Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review
Abstract
:1. Introduction
2. Potato Crop Water Use and Evapotranspiration
3. Water Management in Potato
3.1. Irrigation Techniques vs. Potato Growth and Yield
3.2. Impact of Irrigation Regime on Potato Growth and Yield
3.3. Potato Water Production Function
3.4. Potato Water Use Efficiency (WUE)
3.5. Impact of Irrigation on Diseases in Potatoes
3.6. Impact of Irrigation Regime on Potato Specific Gravity and Chemical Content of the Tubers
3.7. Impact of Irrigation Regime on the Potato Fries and Chips
3.8. Best Irrigation Management in Potatoes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 December 2020).
- United States Department of Agriculture (USDA). Potatoes 2019 Summary; USDA: Washington, DC, USA, 2020.
- Vreugdenhil, D.; Bradshaw, J.; Gebhardt, C.; Govers, F.; Mackerron, D.K.L.; Taylor, M.A.; Ross, H.A. Potato Biology and Biotechnology: Advances and Perspectives; Elsevier: Oxford, UK, 2011. [Google Scholar]
- FAO. Potato and Water Resources; Hidden Treasure: International Year of the Potato. 2008. Available online: http://www.potato2008.org/en/potato/water.html (accessed on 22 December 2020).
- CIP. Agricultural Research for Development: Potato Facts and Figures. 2013. Available online: http://cipotato.org/potato/facts (accessed on 22 December 2020).
- Yamaguchi, J.; Tanaka, A. Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 1990, 36, 483–493. [Google Scholar] [CrossRef]
- Iwama, K.; Hukushima, T.; Yoshimura, T.; Nakaseko, K. Influence of planting density on root growth and yield in potato. Jpn. J. Crop Sci. 1993, 62, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Opena, G.B.; Porter, G.A. Soil management and supplemental irrigation effects on potato: I. Root growth. Agron. J. 1999, 91, 426–431. [Google Scholar] [CrossRef]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manag. 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Stalham, M.A.; Allen, E.J.; Rosenfeld, A.B.; Herry, F.X. Effects of soil compaction in potato (Solanum tuberosum) crops. J. Agric. Sci. 2007, 145, 295–312. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.H.; Plauborg, F.; Andersen, M.N.; Sepaskhah, A.R.; Jensen, C.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Root distribution. Agric. Water Manag. 2011, 98, 1280–1290. [Google Scholar] [CrossRef]
- Quiroz, R.; Chujoy, E.; Mares, V. Potato. In Crop Yield Response to Water; FAO Irrig Drain Paper; Steduto, P., Hsiao, T., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; Volume 66, pp. 184–189. [Google Scholar]
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Nosalewicz, A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017, 63, 159–164. [Google Scholar]
- Deblonde, P.M.K.; Ledent, J.F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 2001, 14, 31–41. [Google Scholar] [CrossRef]
- Schittenhelm, S.; Sourell, H.; Lopmeier, F.J. Drought resistance of potato cultivars with contrasting canopy architecture. Eur. J. Agron. 2006, 24, 193–202. [Google Scholar] [CrossRef]
- Soltys-Kalina, D.; Plich, J.; Strzelczyk, D.; Sliwka, J.; Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed. Sci. 2016, 66, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Romero, A.P.; Alarcon, A.; Galeano, C. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017, 8, 1608. [Google Scholar] [CrossRef] [PubMed]
- Doorenbos, J.; Kassam, A.H. Yield response to water. In FAO Irrigation and Drainage Paper; No. 33; FAO: Rome, Italy, 1979; p. 193. [Google Scholar]
- Haverkort, A.J. Water Management in Potato Production (Technical Information Bulletin 15); International Potato Center (CIP): Lima, Peru, 1982. [Google Scholar]
- Dimitrov, S. Evapotranspiration of late potatoes. Field Crop Abst. 1989, r36, 252. [Google Scholar]
- Wolfe, R.R.; Goodenough, R.D.; Burke, J.F.; Wolfe, M.H. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann. Surg. 1983, 197, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Hane, D.C.; Pumphrey, F.V. Yield-evapotranspiration relationships and seasonal crop coefficients for frequently irrigated potatoes. Am. Potato J. 1984, 61, 661–668. [Google Scholar] [CrossRef]
- Sood, M.C.; Singh, N. Water management. In the Potato: Production and Utilization in Sub-Tropics; Khurana, S.M.P., Minhas, J.S., Pandey, S.K., Eds.; Mehta Publishers: New Dehli, India, 2003; pp. 111–112. [Google Scholar]
- Ortega, J.F.; de Juan, J.A.; Tarjuelo, J.M.; López, E. MOPECO: An economic optimization model for irrigation water management. Irrig. Sci. 2004, 23, 61–75. [Google Scholar] [CrossRef]
- Karam, F.; Amacha, N.; Fahed, S.; El Asmar, T.; Domínguez, A. Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications. Agric. Water Manag. 2014, 142, 144–151. [Google Scholar] [CrossRef]
- El-Abedin, Z.T.K.; Mattar, M.A.; Alazba, A.A.; Al-Ghobari, H.M. Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato. Sci. Hortic. 2017, 225, 525–532. [Google Scholar] [CrossRef]
- Paredes, P.; D’Agostino, D.; Assif, M.; Todorovic, M.; Pereira, L.S. Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach. Agric. Water Manag. 2018, 195, 11–24. [Google Scholar] [CrossRef]
- Chen, Y.; Chai, S.; Tian, H.; Chai, Y.; Li, Y.; Chang, L.; Cheng, H. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric. Water Manag. 2019, 211, 142–151. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; Lahmar, F. FAO-56 methodology for the stress coefficient evaluation under saline environment conditions: Validation on potato and broad bean crops. Agric. Water Manag. 2011, 98, 588–596. [Google Scholar] [CrossRef]
- Parent, A.C.; Anctil, F. Quantifying evapotranspiration of a rainfed potato crop in Southeastern Canada using eddy covariance techniques. Agric. Water Manag. 2012, 113, 45–56. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramírez, D.A.; Gutiérrez, R.; Mares, V.; Posadas, A.; Quiroz, R. Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Manag. 2013, 123, 65–70. [Google Scholar] [CrossRef]
- Fandika, I.R.; Kemp, P.D.; Millner, J.P.; Horne, D.; Roskruge, N. Irrigation and nitrogen effects on tuber yield and water use efficiency of heritage and modern potato cultivars. Agric. Water Manag. 2016, 170, 148–157. [Google Scholar] [CrossRef]
- Kiziloglu, F.M.; Sahin, U.; Tunc, T.; Diler, S. The effect of deficit irrigation on potato evapotranspiration and tuber yield under cool season and semiarid climatic conditions. J. Agron. 2006, 5, 284–288. [Google Scholar]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.C.; Carr, M.K.V. Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot dry climate. I. water use. Field Crops Res. 2002, 78, 51–64. [Google Scholar] [CrossRef]
- Erdem, T.; Erdem, Y.; Orta, H.; Okursoy, H. Water-yield relationships of potato under different irrigation methods and regimens. Sci. Agric. 2006, 63, 226–231. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response todifferent irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Shock, C.; Feibert, E.; Saunders, L. ‘Umatilla Russet’ and ‘Russet Legend’ potato yield and quality response to irrigation. Hortic. Sci. 2003, 38, 1117–1121. [Google Scholar] [CrossRef]
- Aksic, M.; Gudzic, S.; Deletić, N.; Gudzic, N.; Stojkovic, S.; Knezevic, J. Tuber yield and evapotranspiration of potato depending on soil matric potential. Bulg. J. Agric. Sci. 2014, 20, 122–126. [Google Scholar]
- Weatherhead, K.; Knox, J. Irrigation potatoes three trickle irrigation for potatoes. Irrig. News 1998, 27, 19–28. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Stachowski, P.; Sadan, H.A.; Prus, P.; Pal-Fam, F. Requirements and Effects of Surface Drip Irrigation of Mid-Early Potato Cultivar Courage on a Very Light Soil in Central Poland. Agronomy 2021, 11, 33. [Google Scholar] [CrossRef]
- Slatni, A.; Zayani, K.; Zairi, A.; Yacoubi, S.; Salvador, R.; Playán, E. Assessing alternate furrow strategies for potato at the Cherfech irrigation district of Tunisia. Biosyst. Eng. 2011, 108, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Wang, X.-X.; Zhang, R.; Gong, X.; Zhang, S.; Mares, V.; Gavilán, C.; Posadas, A.; Quiroz, R. Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Sci. Hortic. 2012, 134, 20–25. [Google Scholar] [CrossRef]
- Sarker, K.K.; Hossain, A.; Timsina, J.; Biswas, S.K.; Kundu, B.C.; Barman, A.; Murad, K.F.I.; Akter, F. Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system. Agric. Water Manag. 2019, 224, 105750. [Google Scholar] [CrossRef]
- Trout, T.J.; Kincaid, D.C.; Westermann, D.T. Comparison of Russet Burbank yield and quality under furrow and sprinkler irrigation. Am. Potato J. 1974, 71, 15–28. [Google Scholar] [CrossRef]
- Singh, G. A review of the soil-moisture relationship in potatoes. Am. Potato J. 1969, 46, 398–403. [Google Scholar] [CrossRef]
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G.; Qi, X.; et al. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water Manag. 2010, 98, 403–413. [Google Scholar] [CrossRef]
- Camargo, D.C.; Montoya, F.; Córcoles, J.I.; Ortega, J.F. Modeling the impacts of irrigation treatments on potato growth and development. Agric. Water Manag. 2015, 150, 119–128. [Google Scholar] [CrossRef]
- Karam, F.; Lahoud, R.; Masaad, R.; Stephan, C.; Rouphael, Y.; Colla, G. Yield and tuber quality of potassium treated potato under optimum irrigation conditions. Acta Hortic. 2005, 684, 103–108. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Ierna, A. Influence of irrigation levels on growth and yield of potato cv. Spunta. Potato Res. 1995, 38, 307–318. [Google Scholar] [CrossRef]
- Karafyllidis, D.I.; Stavropoulos, N.; Georgakis, D. The effect of water stress on the yielding capacity of potato crops and subsequent performance of seed tubers. Potato Res. 1996, 39, 153–163. [Google Scholar] [CrossRef]
- Iqbal, M.; Shah, S.M.; Mohammad, W.; Naway, H. Field response of potato subjected at different growth stages. In Crop Yield Response to Deficit Irrigation; Kirda, C., Moutonnet, P., Hera, C., Nielson, D.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 213–223. [Google Scholar]
- Kirda, C.R. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In Deficit Irrigation Practices; Water Reports 22; FAO, Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; pp. 3–10. [Google Scholar]
- Steyn, J.M.; Du Plessis, H.F.; Fourie, P.; Hammes, P.S. Yield response of potato genotypes to different soil water regimes in contrasting seasons of a subtropical climate. Potato Res. 1998, 41, 239–254. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric. Water Manag. 2003, 59, 49–66. [Google Scholar] [CrossRef]
- Lahlou, O.; Ledent, J.-F. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. Eur. J. Agron. 2005, 22, 159–173. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Timlin, D.J.; Reddy, V.R. Elevated carbon dioxide and waterstress effects on potato canopy gas exchange, water use, and productivity. Agric. For. Meteorol. 2008, 148, 1109–1122. [Google Scholar] [CrossRef]
- Kleinkopf, G.E. Potato. In Crop Water Relations; Teare, J.D., Peat, M.M., Eds.; Wiley and Sons: New York, NY, USA, 1983; pp. 287–305. [Google Scholar]
- Shock, C.C.; Zalewski, J.C.; Stieber, T.D.; Burnett, D.S. Impact of early-season water deficits on russet Burbank plant development, tuber yield and quality. Am. Potato J. 1992, 69, 793–803. [Google Scholar] [CrossRef]
- Cappaert, M.R.; Powelson, M.L.; Christensen, N.W.; Stevenson, W.R.; Rouse, D.I. Assessment of irrigation as a method of managing potato early dying. Phytopathology 1994, 84, 792–800. [Google Scholar] [CrossRef]
- Martin, M.W.; Miller, D.E. Variations in responses of potato germplasm to deficit irrigation as affected by soil texture. Am. Potato J. 1983, 60, 671–683. [Google Scholar] [CrossRef]
- Miller, D.E.; Martin, M.W. Effect of declining or interrupted irrigation on yield and quality of three potato cultivars grown on sandy soil. Am. Potato J. 1987, 64, 109–117. [Google Scholar] [CrossRef]
- Miller, D.E.; Martin, M.W. The effect of irrigation regime and subsoiling on yield and quality of three potato cultivars. Am. Potato J. 1986, 64, 17–25. [Google Scholar] [CrossRef]
- Eldredge, E.P.; Holmes, Z.A.; Mosley, A.R.; Shock, C.C.; Stieber, T.D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am. Potato J. 1996, 73, 517–530. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Potato yield and quality response to deficit irrigation. HortScience 1998, 33, 655–659. [Google Scholar] [CrossRef] [Green Version]
- Fabeiro, C.; de Santa Olalla, F.M.; de Juan, J.A. Yield and size of deficit irrigated potatoes. Agric. Water Manag. 2001, 48, 255–266. [Google Scholar] [CrossRef]
- Brocic, Z.; Jovanovic, Z.; Stikic, R.; Radovic, B.V.; Mojevic, M. Partial root drying: New approach for potato irrigation. Cereal Res. Commun. 2009, 37, 229–232. [Google Scholar]
- Yuan, B.-Z.; Nishiyama, S.; Kang, Y. Effect different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Miller, D.E.; Martin, M.W. Responses of three early potato cultivars to subsoiling and irrigation regime on a sandy soil. Am. Potato J. 1990, 67, 769–777. [Google Scholar] [CrossRef]
- Byrd, S.A.; Rowland, D.L.; Bennett, J.; Zotarelli, L.; Wright, D.; Alva, A.; Nordgaard, J. Reductions in a commercial potato irrigation schedule during tuberbulking in Florida: Physiological, yield, and quality effects. J. Crop Improv. 2014, 28, 660–679. [Google Scholar] [CrossRef]
- Wang, X.; Guo, T.; Wang, Y.; Xing, Y.; Wang, Y.; He, X. Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA. Agric. Water Manag. 2020, 237, 106180. [Google Scholar] [CrossRef]
- Elhani, S.; Haddadi, M.; Csákvári, E.; Zantar, S.; Hamim, A.; Villányi, V.; Douaik, A.; Bánfalvi, Z. Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions. Agric. Water Manag. 2019, 224, 105745. [Google Scholar] [CrossRef]
- Islam, T.; Sarker, H.; Alam, J.; Rashid, H.U. Water use and yield relationships of irrigated potato. Agric. Water Manag. 1990, 18, 173–179. [Google Scholar] [CrossRef]
- Unlu, M.; Kanber, R.; Senyigit, U.; Onaran, H.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in Middle Anatolian Region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Ayas, S.; Korukçu, A. Water-yield relationships in deficit irrigated potato. J. Agric. Fac. Uludag Univ. 2010, 24, 23–36. [Google Scholar]
- Cantore, V.; Yamaç, S.S.; Albrizio, R.; Stellacci, A.M.; Todorovic, M. Yield and water use efficiency of early potato grown under different irrigation regimes. Int. J. Plant Prod. 2014, 8, 409–428. [Google Scholar]
- Ross, C.W. The effect of subsoiling and irrigation on potato production. Soil Tillage Res. 2006, 7, 315–325. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- English, M.J. Deficit irrigation. I: Analytical framework. J. Am. Soc. Civil Eng. 1990, 116, 399–412. [Google Scholar] [CrossRef]
- English, M.J.; Musick, J.T.; Murty, V.V.N. Deficit irrigation. In Management of Farm Irrigation Systems; Hoffman, G.J., Soloman, K.H., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; pp. 631–663. [Google Scholar]
- DaCosta, M.; Huang, B. Deficit irrigation effects on water use characteristics of Bent grass species. Crop Sci. 2006, 46, 1779–1786. [Google Scholar] [CrossRef]
- Saeed, H.; Grove, I.G.; Kettlewell, P.S.; Hall, N.W. Potential of partial root zone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Ann. Appl. Biol. 2008, 152, 71–80. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production function, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Trans. ASABE 2013, 56, 273–293. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Gas exchange and xylem [ABA]. Agric. Water Manag. 2010, 97, 1486–1494. [Google Scholar] [CrossRef]
- Trebejo, I.; Midmore, D.J. Effect of water stress on potato growth, yield and water use in a hot and a cool tropical climate. J. Agric. Sci. 1990, 114, 321–334. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Agharezaee, M.; Kamgar-Haghighib, A.A.; Sepaskhah, A.R. Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars. Agric. Water Manag. 2014, 134, 126–136. [Google Scholar] [CrossRef]
- Carli, C.; Yuldashev, F.; Khalikov, D.; Condori, B.; Mares, V.; Monneveux, P. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: A field and modeling perspective. Field Crops Res. 2014, 163, 90–99. [Google Scholar] [CrossRef]
- Liu, F.; Shahnazari, A.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signaling, leaf gas exchange, and water use efficiency. J. Exp. Bot. 2016, 57, 3727–3735. [Google Scholar] [CrossRef] [Green Version]
- Kriedmann, P.E.; Goodwin, I. Regulated Deficit Irrigation and Partial Root-Zone Drying; Irrigation Insights No. 4; Land and Water Australia: Canberra, Australia, 2003; p. 102.
- Saeed, H.; Grove, I.G.; Kettlewell, P.S.; Hall, N.W. Potato root and shoot growth under different water management strategies. Asp. Appl. Biol. 2005, 73, 85–91. [Google Scholar]
- Sepaskhah, A.R.; Parand, A.R. Effects of alternate furrow irrigation with supplemental every-furrow irrigation at different growth stages on the yield of maize (Zea mays L.). Plant Prod. Sci. 2006, 9, 415–421. [Google Scholar] [CrossRef]
- Shahnazari, A.; Ahmadi, S.H.; Laerke, P.E.; Liu, F.; Plauborg, F.; Jacobsen, S.E.; Jensen, C.R.; Andersen, M.N. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes. Eur. J. Agron. 2008, 28, 65–73. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Stikic, R.; Vucelic-Radovic, B.; Paukovic, M.; Brocic, Z.; Matovic, G.; Rovcanin, S.; Mojevic, M. Partial root-zone drying increases WUE, N and antioxidant content in field potatoes. Eur. J. Agron. 2010, 33, 124–131. [Google Scholar] [CrossRef]
- Liu, F.; Shahnazari, A.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic. 2006, 109, 113–117. [Google Scholar] [CrossRef]
- Adams, S.S.; Stevenson, W.R. Water management, disease development, and potato production. Am. Potato J. 1990, 67, 3–11. [Google Scholar] [CrossRef]
- Nuñez, J.; Haviland, D.R.; Aegerter, B.J.; Baldwin, R.A.; Westerdahl, B.B.; Trumble, J.T.; Wilson, R.G. Revised continuously. In UC IPM Pest Management Guidelines: Potato; UC ANR Publication 3463: Oakland, CA, USA, 2019. [Google Scholar]
- Menzies, J.D. Plant diseases related to irrigation. In Irrigation of Agricultural Lands; No. 11 in the series Agronomy; Hagan, R.M., Ed.; American Society of Agronomy: Madison, WI, USA, 1967; pp. 1058–1964. [Google Scholar]
- Van Loon, C.D. The effect of water stress on potato growth, development, and yield. Am. Potato J. 1981, 58, 51–70. [Google Scholar] [CrossRef]
- Rupp, J.; Jacobsen, B. Bacterial and Fungal Diseases of Potato and Their Management; Extension Bulletin; Montana State University: Bozeman, MT, USA, 2017; Available online: http://www.montanaspud.org/documents/extension-information/potatoes12-27-3.pdf (accessed on 22 December 2020).
- Olanya, O.M.; Starr, G.C.; Honeycutt, C.W.; Griffin, T.S.; Lambert, D.H. Microclimate and potential for late blight development in irrigated potato. Crop Prot. 2007, 26, 1412–1421. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; Halloran, J.M.; He, Z. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 2011, 101, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Lapwood, D.H.; Wellings, L.W.; Hawkins, J.H. Irrigation as a practical means to control potato common scab (Streptomyces scabies): Final experiment and conclusions. Plant Pathol. 1973, 22, 35–41. [Google Scholar] [CrossRef]
- Davis, J.R.; McMaster, G.M.; Callihan, R.H.; Nissley, F.H.; Pavek, J.J. Influence of soil moisture and fungicide treatments on common scab and mineral content of potatoes. Phytopathology 1976, 66, 228–233. [Google Scholar] [CrossRef]
- Davis, J.R.; Everson, D.O. Relation of Verticillium ahlia in soil and potato tissue, irrigation method and N-fertility to Verticillium wilt of potato. Phytopathology 1986, 76, 730–736. [Google Scholar] [CrossRef]
- Munyaneza, J.E.; Goolsby, J.A.; Crosslin, J.M.; Upton, J.E. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtrop. Plant. Sci. 2007, 59, 30–37. [Google Scholar]
- Sengoda, V.G.; Munyaneza, J.E.; Crosslin, J.M.; Buchman, J.L.; Pappu, H.R. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. Am. J. Potato Res. 2010, 87, 41–49. [Google Scholar] [CrossRef]
- Crosslin, J.M.; Hamm, P.B.; Eggers, J.E.; Rondon, S.I.; Sengoda, V.G.; Munyaneza, J.E. First report of zebrachip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington. Plant. Dis. 2012, 96, 452. [Google Scholar] [CrossRef] [PubMed]
- Vereijssen, J.; Grant, R.G.; Phyllis, G.W. Bactericera cockerelli (Hemiptera: Triozidae) and Candidatus Liberibacter solanacearum in Potatoes in New Zealand: Biology, Transmission, and Implications for Management. J. Integr. Pest. Manag. 2018, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; Higgins, C.; Begay, S.; Koudahe, K.; Allen, S.; Lombard, K.; O’Neill, M. Seasonal occurrence of potato psyllid (Bactericera cockerelli) and risk of zebra chip pathogen (Candidatus liberibacter solanacearum) in Northwestern New Mexico. Insects 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Yi Xu, Y.; Gray, S.M. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 2020, 19, 367–375. [Google Scholar]
- Haviland, D.R.; Trumble, J.T. UC IPM Pest Management Guidelines: Potato; UC ANR Publication 3463: Oakland, CA, USA, 2020. [Google Scholar]
- Van Hoof, H.A. Aphid vectors of potato virus Y. Neth. J. Plant Pathol. 1980, 86, 159–162. [Google Scholar] [CrossRef]
- Kim, J.; Cha, D.J.; Kwon., M.; Maharjan, R. Potato virus Y (PVY) detection in a single aphid by one-step RT-PCR with boiling technique. Entomol. Res. 2016, 46, 278–285. [Google Scholar] [CrossRef]
- Schreiber, A.; Jensen, A.; Rondon, S.; Wenninger, E.; Reitz, S.; Waters, T. Integrated Pest Management Guidelines for Insects and Mites in Idaho, Oregon and Washington Potatoes; Northwest Insect Management Guidelines; Northwest Potato Research Consortium location: Lakeview, OR, USA, 2019; p. 75. [Google Scholar]
- Rondon, S.I. Pest Management Strategies for Potato Insect Pests in the Pacific Northwest of the United States, Insecticides—Pest Engineering; Perveen, F., Ed.; InTech: London, UK, 2012; ISBN 978-953-307-895-3. [Google Scholar]
- Storch, R.H.; Frank, J.A.; Manzer, F.E. Fungi associated with Collembola and mites isolated from scabby potatoes. Am. Potato J. 1978, 55, 197–201. [Google Scholar] [CrossRef]
- Meisner, J.; Ascher, K.R.S.; Lavie, D. Factors influencing the attraction to the potato tuber moth, Gnorimoschema operculella Zeller. J. Appl. Entomol. 1974, 77, 179–189. [Google Scholar]
- Foot, M.A. Bionomics of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) at Pukekohe. N. Zeal. J. Zool. 1979, 6, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Rondon, M.A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Clough, G.H.; Debano, S.J.; Hamm, P.B. ‘Reducing Potato Tuber Moth Damage with Cultural Practices and Pesticide Treatments’. In Integrated Pest Management for the Potato Tuber Moth, Phthorimaea operculella Zeller—A Potato Pest of Global Importance; Tropical Agriculture 20, Advances in Crop Research 10; Kroschel, J., Lacey, L., Eds.; Margraf Publishers: Weikersheim, Germany, 2008; pp. 101–109. [Google Scholar]
- Jensen, T.H.; Boulay, J.; Olesen, J.R.; Colin, J.; Weyler, M.; Domenico Libri, D. Modulation of Transcription Affects mRNP Quality. Mol. Cell. 2004, 16, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Hang, A.N.; Miller, D.E. Yield and physiological responses of potatoes to deficit, high frequency sprinkler irrigation. Agron. J. 1986, 78, 436–440. [Google Scholar] [CrossRef]
- Waddell, J.T.; Gupta, S.C.; Moncrief, J.F.; Rosen, C.J.; Steele, D.D. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agron. J. 1999, 91, 991–997. [Google Scholar] [CrossRef]
- Porter, G.A.; Opena, G.B.; Bradbury, W.B.; McBurnie, J.C.; Sisson, J.A. Soil management and supplemental irrigation effects on potato. I. Soil properties, tuber yield, and quality. Agron. J. 1999, 91, 416–425. [Google Scholar] [CrossRef]
- Drewitt, E.G. The Effect of Irrigation on the Yield and Quality of Potatoes; Technical Report; Winchmore Irrig.: Borehamwood, UK, 1970; p. 29. [Google Scholar]
- Harris, P. The Potato Crop, 2nd ed.; Chapman & Hall: London, UK, 1992; ISBN 0 412 29640 3. [Google Scholar]
- Peterson, L.E.; Weigle, J.L. Varietal Response of Potatoes to Air Conditioning Irrigation. Am. Potato J. 1970, 47, 94–98. [Google Scholar] [CrossRef]
- Silva, G.H.; Chase, R.W.; Hammerschmidt, R.; Vitosh, M.L.; Kitchen, R.B. Irrigation, nitrogen and gypsum effects on specific gravity and internal defects of Atlantic potatoes. Am. Potato J. 1991, 68, 751–765. [Google Scholar] [CrossRef]
- Johnson, D.A.; Martin, M.; Cummings, T.F. Effect of chemical defoliation, irrigation water, and dis-tance from the pivot on late blight tuber rot in center-pivot irrigated potatoes in the Columbia Basin. Plant Dis. 2003, 87, 977–982. [Google Scholar] [CrossRef]
- Kempenaar, C.; Struik, P.C. The canon of potato science: Haulm killing. Potato Res. 2007, 50, 341–345. [Google Scholar] [CrossRef]
- Smith, O. Effect of cultural and environmental conditions on pota- toes for processing. In Potato Processing, 4th ed.; Potato after-cooking darkening; Talburt, W.F., Smith, O., Eds.; Van Nostrand Reihold Company, Inc.: New York, NY, USA, 1987; pp. 108–110. Available online: https://www.researchgate.net/publication/225720033_Potato_after-cooking_darkening (accessed on 5 December 2020).
- Davies, H.V.; Oparka, K.J. Hexose metabolism in developing tubers of potato (Solanum tuberosum L. ) cv Maris Piper. J. Plant Physiol. 1985, 119, 311–316. [Google Scholar]
- Battilani, A.; Jensen, C.R.; Liu, F.; Plauborg, F.; Andersen, M.N.; Solimando, D. Partial root-zone drying (PRD) feasibility on potato in a sub-humid climate. Acta Hortic. 2014, 1038, 487–494. [Google Scholar] [CrossRef]
- Wegener, C.B.; Jürgens, H.; Jansen, G. Drought stress affects nutritional and bioactive compounds in potatoes (Solanum tuberosum L.) relevant to human health. Funct. Food Health Dis. 2017, 7, 17–35. [Google Scholar] [CrossRef]
- André, C.M.; Schafleitner, R.; Legay, S.; Lefèvre, I.; Aliaga, C.A.A.; Nomberto, G.; Hoffmann, L.; Hausman, J.F.; Larondelle, Y.; Evers, D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 2009, 70, 1107–1116. [Google Scholar] [CrossRef]
- Muttucumaru, N.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Halford, N.G. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. J. Agric. Food Chem. 2015, 63, 2566–2575. [Google Scholar] [CrossRef]
- Knorr, D. Protein Quality of the Potato and Potato Protein Concentrates. Lebensm.-Wiss. Technol. 1978, 11, 109–115. [Google Scholar]
- He, M.; Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, X.; Liu, F. Effect of irrigation regimes and phosphorus rates on water and phosphorus use efficiencies in potato. Sci. Hortic. 2015, 190, 64–69. [Google Scholar] [CrossRef]
- Hu, G.; Chen, J.; Gao, J. Preparation and characteristics of oxidized potato starch films. Carbohydr. Polym. 2009, 76, 291–298. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Hejtmánková, K.; Pazderů, K.; Čížek, M.; Dvořák, P. Effect of natural and growing conditions on the content of phenolics in potatoes with different flesh colour. Plant Soil Environ. 2010, 56, 368–374. [Google Scholar] [CrossRef]
- Everson, D.O.; Austin, J.; Romanko, R.R.; Painter, C.; Hammons, L.; Walz, A.; Muneta, P.; Nielsen, N.; Gross, D.; Jaeger, J.; et al. Translucent ends in Potatoes in Southwestern Idaho; Idaho. Agricultural Research Progress Report No. 170; University of Idaho Research and Extension Center: Aberdeen, ID, USA, 1973. [Google Scholar]
- Hiller, L.K.; Thornton, R.E. Management of physiological disorders. In Potato Health Management; Rowe, R.C., Ed.; APS: St. Paul, MN, USA, 1993; pp. 87–94. [Google Scholar]
- Kleinkopf, G.E. Translucent end of potatoes. Proc. Univ. Idaho Potato Sch. 1976, 8, 51–61. [Google Scholar]
- Kleinkopf, G.E. Translucent end of potatoes. University of Idaho, Cooperative Extension Service, Agricultural Experiment Station, Current Information Series No.488; National Agriculture Library: Beltsville, MA, USA, 1979; 4p.
- Nielsen, L.W.; Sparks, W.C. Bottleneck Tubers and Jelly-end Rot in the Russet Burbank Potato; Research Bulletin; University of Idaho Agricultural Experiment Station: Parma, Italy, 1953. [Google Scholar]
- Thompson, A.L.; Love, S.L.; Sowokinos, J.R.; Thornton, M.K.; Shock, C.C. Review of the sugar end disorder in potato (Solanum tuberosum, L.). Am. J. Potato Res. 2008, 85, 375–386. [Google Scholar] [CrossRef]
- Iritani, W.M. Growth and preharvest stress and processing quality of potatoes. Am. Potato J. 1981, 58, 71–80. [Google Scholar] [CrossRef]
- Iritani, W.M.; Weller, L.D. Sugar Development in Potatoes; Cooperative Extension; Washington State University: Pullman, WA, USA, 1980. [Google Scholar]
- Kincaid, D.C.; Westermann, D.T.; Trout, T.J. Irrigation and soil temperature effects on Russet Burbank quality. Am. Potato J. 1993, 70, 711–723. [Google Scholar] [CrossRef]
- Shock, C.C.; Holmes, Z.A.; Stieber, T.D.; Eldredge, E.P.; Zhang, P. The effect of timed water stress on quality, total solids and reducing sugar content of potatoes. Am. Potato J. 1993, 70, 227–241. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Cruz de Carvalho, M.H. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Wegener, C.B.; Jansen, G.; Jürgens, H.U. Bioactive compounds in potatoes: Accumulation under drought stress conditions. Funct. Food Health Dis. 2015, 5, 108–116. [Google Scholar] [CrossRef]
- Drapal, M.; Farfan-Vignolo, E.R.; Gutierrez, O.R.; Bonierbale, M.; Mihovilovich, E.; Fraser, P.D. Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones. Phytochemistry 2017, 135, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Nadler, A.; Heuer, B. Effect of saline irrigation and water deficit on tuber quality. Potato Res. 1995, 38, 119–123. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yuet, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Gong, H.; Zhu, X.; Chen, K.; Wang, S.; Zhang, C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005, 169, 313–321. [Google Scholar] [CrossRef]
- Watkinson, J.I.; Hendricks, L.; Sioson, A.A.; Heath, L.S.; Bohnert, H.J.; Grene, R. Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol. Biochem. 2008, 46, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Crusciol, C.A.C.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P.P. Effects of Silicon and Drought Stress on Tuber Yield and Leaf Biochemical Characteristics in Potato. Crop Sci. 2009, 49, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, H.; Kurowsky, C.; Horn, R.; Erban, A.; Seddig, S.; Rudack, K.; Fischer, A.; Walther, D.; Zuther, A.; Köhl, K.; et al. The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ. 2016, 39, 2370–2389. [Google Scholar] [CrossRef]
- Rykaczewska, K. Impact of heat and drought stresses on size and quality of the potato yield. Plant Soil Environ. 2017, 63, 40–46. [Google Scholar]
- Schafleitner, R.; Gutierrez, R.O.; Gaudin, A.; Alvarado Aliaga, C.A.; Nomberto Martinez, G.; Tincopa Marca, L.R.; Avila Bolivar, L.; Mendiburu Delgado, F.; Simon, R.; Bonierbale, M. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol. Biochem. 2007, 45, 673–690. [Google Scholar] [CrossRef]
- Vasquez-Robinet, C.; Mane, S.P.; Ulanov, A.V.; Watkinson, J.; Stromberg, V.K.; De Koeyer, D.; Schafleitner, R.; Willmot, D.B.; Bonierbale, M.; Bohnert, H.J.; et al. Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 2008, 59, 2109–2123. [Google Scholar] [CrossRef] [Green Version]
- Evers, D.; Lefevre, I.; Legay, S.; Lamoureux, D.; Hausman, J.F.; Rosales, R.O.; Marca, L.R.; Hoffmann, L.; Bonierbale, M.; Schafleitner, R. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Expt. Bot. 2010, 61, 2327–2343. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Koizumi, R.; Itoyama, R.; Ichisawa, M.; Negishi, J.; Sakuma, R.; Furusho, T.; Sagane, Y.; Takano, K. Free Amino Acids in Potato (Solanum tuberosum) May Cause Egumi-Taste in Food Products. Potato Res. 2019, 62, 305–314. [Google Scholar] [CrossRef]
- Feibert, E.B.G.; Shock, C.C.; Saunders, L.D. Nitrogen fertilizer requirements of potato using carefully scheduled sprinkler irrigation. HortScience 1998, 33, 262–265. [Google Scholar]
- Thornton, R.E.; Iritani, W.M. Sugar end potatoes. Proc. Univ. Ida. Winter Comm. Sch. 1986, 18, 202–210. [Google Scholar]
- Lewis, W.M. Nitrogen and phosphorus runoff losses from a nutrient-poor tropical moist forest. Ecology 1986, 67, 1275–1282. [Google Scholar] [CrossRef]
- Shimshi, D.; Shalhevet, J.; Meir, T. Irrigation regime effects on some physiological responses of potato. Agron. J. 1983, 75, 262–267. [Google Scholar] [CrossRef]
- Shock, C.C.; Pereira, A.B.; Eldredge, E.P. Irrigation best management practices for potato. Am. J. Potato Res. 2007, 84, 29–37. [Google Scholar] [CrossRef]
- Alle Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration. Guideline for Computing Crop Requirements; FAO-Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of groundcover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; López-Urrea, R.; Hunsaker, D.J.; Mota, M.; Shad, Z.M. Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
Locations | Seasonal Precipitation (mm) | Watering Regime | Irrigation Amount (mm) | Seasonal Water Use (mm) | Irrigation Method | Seasonal ETc (mm) | Potato Cultivar | Reference |
---|---|---|---|---|---|---|---|---|
Oregon | 649 | Sprinkler irrigation | 300–655.1 | Russet Burbank | Hane and Pumphrey [22] | |||
India | 350–650 | Sood and Sing [23] | ||||||
Lebanon | 562.9–638.3 | Drip irrigation | 490–622 | Agria | Karam et al. [25] | |||
Turkey | 142–512 | Irrigated | 88 to 302 | 244–780 | Drip irrigation | 166–473 | Marfona | Onder et al. [9] |
Saudi Arabia | Irrigated | 783–1505 | 783–1505 | Drip irrigation | El-Abedin et al. [26] | |||
Italy | 181–278 | Irrigated | 118.5–330 | 299–608 | Drip irrigation | 295–484 | Spunta | Paredes et al. [27] |
Italy | 171–282 | Rainfed | 186–219 | Spunta | Paredes et al. [27] | |||
Italy | Irrigated | 413.2 ± 15 | Drip irrigation | 322.2–447.9 | Spunta | Katerji et al. [29] | ||
Canada | 350.6 | Rainfed | 331.5 | Reba | Parent and Anctil [30] | |||
Peru | Desert with 23 mm | Irrigated | 102.3–222.5 | Furrow | UNICA | Yactayo et al. [31] | ||
New Zealand | 294.6–421.6 | Irrigated | 189.4–196.4 | 491–550 | Sprinkler irrigation | 491–611 | Agria, Moonlight, Moe Moe, Tutaekuri | Fandika et al. [32] |
New Zealand | Rainfed | 491–550 | Fandika et al. [32] | |||||
China | 150.9–208.2 | Rainfed | 150.9–208.2 | 216.5 to 249.3 | Kexin 1 | Chen et al. [28] | ||
Turkey | 59.3–156.7 | Rainfed | 195.2 | 167.7–222.6 | Kiziloglu et al. [33] | |||
Turkey | 59.3–156.8 | Irrigated | 445.2 | Surface irrigation | up to 475.2 | Granola | Kiziloglu et al. [33] | |
Iraq | 7.4 | 300–447 | 307.4–455.4 | Furrow & drip irrigation | 375.1–511.4 | Bowren | Ati et al. [34] | |
Portugal | - | - | 150 to 550 | Desirée | Ferreira and Carr [35] | |||
Turkey | 50–111 | Irrigated | 293–675 | 404–626 | Furrow & drip irrigation | 464–683 | Erdem et al. [36] | |
Italy | 170–196 | Irrigated | 25–191 | 195–382 | Drip irrigation | 155–448 | Spunta | Ierna and Mauromicale [37] |
Ontario, Oregon | Irrigated | 368–588 | 368–589 | Sprinkler irrigation | - | Russet | Shock et al. [38], | |
Serbia | 222.7–231.2 | Irrigated | 175–278 | 39,717–509.2 | Drip irrigation | 449.2–522.1 | Kennebec | Aksic et al. [39] |
Serbia | 222.7–231.3 | Rainfed | 222.7–231.3 | - | 288.1–294.4 | Kennebec | Aksic et al. [39] |
Disease | Pathogen | Favorable Conditions | Irrigation Practices to Reduce the Diseases | Reference |
---|---|---|---|---|
fungal and bacterial folial diseases. | Fungi and bacteria | High-frequency sprinkler irrigation | Less frequent high rate irrigation and early day irrigation | [100] |
bacterial soft rot or black leg | Erwinia carotovora | Irrigation during Planting -sprouting stage | No irrigation during Planting-sprouting stage | [101] |
stem and stolon canker | Rhizoctonia solani | [101] | ||
aerial stem rot | Phytophthora nicotianae, Pectobacterium carotovorum, Pectobacterium atrosepticum, Dickeya dianthicola | Sprinkler over-irrigation, dense canopies, excessive nitrogen fertilization | Avoid over-irrigation, use less frequent irrigation, with longer durations. Early day irrigation | [102] |
Potato comment scab | Streptomyces scabies | over-irrigation | Soil moisture content > 90% total soil available water during 6 to 9 weeks | [102] |
Ring rot | Clavibacter michiganensis | Drought and heat stress | Keep surfaces wet | [102] |
Alternaria brown spot | Alternaria alternata | Overhead irrigation | Avoid irrigation in cool, cloudy conditions | [102] |
Early blight | Alternaria solani | Overirrigation | Avoid over-irrigation, allow leave to fully dry | [102] |
Late blight | Phytopthora infestans | Overhead irrigation during | Monitor irrigation so that leaves dry during the day, avoid excessive fertilization | [102,103] |
Potato back | Rhizoctonia solani | Irrigated cropping | regulated deficit irrigation | [104] |
Common scab | Streptomyces scabiei | Irrigated cropping | Safe deficit irrigation, irrigation during the 6 weeks following tuber initiation | [104,105,106] |
Verticillium wilt | Verticillium dahliae | Furrow irrigation | Sprinkler irrigation, irrigation management prior to tuber initiation) | [107] |
Zebra chip | Candidatus Liberibacter solanacearum | Bactericera cockerelli | Stop irrigation for leaf dehydration and desiccation | [108,109,110,111,112] |
PVY | Potato virus Y | Myzus persicae, Rhopalosiphum padi, Aphis fabae | Stop irrigation to allow slow dehydration of potato foliage and desiccation | [113,114,115,116,117] |
Tetranychus urticae, Polyphagotarsonemus latus | Drought and heat stress (temperature > 30 °C) | Sprinkler irrigation helps to limit mite damage | [118] | |
scab in potatoes associated with mites | Streptomyces spp | Drought and heat stress (temperature > 30 °C) | Sprinkler irrigation helps to limit mite damage | [119] |
Quality Index | Trend | Cause | Best Practices | Reference |
---|---|---|---|---|
Specific gravity | Decrease | Four-day irrigation scheduling | Daily irrigation | Miller and Martin [69] |
Specific gravity | Decrease | High irrigation rate | Meet crop ETc | Yuan et al. [68] |
Specific gravity | Meet crop ETc | [124] | ||
Specific gravity | Decrease | Deficit irrigation | Meet crop ETc | Hang and Miller [125] |
Specific gravity | Decrease | Deficit irrigation | Meet crop ETc | Shock et al. [65] |
Specific gravity | Decrease | Drought | Meet crop ETc | Waddell et al. [126] |
Specific gravity | Decrease | Increasing irrigation | Meet crop ET | Poter et al. [127] |
Specific gravity | Increase | High irrig. frequency | Drewitt [128] | |
Specific gravity | Decrease | Continuous late irrigation | Reduce irrigation frequency late season | [129,131] |
Specific gravity | Increase | Mist irrigation | Peterson and Weigle [130] | |
Specific gravity | Decrease | Desiccation after wine kill | Light irrigation after Wine kill | [132,133] |
Sugar content | Reduce | PRZDI | Meet crop ETc | Jovanovic et al. [96] |
Sugar content | Reduce | Alternate Furrow | Every furrow | Sarker et al. [44] |
Sugar content | Increase | Drought | Eldredge et al. [64] | |
Sugar content | Decrease | Drought | Meet crop ETc | Elhani et al. [72] |
Sugar content | Decrease | Deficit irrigation | PRZDI | Battilani et al. [136] |
Metabolite Mannitol content | Increase | Deficit irrigation | Meet crop ETc | Elhani et al. [72] |
Sugar contents | Decrease | Water stress | Meet crop ETc | [72,137] |
Sugar Ccontent | Inconsistent | genotype/cultivar dependent | [138,139] | |
Protein content | Decrease | Drought | Meet crop ETc | [141]. |
Protein content | Increase | PRZDI | [47,72,142,143] | |
Polyphenols | Increase | Drought | Meet crop ETc | [72,144,145] |
Sugar end/called dark ends | Increase | Heat, drought | Meet crop ETc | [59,146,147,148,149,150,151,152,153,154] |
Sucrose | Increase | Water stress | Meet crop ETc | Thompson et al. [150] |
phenyl-propanoids | Increase | Drought | Meet crop ETc | [155,156,157,158] |
Sugar end/called dark ends | Increase | Excessive nitrogen fertilizer | Meet crop need | [155,156] |
Sugar end/called dark ends | Increase | Inadequate phosphorus fertilizer | Meet crop need | [157] |
Stem end | Significant | Water stress | Meet crop ETc | Eldredge et al. [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review. Sustainability 2021, 13, 1504. https://doi.org/10.3390/su13031504
Djaman K, Irmak S, Koudahe K, Allen S. Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review. Sustainability. 2021; 13(3):1504. https://doi.org/10.3390/su13031504
Chicago/Turabian StyleDjaman, Koffi, Suat Irmak, Komlan Koudahe, and Samuel Allen. 2021. "Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review" Sustainability 13, no. 3: 1504. https://doi.org/10.3390/su13031504
APA StyleDjaman, K., Irmak, S., Koudahe, K., & Allen, S. (2021). Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review. Sustainability, 13(3), 1504. https://doi.org/10.3390/su13031504