment -3 | 5014.7 | 11.7 | 5687 | 13.3 | 20,833.6 | 48.6 | 4.1 | 0 | 11,305 | 26.4 | |
Catchment -4 | 5498.3 | 13.8 | 3111.2 | 7.8 | 27,850.8 | 69.9 | 0 | 0 | 3383.6 | 8.5 | |
Catchment -5 | 778.1 | 8.4 | 3629.2 | 39 | 4367.8 | 47 | 241 | 2.6 | 280.7 | 3 | |
Catchment -6 | 10,705 | 20.3 | 21,158 | 40.1 | 16,355.4 | 31 | 0 | 0 | 4491 | 8.5 | |
Catchment -7 | 15,845 | 10.9 | 64,282 | 44.2 | 31,008.4 | 21.3 | 0.9 | 0 | 34,214 | 23.5 | |
2010 | Catchment -1 | 657.8 | 4.2 | 5239.4 | 33.4 | 6965.1 | 44.4 | 257.7 | 1.6 | 2553.6 | 16.3 |
Catchment -2 | 697.8 | 4.6 | 2202.1 | 14.6 | 1939.5 | 12.9 | 293.2 | 1.9 | 9943.1 | 66 | |
Catchment -3 | 3059.7 | 7.1 | 10,114 | 23.6 | 19,531.4 | 45.6 | 0.8 | 0 | 10,139 | 23.7 | |
Catchment -4 | 2257.5 | 5.7 | 8879.1 | 22.3 | 24,849 | 62.4 | 0.1 | 0 | 3858.1 | 9.7 | |
Catchment -5 | 1246.9 | 13.4 | 2181.7 | 23.5 | 4725.5 | 50.8 | 413.1 | 4.4 | 729.5 | 7.8 | |
Catchment -6 | 13,615 | 25.8 | 20,138 | 38.2 | 15,643.9 | 29.7 | 0 | 0 | 3312.8 | 6.3 | |
Catchment -7 | 13,519 | 9.3 | 68,020 | 50.3 | 20,231.9 | 14.9 | 3.8 | 0 | 33,577 | 24.8 | |
2017 | Catchment -1 | 2590.7 | 13.1 | 4830.2 | 34.3 | 6958.9 | 44.4 | 329.8 | 2.1 | 964 | 6.2 |
Catchment -2 | 797.9 | 5.3 | 2079.8 | 13.8 | 2124.9 | 14.1 | 385.8 | 2.6 | 9687.2 | 64.3 | |
Catchment -3 | 5948.5 | 13.9 | 6296.7 | 14.7 | 20,899.1 | 48.8 | 11.7 | 0 | 9688.2 | 22.6 | |
Catchment -4 | 3204.9 | 8 | 5958 | 15 | 26,908.7 | 67.5 | 0.8 | 0 | 3771.5 | 9.5 | |
Catchment -5 | 1717.4 | 10.4 | 2155.9 | 31.3 | 4623.4 | 49.7 | 413.6 | 4.4 | 386.4 | 4.2 | |
Catchment -6 | 15,550 | 29.9 | 20,048 | 38.4 | 15,660 | 29.7 | 3.7 | 0 | 1048.1 | 2 | |
Catchment -7 | 32,703 | 22.5 | 65,326 | 44.9 | 25,650.7 | 17.6 | 196.8 | 0.1 | 21,475 | 14.8 |
Catchment | 2000–2010 | 2010–2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Settlement | Agriculture | Vegetation | Water | Bare Soil | Settlement | Agriculture | Vegetation | Water | Bare Soil | |
1 | 368.8 | −1508.9 | 538.4 | −61.4 | 663.1 | 1932.9 | −409.2 | 532.2 | 72.1 | −1589.6 |
2 | 128.7 | 187.4 | −343.8 | 134 | −106.4 | 100.1 | −122.3 | −158.4 | 92.6 | −255.9 |
3 | −1955 | 4426.6 | −1302.2 | −3.3 | −1166.1 | 2888.8 | −3816.9 | 65.5 | 10.9 | −450.4 |
4 | −3240.8 | 5767.9 | −3001.8 | 0.1 | 474.5 | 947.4 | −2921.1 | −942.1 | 0.7 | −86.6 |
5 | 468.8 | −1447.5 | 357.7 | 172.1 | 448.8 | 470.5 | −25.8 | 255.6 | 0.5 | −343.1 |
6 | 2909.6 | −1019.8 | −711.5 | 0 | −1178.2 | 1934.8 | −90 | −695.4 | 3.7 | −2264.7 |
7 | −2326 | 3737.6 | −10,776.5 | 2.9 | −637.9 | 19,184 | −2693.9 | −5357.7 | 193 | −12,102 |
WQP (mg/L) | Settlement (%) | Agriculture (%) | Vegetation (%) | Water (%) | Bare Soil (%) |
---|---|---|---|---|---|
pH1 | −0.893 * | −0.780 ** | 0.638 | 0.407 | 0.220 |
CE2 | −0.054 | 0.239 | 0.351 | 0.031 | −0.148 |
DO | −0.896 ** | −0.541 | 0.588 | 0.504 | 0.116 |
NH4-N | 0.905 ** | 0.563 | −0.363 | −0.431 | −0.337 |
NO2-N | 0.595 | 0.745 | −0.591 | −0.288 | −0.132 |
NO3-N | 0.178 | 0.320 | −0.933 ** | 0.026 | 0.562 |
PO4-P | 0.885 ** | 0.765 * | −0.547 | −0.494 | −0.282 |
BOD5 | 0.956 ** | 0.654 | −0.429 | −0.519 | −0.347 |
COD | 0.904 ** | 0.521 | −0.359 | −0.452 | −0.313 |
SS | 0.927 ** | 0.522 | −0.435 | −0.613 | −0.245 |
Dependent Variables | Independent Variables | Regression | R2 | Adjusted R2 | p |
---|---|---|---|---|---|
DO | SL | 9.458 − 0.287 SL | 0.802 | 0.762 | 0.006 |
NH4-N | SL | −6.272 + 0.634 SL | 0.818 | 0.782 | 0.005 |
NO3-N | Veg | 8.813 − 0.148 Veg | 0.870 | 0.844 | 0.002 |
PO4-P | SL | −2.123 + 0.252 SL | 0.783 | 0.740 | 0.008 |
BOD5 | SL | −17.513 + 2.184 SL | 0.915 | 0.898 | 0.001 |
COD | SL | −83.003 + 10.231 SL | 0.818 | 0.781 | 0.005 |
SS | SL | 1.054 + 4.158 SL | 0.859 | 0.831 | 0.003 |
pH | SL | 8.116 − 0.032 SL + 0.007 Veg | 0.931 | 0.896 | 0.005 |
Veg | 0.050 |
Variable | Unstandardized Coefficients | T | P | Collinearity Statistics | ||
---|---|---|---|---|---|---|
B | Standard Error | Tolerance | VIF | |||
Constant | 8.116 | 0.158 | 51.266 | 0.000 | - | - |
SL | −0.032 | 0.006 | −5.490 | 0.005 | 0.892 | 1.122 |
Veg | 0.007 | 0.003 | 2.765 | 0.050 | 0.892 | 1.122 |
WQP (mg/L) | Settlement (%) | Agriculture (%) | Vegetation (%) | Water (%) | Bare Soil (%) |
---|---|---|---|---|---|
pH | −0.75 | 0.286 | 0.25 | −0.393 | 0.714 |
DO | −0.464 | −0.536 | 0.571 | 0.286 | 0.643 |
NH4-N | 0.857 * | −0.179 | −0.143 | −0.036 | −0.929 ** |
NO2-N | −0.071 | −0.607 | 0.679 | 0.75 | 0.107 |
NO3-N | 0.071 | 0.464 | −0.643 | 0.429 | −0.429 |
PO4-P | 0.991 ** | −0.274 | −0.126 | 0.18 | −0.883 ** |
BOD5 | 0.857 * | −0.25 | −0.143 | 0.071 | −0.75 |
COD | 0.571 | −0.071 | −0.143 | 0 | −0.075 |
CE | −0.321 | −0.143 | 0.429 | −0.143 | 0.036 |
SS | 0.394 | 0.236 | −0.256 | −0.256 | −0.749 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Elhadj, A.; Xu, H.; Xu, X.; Qiao, Z. A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS. Sustainability 2020, 12, 3510. https://doi.org/10.3390/su12093510
Chen D, Elhadj A, Xu H, Xu X, Qiao Z. A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS. Sustainability. 2020; 12(9):3510. https://doi.org/10.3390/su12093510
Chicago/Turabian StyleChen, Dechao, Acef Elhadj, Hualian Xu, Xinliang Xu, and Zhi Qiao. 2020. "A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS" Sustainability 12, no. 9: 3510. https://doi.org/10.3390/su12093510