Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of the Climate
2.2. Soil Sampling, Interventions and Measurements
2.3. Pasture Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Variability Pattern of the Soil Parameters
3.2. Variability Pattern of the Pasture Parameters
4. Discussion
4.1. Variability Pattern of the Soil Parameters
4.2. Variability Pattern of the Pasture Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Report 106; Food and Agriculture Organization (FAO): Rome, Italy, 2015; 188p. [Google Scholar]
- Carvalho, M.; Goss, M.J.; Teixeira, D. Manganese toxicity in Portuguese Cambisols derived from granitic rocks: Causes, limitations of soil analyses and possible solutions. Rev. Cienc. Agrárias 2015, 38, 518–527. [Google Scholar] [CrossRef]
- Guevara-Escobar, A.; Kemp, P.D.; Mackay, A.D.; Hodgson, J. Pasture production and composition under poplar in a hill environment in New Zealand. Agrofor. Syst. 2007, 3, 199–213. [Google Scholar] [CrossRef]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; Universidade de Évora—ICAM, Ed.; Gráfica Eborense: Évora, Portugal, 2006; pp. 165–178. [Google Scholar]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Benavides, R.; Douglas, G.B.; Osoro, K. Silvopastoralism in New Zealand: Review of effects of evergreen and deciduous trees on pasture dynamics. Agrofor. Syst. 2009, 76, 327–350. [Google Scholar] [CrossRef]
- Jackson, J.; Ash, A.J. Tree-grass relationships in open eucalypt woodlands of northeastern Australia: Influence of trees on pasture productivity, forage quality and species distribution. Agrofor. Syst. 1998, 40, 159–176. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Pereira, A.; Carvalho, M. Climate changes challenges to the management of Mediterranean montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy 2020, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, R.; Oliveira, L.A.; Magalhães, F.M. População de rhizobium spp. e ocorrência de micorriza v.a. em cultivos de essências florestais. Pesqui. Agropecuária Bras. 1984, 19, 137–142. [Google Scholar]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Monitoring seasonal pasture quality degradation in the Mediterranean montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Sales-Baptista, E.; Ferraz de Oliveira, I.; Lopes de Castro, J.; Pereira, A.; Cancela d’Abreu, M.; Machado, E.; Carvalho, M. Tree influence on soil and pasture: Contribution of proximal sensing to pasture productivity and quality estimation in montado ecosystems. Int. J. Remote Sens. 2018, 39, 4801–4829. [Google Scholar] [CrossRef]
- Egner, H.; Riehm, H.; Domingo, W.R. Utersuchungeniiber die chemische Bodenanalyse als Grudlagefir die Beurteilung des Nahrstof-zunstandes der Boden. II. K. Lantbrhogsk. Annlr 1960, 20, 199–216. (In German) [Google Scholar]
- AOAC. Official Method of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, AT, USA, 2005. [Google Scholar]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Marques da Silva, J.R.; Peça, J.O.; Serrano, J.M.; Carvalho, M.J.; Palma, P.M. Evaluation of spatial and temporal variability of pasture based on topography and the quality of the rainy season. Precis. Agric. 2008, 9, 209–229. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Calado, J.; Carvalho, M. Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Moral, F.; Terrón, J.; da Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Moral, F.J.; Serrano, J.M. Using low-cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures. Precis. Agric. 2019, 20, 1000–1014. [Google Scholar] [CrossRef]
- Seddaiu, G.; Porcua, G.; Luigi, L.; Roggero, P.P.; Agnelli, A.; Cortic, G. Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agric. Ecosyst. Environ. 2013, 167, 1–11. [Google Scholar] [CrossRef]
- Martins, A.P.; Cecagno, D.; Borin, J.B.M.; Arnuti, F.; Lochmann, S.H.; Anghinoni, I.; Bissani, C.A.; Bayer, C.; Carvalho, P.C.F. Long-, medium- and short-term dynamics of soil acidity in an integrated crop–livestock system under different grazing intensities. Nutr. Cycl. Agroecosyst. 2016, 104, 67–77. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Noumonvi, K.D.; Ferlan, M.; Eler, K.; Alberti, G.; Perossotti, A.; Cerasoli, S. Estimation of Carbon Fluxes from Eddy Covariance Data and Satellite-Derived Vegetation Indices in a Karst Grassland (Podgorski Kras, Slovenia). Remote Sens. 2019, 11, 649. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.R.; Costa e Silva, F.; Correia, A.C.; Bicho, M.C.; Madeira, M. Do improved pastures enhance soil quality of cork oak woodlands in the Alentejo region (Portugal)? Agrofor. Syst. 2020, 94, 125–136. [Google Scholar] [CrossRef]
- Crusciol, C.A.; Marques, R.R.; Carmeis Filho, A.C.; Soratto, R.P.; Costa, C.H.; Neto, J.F.; Castro, G.S.; Pariz, C.M.; Castilhos, A.M.; Franzluebbers, A.J. Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutr. Cycl. Agroecosyst. 2019, 115, 347–372. [Google Scholar] [CrossRef] [Green Version]
- Halim, N.; Abdullah, R.; Karsani, S.; Osman, N.; Panhwar, Q.; Ishak, C. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Li, G.D.; Conyers, M.K.; Helyar, K.R.; Lisle, C.J.; Poile, G.J.; Cullis, B.R. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 2019, 338, 236–246. [Google Scholar] [CrossRef]
- Bernardi, A.C.C.; Bueno, J.O.A.; Laurenti, N.; Santos, K.E.L.; Alves, T.C. Efeito da calagem e fertilizantes aplicados à taxa variável nos atributos químicos do solo e custos de produção de pastagem de Capim Tanzânia manejadas intensivamente. Braz. J. Biosyst. Eng. 2018, 12, 368–382. [Google Scholar] [CrossRef] [Green Version]
- Gubler, A.; Wächter, D.; Schwab, P.; Müller, M.; Keller, A. Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ. Monit. Assess. 2019, 191, 277. [Google Scholar] [CrossRef] [Green Version]
- Demanet, R.; Mora, M.L.; Herrera, M.A.; Miranda, H.; Barea, J.M. Seasonal variation of the productivity and quality of permanent pastures in Adisols of temperate regions. J. Soil Sci. Plant Nut. 2015, 15, 111–128. [Google Scholar] [CrossRef] [Green Version]
Soil Parameters (n) | GLOBAL (24) | COR (12) | UCOR (12) | UTC (12) | OTC (12) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | |
pHH2O | 5.44 ± 0.22 | 5.50–5.90 | 5.58 ± 0.15 | 5.40–5.90 | 5.30 ± 0.19 | 5.00–5.60 | 5.53 ± 0.20 | 5.20–5.90 | 5.33 ± 0.19 | 5.00–5.60 |
OM (%) | 1.56 ± 0.59 | 0.90–3.00 | 1.66 ± 0.66 | 1.00–3.00 | 1.47 ± 0.52 | 0.90–2.37 | 2.03 ± 0.46 | 1.40–3.00 | 1.10 ± 0.18 | 0.90–1.50 |
Ntotal (%) | 0.10 ± 0.03 | 0.05–0.19 | 0.09 ± 0.03 | 0.06–0.15 | 0.10 ± 0.04 | 0.05–0.19 | 0.12 ± 0.03 | 0.08–0.19 | 0.07 ± 0.01 | 0.05–0.10 |
P (mg·kg−1) | 54.2 ± 31.8 | 8–107 | 55.4 ± 30.8 | 20–107 | 53.0 ± 34.1 | 8–101 | 63.6 ± 32.3 | 8–107 | 44.8 ± 29.6 | 14–98 |
K (mg·kg−1) | 155.0 ± 57.8 | 56–310 | 164.8 ± 64.0 | 80–310 | 145.2 ± 51.6 | 56–204 | 200.3 ± 38.2 | 162–310 | 109.7 ± 32.2 | 56–168 |
Mg (mg·kg−1) | 78.1 ± 33.0 | 35–160 | 82.9 ± 32.1 | 50–160 | 73.3 ± 34.6 | 35–155 | 84.2 ± 21.2 | 35–160 | 72.1 ± 41.8 | 50–120 |
Mn (mg·kg−1) | 50.2 ± 29.7 | 15–135 | 33.6 ± 16.1 | 15–67 | 66.8 ± 31.4 | 16–135 | 38.4 ± 23.4 | 15–90 | 62.1 ± 31.5 | 25–135 |
Ca2+ (mmol·dm−3) | 2.2 ± 0.8 | 1.1–3.6 | 2.4 ± 0.8 | 1.1–3.6 | 2.0 ± 0.6 | 1.1–3.1 | 2.6 ± 0.7 | 1.6–3.6 | 1.7 ± 0.5 | 1.1–2.7 |
Mg2+ (mmol·dm−3) | 0.6 ± 0.3 | 0.2–1.4 | 0.7 ± 0.3 | 0.3–1.4 | 0.5 ± 0.2 | 0.2–1.2 | 0.6 ± 0.1 | 0.5–0.9 | 0.6 ± 0.4 | 0.2–1.4 |
K+ (mmol·dm−3) | 0.9 ± 0.4 | 0.3–1.5 | 0.9 ±0.5 | 0.3–1.5 | 0.9 ± 0.3 | 0.4–1.5 | 1.1 ± 0.3 | 0.7–1.5 | 0.7 ± 0.4 | 0.3–1.5 |
Soil Parameters (n) | COR (12) | UCOR (12) | Prob. | UTC (12) | OTC (12) | Prob. | COR × UTC (6) | COR × OTC (6) | UCOR × UTC (6) | UCOR × OTC (6) |
---|---|---|---|---|---|---|---|---|---|---|
pHH2O | 5.58 | 5.30 | 0.0193 | 5.53 | 5.33 | 0.0232 | 5.68a | 5.47b | 5.42b | 5.18c |
OM (%) | 1.66 | 1.47 | ns | 2.03 | 1.10 | 0.0000 | 2.13a | 1.18b | 1.93a | 1.01b |
Ntotal (%) | 0.09 | 0.10 | ns | 0.12 | 0.07 | 0.0000 | 0.12a | 0.07b | 0.12a | 0.08b |
P (mg·kg−1) | 55.4 | 53.0 | ns | 63.6 | 44.8 | 0.0000 | 72.3a | 38.5b | 54.8ab | 51.2ab |
K (mg·kg−1) | 164.8 | 145.2 | ns | 200.3 | 109.7 | 0.0000 | 212.3a | 117.3b | 188.3a | 102.0b |
Mg (mg·kg−1) | 82.9 | 73.3 | ns | 84.2 | 72.1 | ns | 95.0a | 73.3a | 73.3a | 70.8a |
Mn (mg·kg−1) | 33.6 | 66.8 | 0.0000 | 38.4 | 62.1 | 0.0000 | 22.8b | 44.4ab | 53.9ab | 79.7a |
Ca2+ (mmol·dm−3) | 2.4 | 2.0 | ns | 2.6 | 1.7 | ns | 2.8a | 2.0a | 2.5a | 1.5a |
Mg2+ (mmol·dm−3) | 0.7 | 0.5 | ns | 0.6 | 0.6 | ns | 0.7a | 0.7a | 0.6a | 0.5a |
K+ (mmol·dm−3) | 0.9 | 0.9 | ns | 1.1 | 0.7 | ns | 1.2a | 0.6a | 1.0a | 0.8a |
Pasture Parameters (n) | GLOBAL (24) | COR (12) | UCOR (12) | UTC (12) | OTC (12) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | |
GM (kg·ha−1) | ||||||||||
Autumn | 7328 ± 2933 | 900–15,990 | 7873 ± 3412 | 2900–15,990 | 6783 ± 2388 | 3500–11,000 | 6766 ± 3524 | 2900–15,990 | 7891 ± 2909 | 5400–12,000 |
Winter | 12,475 ± 8484 | 1800–34,900 | 16,258 ± 9751 | 6500–34,900 | 8692 ± 4917 | 1800–15,200 | 9150 ± 8076 | 1800–30,800 | 15,800 ± 7820 | 7000–34,900 |
Spring | 4779 ± 2655 | 900–8400 | 4908 ± 2611 | 1600–8400 | 4650 ± 2808 | 900–8300 | 2708 ± 1392 | 900–5300 | 6850 ± 1856 | 2100–8400 |
DM (kg·ha−1) | ||||||||||
Autumn | 1038 ± 431 | 400–2500 | 1117 ± 567 | 400–2500 | 958 ± 231 | 600–1400 | 1033 ± 555 | 400–2500 | 1042 ± 284 | 700–1700 |
Winter | 1833 ± 848 | 600–4100 | 2317 ± 928 | 1100–4100 | 1350 ± 363 | 600–1800 | 1592 ± 814 | 600–3500 | 2075 ± 844 | 1200–4100 |
Spring | 3067 ± 1807 | 500–6900 | 3025 ± 1839 | 900–6900 | 3108 ± 1855 | 500–5600 | 1667 ± 947 | 500–3400 | 4467 ± 1286 | 1700–6900 |
PMC (%) | ||||||||||
Autumn | 85.5 ± 2.9 | 77.8–90.8 | 85.9 ± 2.5 | 81.1–90.8 | 85.1 ± 3.3 | 77.8–89.1 | 84.5 ± 2.8 | 77.8–88.9 | 86.5 ± 2.6 | 81.1–90.8 |
Winter | 82.4 ± 6.2 | 66.7–88.7 | 83.9 ± 4.3 | 76.9–88.6 | 80.9 ± 7.6 | 66.7–88.7 | 78.7 ± 6.4 | 66.7–88.6 | 86.1 ± 3.3 | 77.1–88.7 |
Spring | 35.9 ± 13.5 | 5.0–64.3 | 39.1 ± 13.1 | 17.9–64.3 | 32.8 ± 13.7 | 5.0–57.0 | 38.6 ± 14.6 | 5.0–64.3 | 33.2 ± 12.3 | 17.9–57.0 |
CP (%) | ||||||||||
Autumn | 22.8 ± 6.6 | 13.4–47.3 | 24.7 ± 8.6 | 13.4–47.3 | 21.0 ± 3.2 | 16.9–29.7 | 25.1 ± 8.0 | 17.7–47.3 | 20.5 ± 3.9 | 13.4–25.8 |
Winter | 19.4 ± 5.4 | 10.8–31.2 | 19.6 ± 6.2 | 10.8–31.2 | 19.1 ± 4.8 | 13.9–25.7 | 20.3 ± 6.1 | 13.9–31.2 | 18.4 ± 4.7 | 10.8–25.7 |
Spring | 9.7 ± 3.8 | 5.1–21.4 | 10.5 ± 5.1 | 5.1–21.4 | 8.9 ± 1.9 | 6.0–13.0 | 12.2 ± 4.0 | 8.8–21.4 | 7.2 ± 1.3 | 5.1–9.9 |
NDF (%) | ||||||||||
Autumn | 49.5 ± 8.3 | 28.5–64.5 | 48.5 ± 9.7 | 28.5–64.5 | 50.4 ± 6.9 | 41.0–61.1 | 52.2 ± 6.6 | 41.0–61.1 | 46.7 ± 9.2 | 28.5–64.5 |
Winter | 45.9 ± 8.4 | 34.2–62.1 | 43.1 ± 6.9 | 34.2–55.3 | 48.7 ± 9.0 | 39.5–62.1 | 50.6 ± 9.1 | 34.2–62.1 | 41.2 ± 3.8 | 34.8–49.4 |
Spring | 64.6 ± 4.1 | 56.0–70.7 | 63.6 ± 5.0 | 56.0–70.4 | 65.6 ± 2.8 | 61.9–70.7 | 62.7 ± 4.0 | 56.0–68.4 | 66.5 ± 3.4 | 61.4–70.7 |
Pasture Parameters (n) | COR (12) | UCOR (12) | Prob. | UTC (12) | OTC (12) | Prob. | COR × UTC (6) | COR × OTC (6) | UCOR × UTC (6) | UCOR × OTC (6) |
---|---|---|---|---|---|---|---|---|---|---|
GM (kg·ha−1) | ||||||||||
Autumn | 7873 | 6783 | ns | 6766 | 7891 | ns | 7948a | 7798a | 5583a | 7983a |
Winter | 16,258 | 8692 | 0.0486 | 9150 | 15,800 | 0.0205 | 13,700a | 18,817a | 4600b | 12,783a |
Spring | 4908 | 4650 | ns | 2708 | 6850 | 0.0001 | 3267b | 6550a | 2150b | 7150a |
DM (kg·ha−1) | ||||||||||
Autumn | 1117 | 958 | ns | 1033 | 1042 | ns | 1200a | 1033a | 867a | 1050a |
Winter | 2317 | 1350 | 0.0198 | 1592 | 2075 | 0.0307 | 2083ab | 2550a | 1100c | 1600bc |
Spring | 3025 | 3108 | ns | 1667 | 4467 | 0.0002 | 1833b | 4217a | 1500b | 4717a |
PMC (%) | ||||||||||
Autumn | 85.9 | 85.1 | ns | 84.5 | 86.6 | 0.0700 | 85.3a | 86.6a | 83.7a | 86.5a |
Winter | 83.9 | 80.9 | ns | 78.7 | 86.1 | 0.0017 | 82.7a | 85.1a | 74.7b | 87.1a |
Spring | 39.1 | 32.8 | ns | 38.6 | 33.3 | ns | 44.6a | 33.5a | 32.6a | 32.9a |
CP (%) | ||||||||||
Autumn | 24.7 | 21.0 | ns | 25.1 | 20.5 | 0.0708 | 28.5a | 20.9b | 21.8ab | 20.2b |
Winter | 19.6 | 19.1 | ns | 20.3 | 18.4 | ns | 23.5a | 15.7b | 17.1b | 21.2ab |
Spring | 10.5 | 8.9 | ns | 12.2 | 7.2 | 0.0004 | 14.1a | 6.8c | 10.2b | 7.6bc |
NDF (%) | ||||||||||
Autumn | 48.5 | 50.4 | ns | 52.2 | 46.7 | ns | 50.7a | 46.3a | 53.8a | 47.1a |
Winter | 43.1 | 48.8 | 0.0424 | 50.7 | 41.2 | 0.0014 | 44.7b | 41.5b | 56.7a | 40.8b |
Spring | 63.6 | 65.6 | ns | 62.8 | 66.5 | 0.0457 | 60.6b | 66.7a | 64.9ab | 66.3a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Shahidian, S.; Marques da Silva, J.; Moral, F.; Carvajal-Ramirez, F.; Carreira, E.; Pereira, A.; Carvalho, M.d. Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem. Sustainability 2020, 12, 3758. https://doi.org/10.3390/su12093758
Serrano J, Shahidian S, Marques da Silva J, Moral F, Carvajal-Ramirez F, Carreira E, Pereira A, Carvalho Md. Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem. Sustainability. 2020; 12(9):3758. https://doi.org/10.3390/su12093758
Chicago/Turabian StyleSerrano, João, Shakib Shahidian, José Marques da Silva, Francisco Moral, Fernando Carvajal-Ramirez, Emanuel Carreira, Alfredo Pereira, and Mário de Carvalho. 2020. "Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem" Sustainability 12, no. 9: 3758. https://doi.org/10.3390/su12093758
APA StyleSerrano, J., Shahidian, S., Marques da Silva, J., Moral, F., Carvajal-Ramirez, F., Carreira, E., Pereira, A., & Carvalho, M. d. (2020). Evaluation of the Effect of Dolomitic Lime Application on Pastures—Case Study in the Montado Mediterranean Ecosystem. Sustainability, 12(9), 3758. https://doi.org/10.3390/su12093758