Dry Bean [Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experiment Design, and Management Practices
2.2. Growth Parameters, Seed Yield (SY), and Yield Components Measurements
2.3. Growing Degree Days (GDD)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Effect of Irrigation Treatment on Dry Bean Growth Dynamics and Other Canopy Traits
3.2.1. Plant Height (h)
3.2.2. Leaf Area Index (LAI)
3.2.3. Normalized Difference Vegetation Index (NDVI) and Soil-Plant Analysis Development (SPAD)
3.2.4. Growth Models of Dry Bean
3.3. Effect of Irrigation Treatment on Dry Bean Seed Yield (SY) and Yield Components
3.3.1. Dry Bean Seed Yield (SY)
3.3.2. Yield Components: Pods Plant−1, Seeds Pod−1, Seed Weight (SW), and Pod Harvest Index (PHI)
3.4. Relationship between Dry Bean Seed Yield (SY) and Yield Components
3.5. Relationship between Dry Bean Growth Traits and Seed Yield (SY) and Yield Components
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- USDA. NASS. Available online: https://www.nass.usda.gov/ (accessed on 15 December 2018).
- Schwartz, H.F.; Brick, M.A. Dry Bean Pest Management and Production, 3rd ed.; Cooperative Extension Resource Center, Colorado State University: Fort Collins, CO, USA, 2015. [Google Scholar]
- USDA-FRIS. United State Department of Agriculture- Farm and Ranch Irrigation Survey. Census of Agriculture; National Agricultural Statistics Service: Washington, DC, USA, 2013.
- Nuñez Barrios, A.; Hoogenboom, G.; Nesmith, D.S. Drought stress and the distribution of vegetative and reproductive traits of a bean cultivar. Sci. Agric. 2005, 62, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Terán, H.; Singh, S.P. Comparison of sources and lines selected for drought resistance in common bean. Crop Sci. 2002, 42, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.C.; Nelson, N.O. Black bean sensitivity to water stress at various growth stages. Crop Sci. 1998, 38, 422–427. [Google Scholar] [CrossRef]
- Loss, S.P.; Siddique, K.H.M. Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments I. seed yield and yield components. Field Crops Res. 1997, 52, 17–28. [Google Scholar] [CrossRef]
- Ramirez-Vallejo, P.; Kelly, J.D. Traits related to drought resistance in common bean. Euphytica 1998, 99, 127–136. [Google Scholar] [CrossRef]
- Gallegos, J.A.A.; Shibata, J.K. Effect of water stress on growth and yield of indeterminate dry-bean (Phaseolus vulgaris L.) cultivars. Field Crops Res. 1989, 20, 81–93. [Google Scholar] [CrossRef]
- Stoker, R. Effect on dwarf beans of water stress at different phases of growth. N. Z. J. Exp. Agric. 1974, 2, 13–15. [Google Scholar] [CrossRef]
- Miller, D.E.; Burke, D.W. Response of Dry Beans to Daily Deficit Sprinkler Irrigation 1. Agron. J. 1983, 75, 775–778. [Google Scholar] [CrossRef]
- Webber, H.A.; Madramootoo, C.A.; Bourgault, M.; Horst, M.G.; Stulina, G.; Smith, D.L. Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation. Agric. Water Manag. 2006, 86, 259–268. [Google Scholar] [CrossRef]
- Mooney, H.A.; Winner, W.E.; Pell, E.J. Response of Plants to Multiple Stresses; Academic Press; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Ramos, M.; Gordon, A.J.; Minchin, F.R.; Sprent, J.L.; Parsons, R. Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann. Bot. 1999, 83, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Serraj, R.; Sinclair, T.R. Soybean cultivar variability for nodule formation and growth under drought. Plant Soil 1998, 202, 159–166. [Google Scholar] [CrossRef]
- Sprent, J.I. Effects of water stress on nitrogen fixation in root nodules. Plant Soil 1971, 35, 225–228. [Google Scholar] [CrossRef]
- Coelho, D.T.; Dale, R.F. An energy-crop growth variable and temperature function for predicting corn growth and development: Planting to Silking 1. Agron. J. 1980, 72, 503–510. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Evett, S.R.; Brauer, D.K.; Howell, T.A.; Tolk, J.A.; Copeland, K.S. Allometric method to estimate leaf area index for row crops. Agron. J. 2017, 109, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Rai, A. Dry bean (Phaseolus vulgaris L) Crop Evapotranspiration, Irrigation and Crop Water Production Functions and Yield Response Factors in Arid to Semi-arid Climate. Agric. Water Manag. 2020. in review. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorl. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Jenni, S.; Bourgeois, G.; Laurence, H.; Roy, G.; Tremblay, N. Improving the Prediction of Processing Bean Maturity Based on the Growing-Degree Day Approach. HortScience 2000, 35, 1234–1237. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Nicholson, C.; Bergantino, T.; Cowley, J.; Hess, B.; Tanaka, J. Wyoming Agricultural Climate Network (WACNet). In Agricultural Experiment Station 2018 Field Days Bulletin; University of Wyoming: Laramie, WY, USA, 2018; pp. 52–53. [Google Scholar]
- Rosadi, R.B.; Senge, M.; Ito, K.; Adomako, J.T. Critical water content and water stress coefficient of soybean (Glycine max [L.] Merr.) under deficit irrigation. Paddy Water Environ. 2005, 3, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Vaux, H.J., Jr.; Pruitt, W.O. Crop-water production functions. Adv. Irrig. 1983, 2, 61–97. [Google Scholar] [CrossRef]
- Shenkut, A.A.; Brick, M.A. Traits associated with dry edible bean (Phaseolus vulgaris L.) productivity under diverse soil moisture environments. Euphytica 2003, 133, 339–347. [Google Scholar] [CrossRef]
- Asemanrafat, M.; Honar, T. Effect of water stress and plant density on canopy temperature, yield components and protein concentration of red bean (Phaseolus vulgaris L. cv. akhtar). Int. J. Plant Prod. 2017, 11, 241–258. [Google Scholar]
- Breda, N.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Boydston, R.A.; Porter, L.D.; Chaves-Cordoba, B.; Khot, L.R.; Miklas, P.N. The impact of tillage on pinto bean cultivar response to drought induced by deficit irrigation. Soil Tillage Res. 2018, 180, 63–72. [Google Scholar] [CrossRef]
- Gunton, J.L.; Evenson, J.P. Moisture stress in navy beans. II. relationship between leaf water potential and growth and yield. Irrig. Sci. 1980, 2, 59–65. [Google Scholar] [CrossRef]
- Spitkó, T.; Nagy, Z.; Zsubori, T.; Szőke, C.; Berzy, T.; Pintér, J.; Marton, C.J. Connection between normalized difference vegetation index and yield in maize. Plant Soil Environ. 2016, 62, 293–298. [Google Scholar] [CrossRef]
- Neiff, N.; Dhliwayo, T.; Suarez, E.A.; Burgueno, J.; Trachsel, S. Using an airborne platform to measure canopy temperature and NDVI under heat stress in maize. J. Crop Improv. 2015, 29, 669–690. [Google Scholar] [CrossRef]
- Genc, L.; Inalpulat, M.; Kizil, U.; Mirik, M.; Smith, S.E.; Mendes, M. Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis. Zemdirbyste Agric. 2013, 100, 81–90. [Google Scholar] [CrossRef]
- Romano, G.; Zia, S.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Müller, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput. Elec. Agric. 2011, 79, 67–74. [Google Scholar] [CrossRef]
- Stone, C.; Chisholm, L.; Coops, N. Spectral reflectance characteristics of eucalypt foliage damaged by insects. Aust. J. Bot. 2001, 49, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, D.J.; Pinter, P.J.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irri. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Comparative canopy growth dynamics in four row crops and their relationships with allometric and environmental determinants. Agron. J. 2019, 111, 1799–1816. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Molnár, K.; Helyes, L. Relationships of spectral traits with yield and nutritional quality of snap beans (Phaseolus vulgaris L.) in dry seasons. Arch. Agron. Soil Sci. 2018, 64, 1222–1239. [Google Scholar] [CrossRef]
- Papadavid, G.; Hadjimitsis, D.G.; Toulios, L.; Michaelides, S. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Res. Manag. 2013, 27, 3493–3506. [Google Scholar] [CrossRef]
- Das, D.K.; Mishra, K.K.; Kalra, N. Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices. Int. J. Remote Sens. 1993, 14, 3081–3092. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Efetha, A.; Harms, T.; Bandara, M. Irrigation management practices for maximizing seed yield and water use efficiency of Othello dry bean (Phaseolus vulgaris L.) in southern Alberta, Canada. Irri. Sci. 2011, 29, 103–113. [Google Scholar] [CrossRef]
- Muñoz-Perea, C.G.; Terán, H.; Allen, R.G.; Wright, J.L.; Westermann, D.T.; Singh, S.P. Selection for drought resistance in dry bean landraces and cultivars. Crop Sci. 2006, 46, 2111–2120. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Berrada, A.F.; Stack, M.W. Dry bean yield response to different irrigation rates in southwestern Colorado. J. Prod. Agric. 1999, 12, 422–427. [Google Scholar] [CrossRef]
- Masaya, P.; White, J.W. Adaptation to photoperiod and temperature. In Common Beans: Research for Crop Improvement; Centro Internacional De Agricultura Tropical: Cali, Colombia, 1991; Chapter 8; pp. 445–500. [Google Scholar]
- Pandey, R.K.; Herrera, W.A.T.; Pendleton, J.W. Drought Response of Grain Legumes Under Irrigation Gradient: I. Yield and Yield Components. Agron. J. 1984, 76, 549–553. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maranville, J.W.; Admou, A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components. Agric. Water Manag. 2000, 46, 1–13. [Google Scholar] [CrossRef]
- Djaman, K. Crop Evapotranspiration, Crop Coefficients, Plant Growth and Yield Parameters, and Nutrient Uptake Dynamics of Maize. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2011. [Google Scholar]
- Yonts, C.D.; Haghverdi, A.; Reichert, D.L.; Irmak, S. Deficit irrigation and surface residue cover effects on dry bean yield, in-season soil water content and irrigation water use efficiency in western Nebraska high plains. Agric. Water Manag. 2018, 199, 138–147. [Google Scholar] [CrossRef]
- Saleh, S.; Liu, G.; Liu, M.; Ji, Y.; He, H.; Gruda, N. Effect of irrigation on growth, yield, and chemical composition of two green bean cultivars. Horticulturae 2018, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Mathobo, R.; Marais, D.; Steyn, J.M. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
2017 | 2018 | 2019 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 125% FIT | FIT | 75% FIT | 50% FIT | 25% FIT | Date | 125% FIT | FIT | 75% FIT | 50% FIT | 25% FIT | Date | 125% FIT | FIT | 75% FIT | 50% FIT | 25% FIT |
6/7 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 6/7 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 6/8 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 |
6/17 | 19.1 | 19.1 | 19.1 | 19.1 | 19.1 | 6/12 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 6/12 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 |
6/21 | 19.1 | 14.3 | 10.7 | 3.6 | 7.1 | 6/28 | 19.05 | 12.7 | 9.53 | 6.35 | 3.18 | 6/24 | 23.81 | 19.05 | 14.29 | 9.53 | 4.76 |
6/30 | 25.4 | 19.1 | 14.3 | 4.8 | 9.5 | 7/4 | 25.4 | 19.05 | 14.29 | 9.53 | 4.76 | 7/3 | 25.40 | 25.4 | 19.05 | 12.70 | 6.35 |
7/3 | 25.4 | 19.1 | 14.3 | 4.8 | 9.5 | 7/9 | 25.4 | 19.05 | 14.29 | 9.53 | 4.76 | 7/8 | 31.75 | 25.4 | 19.05 | 12.70 | 6.35 |
7/12 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 7/19 | 25.4 | 19.05 | 14.29 | 9.53 | 4.76 | 7/23 | 31.75 | 25.4 | 19.05 | 12.70 | 6.35 |
7/15 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 7/20 | 25.4 | 19.05 | 14.29 | 9.53 | 4.76 | 7/26 | 31.75 | 25.4 | 19.05 | 12.70 | 6.35 |
7/20 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 7/26 | 31.75 | 25.4 | 19.05 | 12.7 | 6.35 | 7/31 | 19.07 | 12.7 | 9.53 | 6.35 | 3.18 |
7/25 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 7/31 | 31.75 | 25.4 | 19.05 | 12.7 | 6.35 | 8/5 | 25.40 | 19.05 | 14.29 | 9.53 | 4.76 |
8/1 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 8/7 | 31.75 | 25.4 | 19.05 | 12.7 | 6.35 | 8/8 | 31.75 | 25.4 | 19.05 | 12.70 | 6.35 |
8/4 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 8/12 | 31.75 | 25.4 | 19.05 | 12.7 | 6.35 | 8/18 | 25.40 | 19.05 | 14.29 | 9.53 | 4.76 |
8/10 | 31.8 | 23.8 | 17.9 | 6.0 | 11.9 | 8/17 | 31.75 | 25.4 | 19.05 | 12.7 | 6.35 | 8/22 | 25.40 | 19.05 | 14.29 | 9.53 | 4.76 |
8/18 | 25.4 | 19.1 | 14.3 | 4.8 | 9.5 | 8/22 | 25.4 | 19.05 | 14.29 | 9.53 | 4.76 | ||||||
8/22 | 25.4 | 19.1 | 14.3 | 4.8 | 9.5 | ||||||||||||
Total | 375 | 289 | 225 | 96 | 160 | 330 | 260 | 202 | 143 | 84 | 297 | 241 | 187 | 133 | 79 |
2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | LAI | NDVI | h (m) | SPAD | LAI | NDVI | h (m) | SPAD | LAI | NDVI | h (m) | SPAD |
25% FIT | 2.69 a | 0.39 a | 0.26 a | 51.02 a | 2.92 a | 0.35 a | 0.34 a | 51.79 a | 3.90 a | 0.73 a | 0.48 a | 48.1 a |
(±0.25) | (±0.04) | (±0.04) | (±0.57) | (±0.16) | (±0.06) | (±0.07) | (±3.52) | (±0.33) | (±0.02) | (±0.02) | (±0.8) | |
50% FIT | 3.67 b | 0.61 b | 0.37 a,b | 51.51 a | 3.04 a | 0.60 b | 0.37 a | 51.90 a | 4.06 a | 0.75 a | 0.50 a | 48.0 a |
(±0.28) | (±0.09) | (±0.03) | (±0.33) | (±0.30) | (±0.07) | (±0.04) | (±1.86) | (±0.7) | (±0.03) | (±0.06) | (±0.55) | |
75% FIT | 3.75 b,c | 0.67 b | 0.38 a,b | 51.58 a | 4.30 b | 0.74 c | 0.51 b | 51.54 a | 4.35 a | 0.75 a | 0.51 a | 47.8 a |
(±0.19) | (±0.07) | (±0.04) | (±1.55) | (±0.33) | (±0.04) | (±0.05) | (±0.26) | (±0.3) | (±0.003) | (±0.01) | (±0.7) | |
FIT | 4.57 d | 0.73 b | 0.47 c | 51.55 a | 4.56 b,c | 0.79 c | 0.57 b | 50.58 a | 4.41 a | 0.74 a | 0.51 a | 47.5 a |
(±0.31) | (±0.03) | (±0.11) | (±0.67) | (±0.20) | (±0.01) | (±0.00) | (±0.09) | (±0.30) | (±0.03) | (±0.004) | (±0.15) | |
125% FIT | 4.44 c,d | 0.74 b | 0.47 c | 51.26 a | 5.14 c | 0.80 c | 0.58 b | 50.44 a | 4.62 a | 0.77 a | 0.53 a | 47.5 a |
(±0.33) | (±0.03) | (±0.08) | (±0.83) | (±0.31) | (±0.01) | (±0.02) | (±0.37) | (±0.53) | (±0.02) | (±0.05) | (±1.1) | |
Years X Treatments Interaction | * | * | * | NS |
GDD based (x = GDD °C) | DAP based (x = DAP) | |||
---|---|---|---|---|
Treatments | Equations | R2 | Equations | R2 |
Normalized difference vegetative index (NDVI) | ||||
25% FIT | y = 4 × 10−12x4 – 1 × 10−8x3 + 1 × 10−5x2 − 0.0057x + 1.0185 | 0.36 | y = 2 × 10−7x4 – 5 × 10−5x3 + 0.0042x2 − 0.1237x + 1.4368 | 0.41 |
50% FIT | y = 4 × 10−12x4 – 1 × 10−8x3 + 2 × 10−5x2 − 0.0064x + 1.0541 | 0.61 | y = 3 × 10−7x4 – 7 × 10−5x3 + 0.0051x2 − 0.1426x + 1.5432 | 0.69 |
75% FIT | y = 2 × 10−12x4 – 7 × 10−9x3 + 9 × 10−6x2 − 0.0032x + 0.5965 | 0.70 | y = 2 × 10−7x4 – 4 × 10−5x3 + 0.0034x2 − 0.0949x + 1.0537 | 0.77 |
FIT | y = 2 × 10−12x4 – 9 × 10−9x3 + 1 × 10−5x2 − 0.0034x + 0.5623 | 0.79 | y = 2 × 10−7x4 – 4 × 10−5x3 + 0.0035x2 − 0.0889x + 0.9026 | 0.84 |
125% FIT | y = 6 × 10−13x4 – 4 × 10−9x3 + 5 × 10−6x2 − 0.0014x + 0.2964 | 0.85 | y = 7 × 10−8x4 – 2 × 10−5x3 + 0.0018x2 − 0.0387x + 0.3915 | 0.89 |
Leaf area index (LAI) | ||||
25% FIT | y = −9 × 10−12x4 + 3 × 10−8x3 − 4 × 10−5x2 + 0.0267x − 3.8134 | 0.62 | y = −6 × 10−7x4 + 0.0001x3 − 0.0133x2 + 0.5692x − 6.6388 | 0.63 |
50% FIT | y = −3 × 10−11x4 + 8 × 10−8x3 − 9 × 10−5x2 + 0.0468x − 7.0413 | 0.87 | y = −2 × 10−6x4 + 0.0004x3 − 0.0307x2 + 1.15x − 13.708 | 0.92 |
75% FIT | y = −1 × 10−11x4 + 3 × 10−8x3 − 4 × 10−5x2 + 0.0231x − 3.2712 | 0.92 | y = −1 × 10−6x4 + 0.0003x3 − 0.0209x2 + 0.836x − 10.197 | 0.94 |
FIT | y = −1 × 10−11x4 + 3 × 10−8x3 − 3 × 10−5x2 + 0.0198x − 2.9948 | 0.94 | y = −1 × 10−6x4 + 0.0002x3 − 0.0165x2 + 0.7127x − 9.2136 | 0.96 |
125% FIT | y = −6 × 10−12x4 + 6 × 10−9x3 − 8 × 10−7x2 + 0.0059x − 0.5561 | 0.93 | y = −8 × 10−7x4 + 0.0001x3 − 0.0100x2 + 0.454x − 5.7071 | 0.93 |
Plant Height (m) | ||||
25% FIT | y = −6 × 10−7x2 + 0.0010x − 0.122 | 0.43 | y = −0.0001x2 + 0.0178x − 0.2117 | 0.48 |
50% FIT | y = −6 × 10−7x2 + 0.0011x − 0.1605 | 0.65 | y = −0.0001x2 + 0.0197x − 0.2624 | 0.72 |
75% FIT | y = −7 × 10−7x2 + 0.0013x − 0.194 | 0.70 | y = −0.0002x2 + 0.0221x − 0.3039 | 0.76 |
FIT | y = −7 × 10−7x2 + 0.0014x − 0.2577 | 0.82 | y = −0.0002x2 + 0.0245x − 0.3772 | 0.86 |
125% FIT | y = −7 × 10−7x2 + 0.0014x − 0.2425 | 0.80 | y = −0.0002x2 + 0.0247x − 0.3687 | 0.86 |
2017 | 2018 | 2019 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | SY | Pods Plant−1 | Seeds Pod−1 | SW (g) | PHI (%) | SY | Pods Plant−1 | Seeds Pod−1 | SW (g) | PHI (%) | SY | Pods Plant−1 | Seeds Pod−1 | SW (g) | PHI (%) |
(kg ha−1) | (kg ha−1) | (kg ha−1) | |||||||||||||
25% FIT | 264 a | 7 a | 2.1 a | 25 a | 72 a | 278 a | 4 a | 2.9 a | 28 a | 77 a | 1436 a | 10 a | 3.4 a | 30 a | 69 a |
(±94) | (±1.8) | (±0.2) | (±2.8) | (±0.8) | (±65) | (±0.4) | (±0.3) | (±1.8) | (±1.4) | (±61) | (±0.3) | (±0.2) | (±0.2) | (±12.5) | |
50% FIT | 1086 a,b | 13 b | 2.6 a,b | 27 a | 72 a | 1095 b | 9 a,b | 2.5 a,b | 33 b | 75 a | 2524 b | 12 a,b | 3.9 a,b | 33 a,b | 77 a |
(±36) | (±0.5) | (±0.4) | (±0.8) | (±1.7) | (±35) | (±3) | (±0.3) | (±0.6) | (±2.5) | (±46) | (±1.0) | (±0.4) | (±0.3) | (±1.6) | |
75% FIT | 2304 b,c | 14 b | 2.9 a,b | 34 c | 74 a | 2311 c | 13 b,c | 3.3 a,b,c | 37 c | 77 a | 3192 b,c | 14 a,b,c | 4 b | 37 b,c | 79 a |
(±608) | (±3) | (±0.3) | (±3) | (±2) | (±513) | (±4.5) | (±0.1) | (±0.8) | (±0.6) | (±407) | (±1.0) | (±0.1) | (±2.1) | (±2.0) | |
FIT | 3630 c | 17 b | 3.0 b | 37 c | 75 a | 3822 d | 17 c | 3.6 b,c | 40 c,d | 77 a | 3665 c | 17 c | 4.3 b | 38 c | 82 a |
(±719) | (±1.1) | (±0.2) | (±1.6) | (±2.8) | (±257) | (±1.4) | (±0.3) | (±0.4) | (±1.2) | (±109) | (±1.3) | (±0.1) | (±1.8) | (±1.8) | |
125% FIT | 3306 c | 17 b | 2.9 b | 36 c | 75 a | 3826 d | 16 b,c | 3.8 c | 40 d | 78 a | 3599 c | 16 b,c | 4 a,b | 38 c | 80 a |
(±1096) | (±2) | (±0.4) | (±2.3) | (±3.5) | (±289) | (±2) | (±0.4) | (±0.3) | (±0.8) | (±362) | (±3.5) | (±0.5) | (±2.0) | (±0.7) | |
Year X Treatments Interaction | * | NS | NS | NS | NS |
Dependent Variable (y) | Independent Variable (x) | Function | Pooled Model | R2 |
---|---|---|---|---|
SY | LAI | Linear | y = 1569x − 3911 | 0.74 |
NDVI | Exponential | y = 31.593e6.0001x | 0.86 | |
h | Linear | y = 9877.5x − 2124.1 | 0.58 | |
Pod Plant−1 | LAI | Linear | y = 4.5297x − 5.3845 | 0.62 |
NDVI | Exponential | y = 2.2688e2.4496x | 0.64 | |
h | Linear | y = 27.129x + 0.3639 | 0.42 | |
Seeds Pod−1 | LAI | Linear | y = 0.5762x + 0.9539 | 0.42 |
NDVI | Exponential | y = 1.5779e1.0454x | 0.47 | |
h | Linear | y = 4.6553x + 1.1307 | 0.52 | |
SW | LAI | Linear | y = 5.2942x + 12.875 | 0.65 |
NDVI | Exponential | y = 19.028e0.8485x | 0.60 | |
h | Linear | y = 33.892x + 18.588 | 0.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, A.; Sharma, V.; Heitholt, J. Dry Bean [Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate. Sustainability 2020, 12, 3851. https://doi.org/10.3390/su12093851
Rai A, Sharma V, Heitholt J. Dry Bean [Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate. Sustainability. 2020; 12(9):3851. https://doi.org/10.3390/su12093851
Chicago/Turabian StyleRai, Abhijit, Vivek Sharma, and Jim Heitholt. 2020. "Dry Bean [Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate" Sustainability 12, no. 9: 3851. https://doi.org/10.3390/su12093851
APA StyleRai, A., Sharma, V., & Heitholt, J. (2020). Dry Bean [Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate. Sustainability, 12(9), 3851. https://doi.org/10.3390/su12093851