Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China
Abstract
:1. Introduction
2. Methods
2.1. Site Description
2.2. LCZ Classification and Distribution of Measurement Sites
- (1)
- Pre-processing the Landsat data: The target area was determined by clipping the Landsat images. This pre-processed image was re-sampled in a resolution of 100 to 150 m, in order to get the spectral signal that representing the local-scale urban structures (e.g., buildings in the block), rather than a single smaller object (e.g., one or part of a building).
- (2)
- Selecting and training samples: Following the former studies [6,12,13], typical blocks of the representative geometric and/or surface cover properties were selected by polygons as the training samples of each LCZ type, which was then saved as a “**.kml” data. Training samples of 13 LCZ types were found in the target area.
- (3)
- LCZ classification using the software “SAGA-GIS”: The pre-processed Landsat images and the selected training sampled data (the “**.kml” data) were imported into the software SAGA-GIS [35]. Using the SAGA-GIS, the LCZ classification in the study area was calculated and conducted with a random forest classifier by comparing the similarity between the training samples and the blocks in the study area.
2.3. Measurement Campaign and Equipment
2.4. Normalization on the Measured Air Temperatures
3. Results and Discussions
3.1. Initial Measured and Normalized Air Temperatures
3.2. UHI Characteristics between LCZs Based on the Normalized Data
3.3. Statistical Analysis within Each LCZ Type
3.4. An Empirical Model for UHI Mapping
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of People’s Republic of China. Statistical Bulletin of the People’s Republic of China on National Economic and Social Development; National Bureau of Statistics of China: Beijing, China, 2017.
- Wang, G.; Tian, G.; Jombach, S.; Li, H. Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China. Land 2020, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Kesikoglu, M.H.; Atasever, U.H.; Ozkan, C.; Besdok, E. The usage of rusboost boosting method for classification of impervious surfaces. ISPRS Int. J. Geo. Inf. 2016, 981–985. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gu, Z. Air quality by urban design. Nat. Geosci. 2013, 6, 506. [Google Scholar] [CrossRef]
- Klysik, K.; Fortuniak, K. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos. Environ. 1999, 33, 3885–3895. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A. Local climate zone classification for Indian cites: A case study of Nagpur. Urban Clim. 2018, 24, 369–392. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; GhaffarianHoseini, A.; GhaffarianHoseini, A.; Wong, L.P.; Hassan, N.; Sulaiman, N.M. A critical review of Urban Heat Island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustain. Cities Soc. 2018, 39, 99–113. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Peng, L.L.; Jiang, Z.; Hu, Z.; Ye, Y. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Build. Environ. 2018, 137, 171–184. [Google Scholar] [CrossRef]
- Du, P.; Chen, J.; Bai, X.; Han, W. Understanding the seasonal variations of land surface temperature in Nanjing urban area based on local climate zone. Urban Clim. 2020, 33, 100657. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo. Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Zhang, Y.; Gu, Z.; Su, J. Local climate zone classification with different source data in Xi’an, China. Indoor Built Environ. 2018, 28, 1190–1199. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of Local Climate Zones Using ASTER and Landsat Data for High-Density Cities. J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 3397–3405. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.; Xia, J.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a perfor-mance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Zhao, C. Linking the Local Climate Zones and Land Surface Temperature to Investigate the Surface Urban Heat Island, A Case Study of San Antonio, Texas, U.S. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climate, 1st ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Clim. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Beck, C.; Straub, A.; Breitner, S.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Caluwaerts, S.; Hamdi, R.; Top, S.; Lauwaet, D.; Berckmans, J.; Degrauwe, D.; Dejonghe, H.; De Ridder, K.; De Troch, R.; Duchêne, F.; et al. The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Clim. 2020, 31, 100565. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.; Liu, J.; Wang, L.; Wang, D.; Shui, T.; Chen, X.; Wu, Q. Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Build. Environ. 2017, 117, 191–207. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.L.; Ren, C.; Ng, E. Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Clim. 2018, 25, 167–186. [Google Scholar] [CrossRef]
- Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Saitoh, T.S.; Shimada, T.; Hoshi, H. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 1996, 30, 3431–3442. [Google Scholar] [CrossRef]
- Yamashita, S. Detailed structure of heat island phenomena from moving observations from electric tram-cars in Metropolitan Tokyo. Atmos. Environ. 1996, 30, 429–435. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Lin, Y. Spatial-temporal Analysis of the Urban Heat Island of a Subtropical City by Using Mobile Measurement. Procedia Eng. 2016, 169, 55–63. [Google Scholar] [CrossRef]
- Unger, J.; Sümeghy, Z.; Zoboki, J. Temperature cross-section features in an urban area. Atmospheric Res. 2001, 58, 117–127. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, D.; Wang, Y.; Meng, X.; Chen, W.; Yang, Y. Temporal and spatial variations of urban climate and derivation of an urban climate map for Xi’an, China. Sustain. Cities Soc. 2020, 52, 101850. [Google Scholar] [CrossRef]
- Zhang, Y.W.; He, S.; Gu, Z.L.; Wei, N.; Yu, C.W.; Li, X.; Zhang, R.; Sun, X.; Zhou, D. Measurement, normalization and mapping of urban-scale wind environment in Xi’an, China. Indoor Built Environ. 2019, 28, 1171–1180. [Google Scholar] [CrossRef]
- Jusuf, S.K.; Wong, N.H.; Tan, C.L. Urban climatic map and STEVE tool for sustainable urban planning in Singapore. In Proceedings of the 27th International Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011; pp. 219–225. [Google Scholar]
- Ren, C.; Spit, T.; Lenzholzer, S.; Yim, S.H.L.; Heusinkveld, B.; Van Hove, B.; Chen, L.; Kupski, S.; Burghardt, R.; Katzschner, L. Urban Climate Map System for Dutch spatial planning. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 207–221. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Wang, Z. Urban climate mapping and its application in urban planning. J. Xi’an Univ. Archit. Technol. 2014, 46, 261–265. [Google Scholar]
- Xu, D.; Zhou, D.; Wang, Y.; Xu, W.; Yang, Y. Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Build. Environ. 2019, 147, 482–494. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Yu, C.W.; Zhou, D.; Gu, Z. Challenges and adaptation to urban climate change in China: A viewpoint of urban climate and urban planning. Indoor Built Environ. 2019, 28, 1157–1161. [Google Scholar] [CrossRef]
- Luo, X.; Gu, Z.; Tian, W.; Xia, Y.; Ma, T. Experimental study of a local ventilation strategy to protect semi-exposed relics in a site museum. Energy Build. 2018, 159, 558–571. [Google Scholar] [CrossRef]
- Liu, J.P.; Lin, X.D.; Liu, Y.F. Survey on winter urban heat island in Xi’an. Acta Energ. Sol. Sin. 2007, 28, 912–917. [Google Scholar]
- Sakakibara, Y.; Matsui, E. Relation between Heat Island Intensity and City Size Indices/Urban Canopy Characteristics in Settlements of Nagano Basin, Japan. Geogr. Rev. Jpn. 2005, 78, 812–824. [Google Scholar] [CrossRef] [Green Version]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, J. A Mathematic Model for Calculating Urban Heat Island Intensity Using Mobile Survey Data. In Proceedings of the Lecture Notes in Electrical Engineering; Springer Science and Business Media LLC: Berlin, Germany, 2013; Volume 261, pp. 563–572. [Google Scholar]
- Vera, S.; Pinto, C.; Tabares-Velasco, P.C.; Bustamante, W. A critical review of heat and mass transfer in vegetative roof models used I building energy and urban environment simulation tools. Appl. Energ. 2018, 232, 752–764. [Google Scholar] [CrossRef]
- Jiang, S.; Zhan, W.; Yang, J.; Liu, Z.; Huang, F.; Lai, J.; Li, J.; Hong, F.; Huang, Y.; Chen, J.; et al. Urban heat island studies based on local climate zones: A systematic overview. Acta Geogr. Sin. 2020, 75, 1860–1878. [Google Scholar]
- Lau, K.K.L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Build. Environ. 2019, 154, 227–238. [Google Scholar] [CrossRef]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int. J. Clim. 2017, 37, 582–596. [Google Scholar] [CrossRef]
Building Types | Land Cover Types | |
---|---|---|
LCZ 1: Compact high-rise | LCZ A: Densely covered with trees | |
LCZ 2: Compact mid-rise | LCZ B: Patchy covering of scattered trees | |
LCZ 3: Compact low-rise | LCZ C: Existence of bushes, scrub | |
LCZ 4: Open high-rise | LCZ D: Low plants | |
LCZ 5 | (i) Open mid-high-rise | LCZ E: Bare rock/covered with paving with bare paving tiles |
(ii) Open mid-low-rise | ||
LCZ 6: Open low-rise | LCZ F: Covered with bare soil | |
LCZ 7: Lightweight low-rise | LCZ G: Existence of water bodies | |
LCZ 8: Large low-rise | ||
LCZ 9: Sparsely low-rise | ||
LCZ 10: Heavy industry |
Measurement Site Number | LCZ Type | Measured Average Air Temperature (°C) | Normalized Average Air Temperature (°C) |
---|---|---|---|
1 | LCZ 6 | 39.3 | 35.6 |
2 | LCZ D | 33.2 | 33.8 |
3 | LCZ 6 | 37.5 | 33.4 |
4 | LCZ 2 | 32.8 | 35.9 |
5 | LCZ 3 | 33.9 | 32.5 |
6 | LCZ 3 | 29.2 | 33.1 |
7 | LCZ 1 | 34.8 | 34.5 |
8 | LCZ 2 | 37.5 | 38.3 |
9 | LCZ 5-1 | 30.0 | 34.6 |
10 | LCZ 5-2 | 34.6 | 33.2 |
11 | LCZ 5-2 | 30.4 | 33.5 |
12 | LCZ 1 | 33.9 | 34.1 |
13 | LCZ 3 | 36.2 | 34.1 |
14 | LCZ 3 | 31.4 | 35.1 |
15 | LCZ 8 | 33.5 | 34.6 |
16 | LCZ 2 | 36.5 | 35.9 |
17 | LCZ 2 | 31.3 | 35.1 |
18 | LCZ 3 | 39.3 | 38.3 |
19 | LCZ 4 | 29.2 | 33.5 |
20 | LCZ 8 | 34.3 | 35.2 |
21 | LCZ E | 31.1 | 35.6 |
22 | LCZ 8 | 36.1 | 34.8 |
23 | LCZ 5-1 | 33.4 | 33.2 |
24 | LCZ 8 | 33.0 | 38.5 |
25 | LCZ B | 32.0 | 36.5 |
26 | LCZ 8 | 35.1 | 35.5 |
27 | LCZ 2 | 29.2 | 36.8 |
28 | LCZ E | 33.9 | 35.4 |
29 | LCZ 2 | 25.0 | 36.3 |
30 | LCZ D | 33.0 | 32.9 |
31 | LCZ 2 | 34.9 | 33.2 |
32 | LCZ 5-1 | 35.6 | 32.4 |
33 | LCZ 5-1 | 30.8 | 33.1 |
34 | LCZ 2 | 29.4 | 29.9 |
35 | LCZ 4 | 34.0 | 33.1 |
36 | LCZ 2 | 33.1 | 30.6 |
37 | LCZ 5-2 | 39.7 | 33.1 |
38 | LCZ 5-1 | 37.6 | 34.6 |
39 | LCZ 5-2 | 34.0 | 37.1 |
40 | LCZ 2 | 35.7 | 32.1 |
41 | LCZ 8 | 28.1 | 35.1 |
42 | LCZ 5-1 | 38.7 | 32.8 |
43 | LCZ 6 | 29.9 | 29.9 |
44 | LCZ 2 | 36.9 | 37.3 |
45 | LCZ 2 | 35.5 | 32.3 |
46 | LCZ 5-1 | 33.9 | 34.1 |
47 | LCZ 5-2 | 35.0 | 31.9 |
48 | LCZ 5-1 | 31.0 | 35.1 |
49 | LCZ B | 35.1 | 28.8 |
50 | LCZ 6 | 29.6 | 34.2 |
LCZ Type | UHI Magnitude/°C | Standard Deviation/°C |
---|---|---|
LCZ 1 | 2.3 | 0.5 |
LCZ 2 | 2.5 | 0.6 |
LCZ 3 | 2.6 | 0.8 |
LCZ 4 | 1.3 | 0.5 |
LCZ 5I | 1.7 | 0.6 |
LCZ 5II | 1.8 | 0.8 |
LCZ 6 | 2.0 | 0.8 |
LCZ 8 | 3.6 | 0.6 |
LCZ B | 0.7 | 1.2 |
LCZ D | 1.4 | 1.0 |
LCZ E | 3.5 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Zhang, X.; Zhou, D.; Gu, Z. Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China. Sustainability 2021, 13, 83. https://doi.org/10.3390/su13010083
Zhang Y, Zhang J, Zhang X, Zhou D, Gu Z. Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China. Sustainability. 2021; 13(1):83. https://doi.org/10.3390/su13010083
Chicago/Turabian StyleZhang, Yunwei, Jili Zhang, Xiaoqian Zhang, Dian Zhou, and Zhaolin Gu. 2021. "Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China" Sustainability 13, no. 1: 83. https://doi.org/10.3390/su13010083
APA StyleZhang, Y., Zhang, J., Zhang, X., Zhou, D., & Gu, Z. (2021). Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China. Sustainability, 13(1), 83. https://doi.org/10.3390/su13010083