Economic Dependence Relationship and the Coordinated & Sustainable Development among the Provinces in the Yellow River Economic Belt of China
Abstract
:1. Introduction
- (1)
- Analysis of the economic interdependence of the nine provinces in the Yellow River Economic Belt over the past six years.
- (2)
- The core structure of, and dynamic changes to, economic interdependence among the nine provinces of the Yellow River Economic Belt over the past six years.
- (3)
- Whether the development strategy of the Yellow River Economic Belt will contribute to the sustainable development of the region’s economy.
2. Methods
2.1. Mutual Information
2.2. Kernel Density Estimation
3. Data
4. Empirical Analysis
4.1. Mutual Information among the Regional Indices
4.2. Maximum Spanning Tree
4.3. Dynamic Evolution of Interependence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florida, R.; Gulden, T.; Mellander, C. The Rise of the Mega-Region. Camb. J. Reg. Econ. Soc. 2008, 1, 459–476. [Google Scholar] [CrossRef]
- Liu, Z.B.; Liu, J.Y.; He, X.P.; Wang, F.Z. The Spatial Connection and Network Feature of Zhongyuan Economic District Base on Intercity Traffic Flow. Econ. Geogr. 2014, 34, 58–66. (In Chinese) [Google Scholar]
- Rutherford, J. Networks in Cities, Cities in Networks: Territory and Globalisation Intertwined in Telecommunications Infrastructure Development in Europe. Urban Stud. 2005, 42, 2389–2406. [Google Scholar] [CrossRef]
- Taylor, P.J. The Geography of Global Civil society: NGOs in the World City Network. Globalizations 2004, 1, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Alderson, A.S.; Beckfield, J. Power and Position in the World City System. Am. J. Sociol. 2004, 109, 811–851. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.C.; Beaverstock, J.V.; Taylor, P.J. Transaction Links through Cities: ‘Decision Cities’ and Service Cities in Outsourcing by Leading Brazilian Firms. Geoforum 2007, 38, 628–642. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Examining the Transition Processes in the Pearl River Delta Polycentric Mega-City Region through the Lens of Corporate Networks. Cities 2017, 60, 147–155. [Google Scholar] [CrossRef]
- Zhu, J. The Structure and Mechanism of Inter-Provincial Migration of Yangtze River Delta. Urban Stud. 2010, 17, 97–104. (In Chinese) [Google Scholar]
- Chen, C.; Xiu, C. Research on City Network of Northeast China Based on Space of Flows. Areal Res. Dev. 2014, 33, 82–89. (In Chinese) [Google Scholar]
- Zhen, F.; Wang, B.; Chen, Y.X. China’s City Network Characteristics Based on Social Network Space: An Empirical Analysis of Sina Micro-blog. Acta Geogr. Sin. 2012, 8, 1031–1043. (In Chinese) [Google Scholar]
- Hollenstein, L.; Purves, R. Exploring Place through User-Generated Content: Using Flicker Tags to Describe City Cores. J. Spat. Inf. Sci. 2014, 1, 21–48. [Google Scholar]
- Zhao, Y.; Chen, H.; Yuan, F.; Xiang, Y.; Zhao, Y.; Yan, C. The Characteristic and Hierarchy Structure of Urban Connection in Northeast China Based on QQ Groups Network. Econ. Geogr. 2017, 37, 49–54. (In Chinese) [Google Scholar]
- Mizuno, M. Institutional-cultural, Network, and Relational Perspectives in Economic Geography (Rethinking the ‘Essence’ of Economic Geography). Ann. Assoc. Econ. Geogr. 2013, 59, 454–467. [Google Scholar]
- Harald, B.; Johannes, G. Toward a Relational Economic Geography. J. Econ. Geogr. 2003, 3, 117–144. [Google Scholar]
- Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. The Spatial Integration and Coordinated Industrial Development of Urban Agglomerations in the Yangtze River Economic Belt, China. Cities 2020, 104, 102801. [Google Scholar] [CrossRef]
- Fan, C.C.; Scott, A.J. Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and a Statistical Analysis of Chinese Regions. Econ. Geogr. 2003, 79, 295–319. [Google Scholar] [CrossRef]
- Higgins, B. Regional Development Theories and Their Application, 1st ed.; Routledge: London, UK, 2017. [Google Scholar]
- Li, H.D.; Wang, S.; Liu, Y. Evaluation Method and Empirical Research of Regional Synergetic Development Degree Based on Grey Relational Theory and Distance Collaborative Model. J. Syst. Sci. Syst. Eng. 2014, 34, 1749–1755. (In Chinese) [Google Scholar]
- Li, G.R.; Ma, M.N.; Ding, Y.Y. Analysis of Evolution and Comparison about the Regional Economic Development in China. Int. Inst. Stat. Manag. Eng. Symp. 2010, 316–320. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=101606401x770ge0w3430jb0ns456433&site=xueshu_se&hitarticle=1 (accessed on 10 May 2021).
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal Differentiation of the Coupling Coordinated Development of Regional Energy-economy-ecology System: A Case Study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Yang, L. High Speed Rail and Urban Service Industry Agglomeration: Evidence from China’s Yangtze River Delta region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Derudder, B.; Taylor, P.J. Central Flow Theory: Comparative Connectivities in the World-city Network. J. Reg. Stud. 2018, 52, 1029–1040. [Google Scholar] [CrossRef]
- Wang, L.; Yang, W.; Yuan, Y. Interurban Consumption Flows of Urban Agglomeration in the Middle Reaches of the Yangtze River: A Network Approach. Sustainability 2019, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Sigler, T.J.; Martinus, K. Extending beyond ‘World Cities’ in World City Network (WCN) Research: Urban Positionality and Economic Linkages through the Australia-based Corporate Network. Environ. Plan A 2017, 49, 2916–2937. [Google Scholar] [CrossRef]
- Pan, F.; Bi, W.; Lenzer, J. Mapping Urban Networks through Inter-firm Service Relationships: The Case of China. J. Urban Plan. Dev. ASCE 2017, 54, 3639–3654. [Google Scholar] [CrossRef]
- Pan, F.; He, Z.; Sigler, T. How Chinese Financial Centers Integrate into Global Financial Center Networks: An Empirical Study Based on Overseas Expansion of Chinese Financial Service Firms. Chin. Geogr. Sci. 2018, 28, 217–230. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban Agglomeration: An Evolving Concept of an Emerging Phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Dou, Y. Similarities and Differences of City-size Distributions in Three Main Urban Agglomerations of China from 1992 to 2015: A Comparative Study Based on Nighttime Light Data. J. Geogr. Sci. 2017, 27, 533–545. [Google Scholar] [CrossRef]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an Urban Agglomeration Boundary Based on Sina Weibo Microblog ‘Check-in’ Data: A Case Study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Kong, X.; Wang, R.; Chen, L. Identifying the Relationship between Urban Land Expansion and Human Activities in the Yangtze River Economic Belt, China. Appl. Geogr. 2018, 94, 163–177. [Google Scholar] [CrossRef]
- Zhou, K.; Yin, Y.; Li, H.; Shen, Y. Driving Factors and Spatiotemporal Effects of Environmental Stress in Urban Agglomeration: Evidence from the Beijing-Tianjin-Hebei Region of China. J. Geogr. Sci. 2021, 31, 91–110. [Google Scholar] [CrossRef]
- Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and Analysis of Regional Economic Collaborative Development within an Urban Agglomeration: Yangtze River Delta as a Case Study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- Tang, D.C.; Li, Z.J. Relevance Analysis of Sustainable Development of Yangtze River Economic Belt Based on Spatial Structure. J. Audit Econ. 2019, 6, 3076. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.K.; Xiang, S.J. Economic Holdup, Interdependent Effect and Yangtze River Economic Belt Integration. Contemp. Financ. Econ. 2016, 375, 14–24. (In Chinese) [Google Scholar]
- Maccone, L.; Bruss, D.; Macchiavello, C. Complementarity and Correlations. Phys. Rev. Lett. 2015, 114, 130401. [Google Scholar] [CrossRef] [Green Version]
- Krier, C.; Francois, D.; Wertz, V.; Verleysen, M. Feature Scoring by Mutual Information for Classification of Mass Spectra. Appl. Artif. Intell. 2006, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Kharrazi, A.; Fath, B.D. Measuring Global Oil Trade Dependencies: An Application of the Point-wise Mutual Information Method. Energ. Policy 2016, 88, 271–277. [Google Scholar] [CrossRef]
- Wang, X.D.; Hui, X.F. Mutual Information Based Analysis for the Distribution of Financial Contagion in Stock Markets. Discret. Dyn. Nat. Soc. 2017, 3218042, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.B.; Hui, X.F. The Regional Dependence of China’s Stock Market and Its Dynamic Evolution Based on the Background of the Stock Market Crash in 2015. Complex Syst. Complex. Sci. 2020, 17, 1–10. (In Chinese) [Google Scholar]
- Mohti, W.; Dionísio, A.; Ferreira, P.; Vieira, I. Frontier Markets’ Efficiency: Mutual Information and Detrended Fluctuation Analyses. J. Econ. Interact. Coor. 2019, 14, 551–572. [Google Scholar] [CrossRef]
- Viegas, E.; Goto, H.; Kobayashi, Y.; Takayasu, M.; Jensen, H.J. Allometric Scaling of Mutual Information in Complex Networks: A Conceptual Framework and Empirical Approach. Entropy 2020, 22, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.F.; Wang, C.Y. Financial Complex Network Model Based on Textual Mutual Information. Acta Phys. Sin. 2018, 67, 148901. (In Chinese) [Google Scholar]
- Lu, S.R.; Wang, Y.W. Convergence, Technological Interdependence and Spatial Externalities: A Spatial Dynamic Panel Data Analysis. Appl. Econ. 2015, 47, 1833–1846. [Google Scholar] [CrossRef]
- Royuela, V.; Garcia, G.A. Economic and Social Convergence in Colombia. Reg. Stud. 2015, 49, 219–239. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.B.; Hui, X.F. Risk Transmission of the Regions in the Yangtze River Economic Belt. Discret. Dyn. Nat. Soc. 2020. [Google Scholar] [CrossRef]
- Fiedor, P. Mutual Information-Based Hierarchies on Warsaw Stock Exchange. Acta Phys. Pol. A 2015, 127, A33–A37. [Google Scholar] [CrossRef]
- Yang, C.; Shen, Y.; Xia, B. Evolution of Shanghai Stock Market Based on Maximal Spanning Trees. Mod. Phys. Lett. B 2013, 27, 1350022. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Y.; Hao, W.; Ying, S.; Lei, N. Effects of Financial Crisis on the Industry Sector of Chinese Stock Market—From a Perspective of Complex Network. Mod. Phys. Lett. B 2014, 28, 1450102. [Google Scholar] [CrossRef]
- Pawel, F. Networks in Financial Markets Based on the Mutual Information Rate. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 89, 052801. [Google Scholar]
- Kwon, O.; Yang, J.S. Information Flow between Composite Stock Index and Individual Stocks. Phys. A Stat. Mech. Appl. 2008, 387, 2851–2856. [Google Scholar] [CrossRef] [Green Version]
- Villaverde, A.F.; John, R.; Federico, M.; Banga, J.R.; Magnus, R. MIDER: Network Inference with Mutual Information Distance and Entropy Reduction. PLoS ONE 2014, 9, e96732. [Google Scholar] [CrossRef] [Green Version]
- Steuer, R.; Kurths, J.; Daub, C.O.; Weise, J.; Selbig, J. The Mutual Information: Detecting and Evaluating Dependencies Between Variables. Bioinformatics 2002, 18, S231–S240. [Google Scholar] [CrossRef] [Green Version]
- Kinney, J.B.; Atwal, G.S. Equitability, Mutual Information, and the Maximal Information Coefficient. Proc. Natl. Acad. Sci. USA 2014, 111, 3354–3359. [Google Scholar] [CrossRef] [Green Version]
- Kwapien, J.; Oswiecimka, P.; Forczek, M.; Drozdz, S. Minimum Spanning Tree Filtering of Correlations for Varying Time Scales and Size of Fluctuations. Phys. Rev. E 2017, 95, 052313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Index Name | Code | No. | Index Name | Code |
---|---|---|---|---|---|
1 | Gansu Index | CN6004 | 6 | Shandong Index | CN6021 |
2 | Henan Index | CN6010 | 7 | Shanxi Index | CN6022 |
3 | Inner Mongolia Index | CN6018 | 8 | Shaanxi Index | CN6023 |
4 | Ningxia Index | CN6019 | 9 | Sichuan Index | CN6025 |
5 | Qinghai Index | CN6020 |
No. | Mean | Std. Dev. | Skewness | Kurtosis | ADF Statistic | Jarque–Bera Statistic |
---|---|---|---|---|---|---|
1 | −8.31 × 10−5 | 0.0198 | −1.0759 | 7.0631 | −34.4492 *** | 1286.827 *** |
2 | 3.33 × 10−4 | 0.0179 | −1.0290 | 7.3840 | −35.6237 *** | 1427.818 *** |
3 | 3.18 × 10−4 | 0.0178 | −0.7248 | 6.8397 | −37.6013 *** | 1025.385 *** |
4 | −1.82 × 10−4 | 0.0187 | −0.8611 | 6.2893 | −34.2632 *** | 839.1872 *** |
5 | −2.38 × 10−4 | 0.0204 | −0.8815 | 6.5795 | −35.6890 *** | 969.1649 *** |
6 | 3.25 × 10−4 | 0.0176 | −1.0764 | 7.7921 | −35.3815 *** | 1680.070 *** |
7 | 4.91 × 10−6 | 0.0186 | −1.1569 | 9.0852 | −35.3596 *** | 2580.079 *** |
8 | 4.08 × 10−4 | 0.0206 | −0.7889 | 6.7558 | −34.6022 *** | 1010.246 *** |
9 | 5.54 × 10−4 | 0.0188 | −1.0312 | 7.3076 | −34.4032 *** | 1388.468 *** |
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|
Average MI | 1.3830 | 1.2730 | 0.6204 | 0.9004 | 0.9425 | 0.7209 |
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|
S. D. of NS | 1.6554 | 1.6026 | 1.2371 | 1.4366 | 0.9717 | 0.8044 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Sum |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 13 | 0 | 0 | 0 | 48 | 0 | 0 | 5 | 66 |
2 | 0 | 0 | 0 | 0 | 0 | 66 | 0 | 0 | 0 | 66 |
3 | 0 | 6 | 0 | 0 | 0 | 8 | 23 | 0 | 29 | 66 |
4 | 15 | 6 | 0 | 0 | 0 | 35 | 4 | 4 | 2 | 66 |
5 | 0 | 29 | 0 | 0 | 0 | 26 | 8 | 1 | 2 | 66 |
6 | 0 | 38 | 0 | 0 | 0 | 0 | 4 | 1 | 23 | 66 |
7 | 0 | 17 | 9 | 0 | 0 | 22 | 0 | 6 | 12 | 66 |
8 | 0 | 6 | 0 | 0 | 0 | 46 | 0 | 0 | 14 | 66 |
9 | 0 | 0 | 0 | 0 | 0 | 66 | 0 | 0 | 0 | 66 |
Sum | 15 | 115 | 9 | 0 | 0 | 317 | 39 | 12 | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Hui, X. Economic Dependence Relationship and the Coordinated & Sustainable Development among the Provinces in the Yellow River Economic Belt of China. Sustainability 2021, 13, 5448. https://doi.org/10.3390/su13105448
Wu X, Hui X. Economic Dependence Relationship and the Coordinated & Sustainable Development among the Provinces in the Yellow River Economic Belt of China. Sustainability. 2021; 13(10):5448. https://doi.org/10.3390/su13105448
Chicago/Turabian StyleWu, Xianbo, and Xiaofeng Hui. 2021. "Economic Dependence Relationship and the Coordinated & Sustainable Development among the Provinces in the Yellow River Economic Belt of China" Sustainability 13, no. 10: 5448. https://doi.org/10.3390/su13105448