Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Collection and Characterization
2.2. Collection and Authentication of Aquatic Plants
2.3. Experimental Setup for Phytoremediation
2.4. Reusability of Phytoremediated Effluent
2.5. Manure Production Using Plant Biomass
3. Results and Discussion
3.1. Wastewater Characterization
3.2. Phytoremediation Potency of Aquatic Plants
3.3. GC–MS Analysis of Aquatic Plants before and after Phytoremediation
3.4. Reusability of Phytoremediated Effluent
3.5. Reuse of Plant Biomass for Manure Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-DAIM, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Ali, I.; Karim, S.M.A.; Hossain Firoz, M.S.; Chowdhury, A.N.; Morton, D.W.; Angove, M.J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process. Eng. 2019, 32, 100911. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Zhu, B.; Suanon, F.; Muyembe, D.K.; Dzakpasu, M. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: Implications for phytoremediation and restoration. Sci. Total Environ. 2017, 581–582, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J.; Upmanyu, A.; Bhatti, J. Assessment of Phytoremediation Potential of Chara vulgaris to Treat Toxic Pollutants of Textile Effluent. J. Toxicol. 2019, 2019. [Google Scholar] [CrossRef]
- Zaharia, C.; Suteu, C.; Muresan, A. Options and solutions of textile effluent Decolourization using some specific physicochemical treatment steps. In Proceedings of the 6th International Conference on Environmental Engineering and Management ICEEM’ 06, Balaton Lake, Hungary, 1 September 2011; pp. 121–122. [Google Scholar]
- Kabra, A.N.; Khandare, R.V.; Govindwar, S.P. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Res. 2013, 47, 1035–1048. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Arif, R.A.; Yasar, A.; Baqir, M.; Rasheed, R.; Mahmood, A.; Iqbal, A. Treatment of textile effluents with Pistia stratiotes, Eichhornia crassipes and Oedogonium sp. Int. J. Phytoremediation 2019, 21, 939–943. [Google Scholar] [CrossRef]
- Chandanshive, V.V.; Rane, N.R.; Gholave, A.R.; Patil, S.M.; Jeon, B.H.; Govindwar, S.P. Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environ. Res. 2016, 150, 88–96. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Rajendran, D.; Samivel, D.; Khan, M.N. New approach of dye removal in textile effluent: A cost effective management for cleanup of toxic dyes in textile effluent by water hyacinth. In Toxicity and Biodegradation Testing; Bidoia, E., Montagnolli, R., Eds.; Humana Press: New York, NY, USA, 2018; pp. 241–267. [Google Scholar]
- Govindwar, S.P.; Kagalkar, A.N. Phytoremediation Technologies for the Removal of Textile Dyes: An Overview and Future Prospectus; Nova Science Publisher: New York, NY, USA, 2010. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Muthusamy, S.; Govindaraj, D.; Rajendran, K. Phytoremediation of textile dye effluents. In Bioremediation: Applications for Environmental Protection and Managements; Varjani, S., Agarwal, A.K., Gnansounou, E., Gurunathan, B., Eds.; Springer: Singapore, 2018; pp. 359–373. [Google Scholar]
- Galal, T.M.; Eid, E.M.; Dakhil, M.A.; Hassan, L.M. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int. J. Phytoremediation 2018, 20, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediation 2018, 20, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Muthunarayanan, V.; Santhiya, M.; Swabna, V.; Geetha, A. Phytodegradation of textile dyes by Water Hyacinth (Eichhornia Crassipes) from aqueous dye solutions. Int. J. Environ. Sci. 2011, 1, 1702–1717. [Google Scholar]
- Das, S.; Mazumdar, K. Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: Physiological and anatomical response. Chemosphere 2016, 163, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Shirinpur-Valadi, A.; Hatamzadeh, A.; Sedaghathoor, S. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments. Environ. Sci. Pollut. Res. 2019, 26, 21340–21350. [Google Scholar] [CrossRef] [PubMed]
- APHA Standard Methods for the Examination of Water and Wastewater 2012. Available online: https://www.standardmethods.org/ (accessed on 11 September 2018).
- Jones, J.B.; Case, V.W. Sampling, Handling and Analyzing Plant Tissue Samples-Soil Testing and Plant Analysis; SSSA, Inc.: Madison, WI, USA, 1990. [Google Scholar]
- AOAC Official Methods of Analysis, Association of Official Agricultural Chemists 2002. Available online: https://www.aoac.org/about-aoac-international/ (accessed on 28 September 2018).
- Zaharia, C.; Suteu, D.; Muresan, A.; Muresan, R.; Popescu, A. Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ. Eng. Manag. J. 2009, 8, 1359–1369. [Google Scholar] [CrossRef]
- Victor, K.K.; Séka, Y.; Norbert, K.K.; Sanogo, T.A.; Celestin, A.B. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int. J. Phytoremediation 2016, 18, 949–955. [Google Scholar] [CrossRef]
- Ngatia, L.; Grace, J.M., III; Moriasi, D.; Taylor, R. Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. In Monitoring of Marine Pollution; IntechOpen: London, UK, 2019. [Google Scholar]
- Sathiyaraj, G.; Chellappan Ravindran, K.; Hussain Malik, Z. Physico-chemical characteristics of textile effluent collected from Erode, Pallipalayam and Bhavani polluted regions, Tamilnadu, India. J. Ecobiotechnol. 2017, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Anjana, S.; Thanga, V.S.G. Phytoremediation of synthetic textile dyes. Asian J. Microbiol. Biotechnol. Environ. Sci. 2011, 13, 31–34. [Google Scholar]
- Thilakar, R.J.; Rathi, J.J.; Pillai, P.M. Phytoaccumulation of Chromium and Copper by Pistia stratiotes L. and Salvinia natans (L.) All. J. Nat. Prod. Plant Resour. 2012, 2, 725–730. [Google Scholar]
- Kagalkar, A.N.; Jagtap, U.B.; Jadhav, J.P.; Bapat, V.A.; Govindwar, S.P. Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresour. Technol. 2009, 100, 4104–4110. [Google Scholar] [CrossRef] [PubMed]
- Ugya, A.Y.; Hua, X.; Ma, J. Phytoremediation as a tool for the remediation of wastewater resulting from dyeing activities. Appl. Ecol. Environ. Res. 2019, 17, 3723–3735. [Google Scholar] [CrossRef]
- Ng, Y.S.; Chan, D.J.C. Wastewater phytoremediation by Salvinia molesta. J. Water Process. Eng. 2017, 15, 107–115. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Chantiratikul, P.; Meechai, P.; Woranan, N. Antioxidant activities and phenolic contents of extracts from salvinia molesta and Eichornia crassipes. Res. J. Biol. Sci. 2009, 4, 1113–1117. [Google Scholar]
- Xue, P.Y.; Yan, C.Z. zhou Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 2011, 85, 1176–1181. [Google Scholar] [CrossRef]
- Fonkou, T.; Agendia, P.; Kengne, I.; Akoa, A.; Nya, J. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lahoon systems in Cameroo. In Proceedings of the International Symposium on Environmental Pollution Control and Waste Management, Tunis, Tunisia, 7–10 January 2002; pp. 709–714. [Google Scholar]
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Almansoory, A.F.; Hasan, H.A.; Anuar, N. Role of Salvinia molesta in biodecolorization of methyl orange dye from water. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Tyagi, T.; Agarwal, M. Gas Chromatography-Mass Spectrometry analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. Int. J. Basic Appl. Med. Sci. 2017, 7, 195–206. [Google Scholar]
- Thinh, N.V.; Osanai, Y.; Adachi, T.; Vuong, B.T.S.; Kitano, I.; Chung, N.T.; Thai, P.K. Removal of lead and other toxic metals in heavily contaminated soil using biodegradable chelators: GLDA, citric acid andascorbic ascorbic acid. Chemosphere 2021, 263, 127912. [Google Scholar] [CrossRef]
- Khandare, R.V.; Govindwar, S.P. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnol. Adv. 2015, 33, 1697–1714. [Google Scholar] [CrossRef]
- Shanmugam, L.; Ahire, M.; Nikam, T. Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes. Environ. Sci. Pollut. Res. 2020, 27, 9349–9363. [Google Scholar] [CrossRef] [PubMed]
- Chandanshive, V.V.; Kadam, S.K.; Khandare, R.V.; Kurade, M.B.; Jeon, B.H.; Jadhav, J.P.; Govindwar, S.P. In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 2018, 210, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Garg, V.K.; Singh, B. Effect of textile effluents on growth performance of wheat cultivars. Bioresour. Technol. 2005, 96, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Saravanamoorthy, M.D.; Kumari, B.D.R.; Kumari, R. Effect of textile waste water on morphophysiology and yield on two varieties of peanut (Arachis hypogaea L.). J. Agric. Technol. 2007, 3, 335–343. [Google Scholar]
- Hayyat, M.U.; Mahmood, R.; Hassan, S.; Rizwan, S. Effects of textile effluent on growth performance of Sorghum vulgare Pers CV SSG-5000. Biologia 2013, 59, 15–22. [Google Scholar]
- Li, G.; Zhang, F.; Sun, Y.; Wong, J.W.C.; Fang, M. Chemical evaluation of sewage sludge composting as a mature indicator for composting process. Water. Air. Soil Pollut. 2001, 132, 333–345. [Google Scholar] [CrossRef]
- Shukla, O.P.; Rai, U.N.; Dubey, S. Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresour. Technol. 2009, 100, 2198–2203. [Google Scholar] [CrossRef]
Parameters | Results | Regulatory Level * |
---|---|---|
Color | Dark red | Colorless |
Odor | Unpleasant | Odorless |
pH | 10.5 | 5.5–9.0 |
TDS | 6500 | 2100 |
Total hardness | 280 | 100 |
Alkalinity | 910 | 200 |
Acidity | 230 | - |
COD | 2400 | 250–400 |
Chloride | 2050 | 600–1000 |
Fluoride | 1.84 | 1.0 |
Phosphate | 6.4 | - |
Sulphate | 750 | 1000 |
Nitrate | 90 | 45 |
Lead | 0.014 | 0.01 |
Mercury | BDL ** | 0.001 |
Nickel | BDL ** | 0.02 |
Zinc | 0.034 | 5 |
Chromium | 0.078 | 0.05 |
Aquatic Macrophytes | Pollutants Reduction after Treatment (48 h) (mg/L) | Heavy Metal in Treated Effluent and Used Plant Samples | ||||
---|---|---|---|---|---|---|
Color * | TDS | COD | Chloride | Pb | Cr | |
Control Pistia stratiotes L ** | Colorless 86 ± 3.202 | 6500 4290 | 2400 1848 | 2050 1250.5 | 0.014 BDL | 0.078 BDL |
Salvinia adnata Desv ** | 82 ± 2.22 | 4030 | 1632 | 1209.5 | BDL | BDL |
H. verticillata (L.f) Royle ** | 73 ± 4.36 | 3835 | 1512 | 1148.5 | BDL | BDL |
Growth Parameters | Control | Daily Irrigation | Alternative Day Irrigation |
---|---|---|---|
Height | 107 ± 0.33 a | 96 ± 0.5 a | 101 ± 0.5 a |
Root length | 10 ± 0.44 b | 8 ± 0.44 b | 9 ± 0.15 b |
Shoot length | 97± 0.30 c | 88 ± 0.51 c | 92 ± 0.47 c |
Leaf length | 11 ± 0.15 d | 10 ± 0.18 d | 10 ± 0.28 d |
Number of Flowers | 22 e | 13 e | 20 e |
Source of Variance | Sum of the Squares | Degrees of Freedom | Mean Squares | F-Ratio | Calculated p-Value | Level of Significance | |
---|---|---|---|---|---|---|---|
Control and Daily irrigation | Between groups | 102.4 | 1 | 102.4 | 9.84615 | 0.03492 | p > 0.05 Significant |
Within groups | 17,409.2 | 8 | 2176.15 | ||||
Control and Alternative Day Irrigation | Between groups | 22.5 | 1 | 22.5 | 8.18182 | 0.045912 | p > 0.05 Significant |
Within groups | 17,842.4 | 8 | 2230.3 |
Set A | Set B | Set C | Control | |
---|---|---|---|---|
Color | Brownish black | Brownish black | Brown | Brown |
Odor | Earthy | Earthy | Earthy | - |
pH | 8.64 | 8.42 | 8.41 | 8.20 |
Nitrogen | 1.01% | 1.12% | 0.97% | 2.71% |
Phosphorus | 0.23% | 0.23% | 0.23% | 0.03% |
Potassium | 0.68% | 0.72% | 0.58% | 2.62% |
Organic Carbon | 14.10% | 11.70% | 8.70% | 31.40% |
Moisture content | 33.7% | 24.0% | 22.1% | 9.80% |
Iron | 3121 ppm | 3335 ppm | 2230 ppm | - |
Copper | 23.5 ppm | 23.5 ppm | 21.0 ppm | - |
C/N | 14.5:1 | 10.4:1 | 8.6:1 | 11.6:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahila, K.G.; Ravindran, B.; Muthunarayanan, V.; Nguyen, D.D.; Nguyen, X.C.; Chang, S.W.; Nguyen, V.K.; Thamaraiselvi, C. Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability 2021, 13, 329. https://doi.org/10.3390/su13010329
Ahila KG, Ravindran B, Muthunarayanan V, Nguyen DD, Nguyen XC, Chang SW, Nguyen VK, Thamaraiselvi C. Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability. 2021; 13(1):329. https://doi.org/10.3390/su13010329
Chicago/Turabian StyleAhila, Karunakaran Gowri, Balasubramani Ravindran, Vasanthy Muthunarayanan, Dinh Duc Nguyen, Xuan Cuong Nguyen, Soon Woong Chang, Van Khanh Nguyen, and Chandran Thamaraiselvi. 2021. "Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater" Sustainability 13, no. 1: 329. https://doi.org/10.3390/su13010329
APA StyleAhila, K. G., Ravindran, B., Muthunarayanan, V., Nguyen, D. D., Nguyen, X. C., Chang, S. W., Nguyen, V. K., & Thamaraiselvi, C. (2021). Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability, 13(1), 329. https://doi.org/10.3390/su13010329