Towards Improved Circular Economy and Resource Security in South Korea
Abstract
:1. Introduction
2. Overview of Current Status of Korea’s Critical Mineral Resources and Challenges
2.1. Overview
2.2. Classification of Critical Minerals or Critical Raw Materials
3. Recent Developments of Korea’s Circular Economy Law and Policy
3.1. The Framework Act on Resources Circulation
3.2. First Master Plan on Resource Circulation (2018–2027)
4. Towards Achieving Greater Resource Security: The Master Plan on Resource Development (2020–2029)
5. Renewable Energy and Critical Raw Materials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Hayes, S.M.; MaCullough, E.A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 2018, 59, 192–199. [Google Scholar] [CrossRef]
- Mancini, L.; Benini, L.; Sala, S. Characterization of raw materials based on supply risk indicators for Europe. Int. J. Life Cycle Assess. 2018, 23, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Stuermer, M. International Raw Materials Boom. A Challenge for Multilateral Trade Policy. Int. Politics Soc. 2008, 2, 126–139. [Google Scholar]
- U.S. Energy Information Administration. Country Analysis Brief: South Korea. 2018. Available online: https://www.eia.gov/international/content/analysis/countries_long/South_Korea/south_korea.pdf (accessed on 27 October 2020).
- Kim, J. The Formulation of Korea’s Resource Policy: Resource Diplomacy, Public-Private Consortium and International Agreements. Asian J. WTO Int. Health Law Policy 2014, 9, 287–329. [Google Scholar]
- Hong, J.H.; Kim, J.; Son, W.; Shin, H.; Kim, N.; Lee, W.K.; Kim, J. Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system. Energy Policy 2019, 127, 425–437. [Google Scholar] [CrossRef]
- Noh, C.; Kim, I.; Jang, W.; Kim, C. Recent Trends in Renewable Energy Resources for Power Generation in the Republic of Korea. Resources 2015, 4, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.T. Digital Transformation Trends of the Energy and Mineral Resources Development Industries in the Era of the Fourth Industrial Revolution. J. Korean Soc. Miner. Energy Resour. Eng. 2019, 56, 514–528. (In Korean) [Google Scholar] [CrossRef]
- Kim, K.-H. Trends in Rare Metals Trade and Implications; Trade Focus; Institute for International Trade: Seoul, Korea, 2018. (In Korean) [Google Scholar]
- Hilpert, H.G.; Mildner, S.-A. Fragmentation or Cooperation in Global Resource Governance? A Comparative Analysis of the Raw Materials Strategies of the G20; SWP Research Paper: Berlin, Germany, 2013; pp. 131–136. [Google Scholar]
- Claxton, J.M.; Nottage, L.; Williams, B. Litigating, Arbitrating and Mediating Japan–Korea Trade and Investment Tensions. J. World Trade 2020, 54, 591–614. [Google Scholar]
- Jeon, H.-S.; Baek, S.-H.; Kim, S.-M.; Go, B.-H. Status of Reserves and Development Technology of Rare Earth Metals in Korea. J. Korean Soc. Miner. Energy Resour. Eng. 2018, 55, 67–84. (In Korean) [Google Scholar] [CrossRef]
- Chung, W.J. Mineral Resource Industry of North Korea and Two Korea’s Cooperation. J. Korean Soc. Miner. Energy Resour. Eng. 2019, 56, 204–211. (In Korean) [Google Scholar] [CrossRef]
- Mancheri, N.A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B. What Happens after the Rare Earth Crisis: A Systematic Literature Review. Sustainability 2019, 11, 1288. [Google Scholar] [CrossRef] [Green Version]
- Switzer, S.; Gerber, L.; Sindico, F. Access to Minerals: WTO Export Restrictions and Climate Change Considerations. Laws 2015, 4, 617–637. [Google Scholar] [CrossRef] [Green Version]
- Dooley, B.; Choe, S.-H. Japan Imposes Broad New Trade Restrictions on South Korea. The New York Times. 1 August 2019. Available online: https://www.nytimes.com/2019/08/01/business/japan-south-korea-trade.html (accessed on 18 October 2020).
- Yamazaki, M.; Yang, H.; Park, J. The High-Tech Trade Dispute Rooted in Japan’s Wartime History; Reuters: Tokyo, Japan; Seoul, Korea, 8 June 2019; Available online: https://www.reuters.com/article/us-southkorea-japan-laborers-explainer-idUSKCN1U31D1 (accessed on 18 October 2020).
- Goodman, S.; VerWey, J.; Kim, D. The South Korea-Japan Trade Dispute in Context: Semiconductor Manufacturing, Chemicals, and Concentrated Supply Chains; United States International Trade Commission: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Request for Consultations by the Republic of Korea, Japan-Measures Related to the Exportation of Products and Technology to Korea. WT/DS590/1. 2019. Available online: https://docs.wto.org/dol2fe/Pages/SS/directdoc.aspx?filename=q:/WT/DS/590-4.pdf&Open=True (accessed on 22 December 2020).
- Barteková, E.; Kemp, R. National strategies for securing a stable supply of rare earths in different world regions. Resour. Policy 2016, 49, 153–164. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; COM (2020) 474 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Humphries, M. Critical Minerals and US Public Policy; Congressional Research Service: Washington, DC, USA, 2019. [Google Scholar]
- Nassar, N.T.; Brainard, J.; Gulley, A.; Manley, R.; Matos, G.; Lederer, G.; Bird, L.R.; Pineault, D.; Alonso, E.; Gambogi, J.; et al. Evaluating the mineral commodity supply risk of the U.S. manufacturing sector. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Australian Government. Australia’s Critical Minerals Strategy; Australian Government: Canberra, Australia, 2019. [Google Scholar]
- Chung, J. The Mineral Industry of the Republic of Korea; USGS 2016 Minerals Yearbook Republic of Korea; US Geological Survey: Washington, DC, USA, 2019. [Google Scholar]
- Lee, M. International Cooperation to Development of Strategy and R&D Collaboration for Substitution of Rare Earth Resources; US Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- Korea Institute for Rare Metals (KIRAM). Available online: https://www.kiram.re.kr/web/ko/page/page02_01_01.php (accessed on 27 September 2020).
- The Ministry of Trade, Industry and Energy (MOTIE). The Master Plan on Resource Development; MOTIE: Sejong, Korea, 2020. (In Korean) [Google Scholar]
- Lee, K.; Cha, J. Recent developments in Korea’s Framework Act on Resource Circulation: Toward a resource-circulating society. J. Mater. Cycles Waste Manag. 2018, 20, 1986–1998. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Performance Reviews: Korea; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- The Ministry of Environment (MOE). Framework Act on Resource Circulation; MOE: Sejong, Korea, 2016. (In Korean) [Google Scholar]
- The Ministry of Environment (MOE). White Paper of Environment; MOE: Sejong, Korea, 2016. (In Korean) [Google Scholar]
- Lee, C.H.; Bae, W. A Comparative Study on the Waste Electrical and Electronic Equipment (WEEE) Recycling Policies of the European Union and the Republic of Korea. Environ. Policy 2015, 23, 43–68. (In Korean) [Google Scholar] [CrossRef]
- Hagelüken, C.; Lee-Shin, J.U.; Carpentier, A.; Heron, C. The EU Circular Economy and Its Relevance to Metal Recycling. Recycling 2016, 1, 242–253. [Google Scholar] [CrossRef]
- Herrador, M.; Cho, Y.; Park, P. Latest circular economy policy and direction in the Republic of Korea: Room for enhancements. J. Clean. Prod. 2020, 269. [Google Scholar] [CrossRef]
- The Ministry of Environment (MOE). The First Master Plan on Resource Circulation; MOE: Sejong, Korea, 2018. (In Korean) [Google Scholar]
- Zero Waste International Alliance (ZWIA). Zero Waste Definition; ZWIA, 2018. Available online: http://zwia.org/zero-waste-definition/ (accessed on 9 December 2020).
- Zaman, A.U. A Strategic Framework for Working toward Zero Waste Societies Based on Perceptions Surveys. Recycling 2017, 2, 1. [Google Scholar] [CrossRef]
- Alsharif, M.; Kim, J.; Kim, J.H. Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review. Sustainability 2018, 10, 1822. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.; Kim, S.H. Green Finance in the Republic of Korea: Barriers and Solutions; ADBI Working Paper 897; Asian Development Bank Institute: Tokyo, Japan, 2018. [Google Scholar]
- Cho, S. Nonrenewable Waste Is Excluded from Renewable Energy. Korea Energy. 7 January 2019. Available online: http://www.koenergy.co.kr/news/articleView.html?idxno=104243 (accessed on 27 October 2020).
- The Ministry of Trade, Industry and Energy (MOTIE). The Fifth National Program on Overseas Resource Development; MOTIE: Sejong, Korea, 2014. (In Korean) [Google Scholar]
- Kim, D.; Kim, Y. Implications of the 6th National Program for Overseas Resources Development. J. Korean Soc. Miner. Energy Resour. Eng. 2020, 57, 392–397. (In Korean) [Google Scholar] [CrossRef]
- Korea Times. Shift to Renewable Energy: Master Plan Calls for Drastic Expansion of Solar. Wind Power. 21 April 2019. Available online: http://www.koreatimes.co.kr/www/opinon/2019/04/202_267538.html (accessed on 27 October 2020).
- Kim, H.; Park, H. PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea. Sustainability 2018, 10, 3565. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Cha, J. Management of Solar Photovoltaic Panels under the Extended Producer Responsibility Legislation. J. Korean Soc. Miner. Energy Resour. Eng. 2019, 56, 367–376. (In Korean) [Google Scholar] [CrossRef]
- Lesniewska, F. Renewable energy, waste management and the circular economy in the EU: Solar PV and wind power. In Research Handbook on EU Energy Law and Policy; Leal-Arcas, R., Wouters, J., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2017; pp. 460–468. [Google Scholar]
- European Commission. Report on Critical Raw Materials and the Circular Economy; (CRM Report). SWD (2018) 36 Final; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Månberger, A.; Stenqvist, B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 2018, 119, 226–241. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, T.E. Strategy to Secure Resources against Changing Demand in Materials in an Era of Energy Conversion; Korea Energy Economics Institute: Ulsan, Korea, 2018. [Google Scholar]
- Rabe, W.; Kostka, G.; Stegen, K.S. China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy 2017, 101, 692–699. [Google Scholar] [CrossRef]
South Korea (35) (2020) | E.U. (30) (2020) | U.S. (35) (2018) | Australia (24) (2019) | Japan (31) (2018) |
---|---|---|---|---|
Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Cesium, Chrome, Cobalt, Gallium, Germanium, Hafnium, Rare Earth Elements, Indium, Lithium, Magnesium, Manganese, Molybdenum, Nickel, Niobium, Platinum Group Metals, Phosphorus, Rhenium, Selenium, Silicon, Strontium, Tantalum, Tellurium, Thallium, Titanium, Tin, Tungsten, Vanadium, Zirconium | Antimony, Baryte, Bauxite, Beryllium, Bismuth Borate, Cobalt, Coking Coal, Fluorspar, Gallium, Germanium, Hafnium, Heavy Rare Earth Elements, Indium, Light Rare Earth Elements, Lithium, Magnesium, Natural Graphite, Natural Rubber, Niobium, Platinum Group Metals, Phosphate rock, Phosphorus, Scandium, Strontium, Silicon metal, Tantalum, Titanium, Tungsten, Vanadium | Aluminum (bauxite), Antimony, Arsenic, Barite, Beryllium, Bismuth, Cesium, Chromium, Cobalt, Fluorspar, Gallium, Germanium, Graphite (natural), Hafnium, Helium, Indium, Lithium, Magnesium, Manganese, Niobium, Platinum group metals, Potash, Rare earth elements group, Rhenium, Rubidium, Scandium, Strontium, Tantalum, Tellurium, Tin, Titanium, Tungsten, Uranium, Vanadium, Zirconium | Antimony, Beryllium, Bismuth, Chromium, Cobalt, Gallium, Germanium, Graphite, Hafnium, Helium, Indium, Lithium, Magnesium, Manganese, Niobium, Platinum group elements, REE, Rhenium, Scandium, Tantalum, Titanium, Tungsten, Vanadium, Zirconium | Antimony, Beryllium, Carbon, Chrome, Cobalt, Copper, Fluorine, Gallium, Germanium, Gold, Indium, Lead, Lithium, Magnesium, Manganese, Molybdenum, Nickel, Niobium, PGM, Phosphorus, REE, Rhenium, Silver, Strontium, Tantalum, Tin, Titanium, Tungsten, Vanadium, Zinc, Zirconium |
Rare Metals | EU | US | Australia | Japan | Leading Producer(s) | Korea’s Import Reliance | Major Sources (2019) | |
---|---|---|---|---|---|---|---|---|
1 | Antimony | √ | √ | √ | √ | China | 100 | China, Vietnam, Japan |
2 | Arsenic | √ | China | NA | China, Germany, Japan | |||
3 | Barium | √ | √ | China, India | Almost 100 | Japan, China, U.S., Germany | ||
4 | Beryllium | √ | √ | √ | √ | U.S. | NA | Japan, U.S., Netherlands |
5 | Bismuth | √ | √ | √ | China | NA | Japan, China, Taiwan | |
6 | Boron | √ | Turkey, Kazakhstan, Chile | 100 | U.S., Turkey, China, Japan | |||
7 | Cadmium | China, Korea, Japan, Mexico, Canada, Kazakhstan | NA | U.S., Germany, Japan | ||||
8 | Cesium | √ | Canada | 100 | NA | |||
9 | Chromium | √ | √ | √ | South Africa, Kazakhstan | 100 | China, U.S., Japan | |
10 | Cobalt | √ | √ | √ | √ | DRC | 100 | China, Japan, DRC, Australia |
11 | Gallium | √ | √ | √ | √ | China | 100 | China, U.S., Japan |
12 | Germanium | √ | √ | √ | √ | China | NA | China, Canada, U.S. |
13 | Hafnium | √ | √ | √ | U.S. | 100 | U.S., Japan, China | |
14 | Indium | √ | √ | √ | √ | China, South Korea | NA | China, Japan, Taiwan, U.S. |
15 | Lithium | √ | √ | √ | √ | Australia, Chile, China, Argentina | 100 | Chile, China, Argentina |
16 | Magnesium | √ | √ | √ | √ | China | 100 | China, Japan, Russia |
17 | Manganese | √ | √ | √ | South Africa, Australia, Gabon, China | 100 | Australia, South Africa, Japan | |
18 | Molybdenum | √ | China, Chile, U.S., Peru, Mexico, Russia | Almost 100 | Chile, Mexico, U.S., China | |||
19 | Nickel | √ | Philippines, Canada, Russia, Australia, New Caledonia | 100 | New Caledonia, Japan, Finland | |||
20 | Niobium | √ | √ | √ | √ | Brazil | 100 | China, Germany, Canada, Austria |
21 | Phosphorus | √ | √ | U.S., Morocco, Western Sahara, China, Russia | 100 | Vietnam, Japan, China | ||
22 | Platinum-group elements | √ | √ | √ | √ | South Africa, Russia | 100 | NA |
23 | Rare-earth elements | √ | √ | √ | √ | China, Australia | 100 | China, Japan, France, Taiwan |
24 | Rhenium | √ | √ | √ | China, Poland, U.S. | NA | China, U.K., U.S., Singapore | |
25 | Selenium | Japan, Canada, U.S. | NA | Japan, Germany, China | ||||
26 | Silicon | √ | China, Russia, Norway, U.S. | NA | China, Australia, Japan | |||
27 | Strontium | √ | √ | √ | Spain, Mexico, China, Iran | 100 | Germany, Mexico, Spain | |
28 | Tantalum | √ | √ | √ | √ | DRC, Rwanda, Nigeria | NA | U.S., Japan, China |
29 | Tellurium | √ | China, Japan, Russia | NA | Japan, China, Canada | |||
30 | Thallium | Japan, China, U.S. | ||||||
31 | Titanium | √ | √ | √ | √ | South Africa, China, Canada, Australia | NA | Japan, China, U.S. |
32 | Tin | √ | √ | China, Indonesia, Burma | NA | Indonesia, Malaysia, Japan, Thailand | ||
33 | Tungsten | √ | √ | √ | √ | China | NA | China, Japan, Bolivia |
34 | Vanadium | √ | √ | √ | √ | China, Russia, South Africa | 100 | China, Brazil, Taiwan |
35 | Zirconium | √ | √ | √ | Australia, South Africa, China | 100 | U.S., Japan, South Africa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Cha, J. Towards Improved Circular Economy and Resource Security in South Korea. Sustainability 2021, 13, 17. https://doi.org/10.3390/su13010017
Lee K, Cha J. Towards Improved Circular Economy and Resource Security in South Korea. Sustainability. 2021; 13(1):17. https://doi.org/10.3390/su13010017
Chicago/Turabian StyleLee, Kyounga, and Jongmun Cha. 2021. "Towards Improved Circular Economy and Resource Security in South Korea" Sustainability 13, no. 1: 17. https://doi.org/10.3390/su13010017
APA StyleLee, K., & Cha, J. (2021). Towards Improved Circular Economy and Resource Security in South Korea. Sustainability, 13(1), 17. https://doi.org/10.3390/su13010017