Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario
Abstract
:1. Introduction
2. Pollutant Emissions from Fossil Fuel Combustion in IC Engines
2.1. Carbon Monoxide Emissions
2.2. Unburned Hydrocarbons Emissions
2.3. Nitrogen Oxide Emissions
2.4. Particulate Matter Emissions
2.5. Carbon Dioxide Emissions
3. Negative Impacts of Pollutant Emissions on Human Life Quality
4. Abatement of Pollutant Emissions Via Biodiesel Combustion in IC Engines
4.1. Road Transportation as a Contributor of Harmful Air Pollutants
4.2. Nexus Between Engine Fuel Combustion and Sustainable Environmental Development
5. Discussion
- The development of novel methods for obtaining pure feedstock for quality biodiesel production engine applications. This is required to foster research efforts on certain groups of feedstocks which have the appropriate oil yields and high fuel qualities that may promote global adoption of biodiesel combustion toward a sustainable world;
- Long-term stabilization and biodiesel quality improvement to ensure stable combustion and improved engine performance without contributing to environmental pollution;
- Putting systems in place to harness and convert carbon emissions from fossil fuels into useable chemical products may contribute to the elimination of air pollution. Research is on-going to convert carbon dioxide into useful alternative energy sources such as combustible methane.
6. Conclusions
- Gaseous pollutants and particulate matter, which largely constitute outdoor air pollution, have very common causes, particularly human activities which involve combustion processes;
- Gaseous pollutants such as carbon monoxide, unburned hydrocarbons, nitrogen oxides, particulate matter, and carbon dioxide are the major emissions from vehicle exhausts running on fossil fuels;
- Gaseous and particulate pollutants have negative impacts on human health and the environment;
- Greenhouse gas emissions from the transportation industry come from the combustion of fossil fuels, with gasoline and diesel making up about 95% of the liquid fuels;
- Five of the total seventeen SDGs are interwoven to support sustainable life and the environment. A critical evaluation of their mission goals and future targets suggest that they are geared toward the conservation, restoration, and sustainable use of natural resources, in such a way that the environment is well preserved for perfect and healthy life for all organisms. The use of biodiesel as a clean fuel can reduce pollution, ensure access to clean energy, mitigate climate change, and protect lives on the earth’s surface and below water;
- The reduction in or cessation of fossil fuel combustion can reduce or eliminate the risks of respiratory problems and related deaths caused by air pollution. There is a need for increasing the development and adoption of quality biofuels which are environmentally friendly, green, and sustainable;
- The use of biodiesel in internal combustion engines, either in whole or part, reduces environmental pollution and the health risks associated with the combustion of fossil diesel;
- Emission reduction facts from the National Biodiesel Board of the United States showed that the combustion of B100 as a transportation fuel decreased total HC, PAH, carbon, and sulfur emissions by 67%, 80%, 48%, and 100%, respectively. A hypothetical scenario forecast showed that the daily GHG emissions would be reduced by 712.1 CO2-equivalent tons in 2025, if half of metropolis passenger cars and HDDTs were to be run on B20.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rai, P.K. Particulate Matter and Its Size Fractionation. In Biomagnetic Monitoring of Particulate Matter; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–13. [Google Scholar]
- Vallero, D.A. Air Pollution. In Waste; Letcher, T.M., Vallero, D.A.B.T.-W., Eds.; Elsevier: Boston, MA, USA, 2011; pp. 243–264. ISBN 978-0-12-381475-3. [Google Scholar]
- WHO. Air pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 1 May 2021).
- Akinbami, L.J.; Moorman, J.E.; Garbe, P.L.; Sondik, E.J. Status of Childhood Asthma in the United States, 1980–2007. Pediatrics 2009, 123, S131–S145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, H.; Roser, M. CO₂ and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#citation (accessed on 1 August 2020).
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention People Who are at Higher Risk for Severe Illness|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html (accessed on 15 September 2020).
- Hale, T.; Webster, S. Oxford COVID-19 Government Response Tracker. Available online: https://www.ecb.europa.eu/pub/conferences/shared/pdf/20201016_tracking_the_economy/Thomas_Hale.pdf (accessed on 16 October 2020).
- Livingston, E.; Bucher, K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA 2020, 323, 1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skea, J. Fossil fuel consumption and the environment. Energy Policy 1990, 18, 126–127. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C. Carbon and Other Biogeochemical Cycles. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 465–570. ISBN 9781107415324. [Google Scholar]
- Hossain, M.F. Air pollution. In Sustainable Development for Mass Urbanization; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–150. ISBN 978-0-12-817690-0. [Google Scholar]
- Easterbrook, D. Greenhouse Gases. In Evidence-Based Climate Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 163–173. [Google Scholar]
- Borduas, N.; Donahue, N.M. The Natural Atmosphere; Elsevier: Amsterdam, The Netherlands, 2018; pp. 131–150. [Google Scholar]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.W.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961–2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef]
- Kim, D.; Chen, Z.; Zhou, L.-F.; Huang, S.-X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 75–94. [Google Scholar] [CrossRef]
- Abdullah, M.; Zailani, S.; Iranmanesh, M.; Jayaraman, K. Barriers to green innovation initiatives among manufacturers: The Malaysian case. Rev. Manag. Sci. 2015, 10, 683–709. [Google Scholar] [CrossRef]
- Huang, Z.; Liao, G.; Li, Z. Loaning scale and government subsidy for promoting green innovation. Technol. Forecast. Soc. Chang. 2019, 144, 148–156. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Satputaley, S.S.; Zodpe, D.; Deshpande, N. Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. J. Energy Inst. 2017, 90, 513–521. [Google Scholar] [CrossRef]
- Rahman, M.; Hassan, M.H.; Kalam, A.; Atabani, A.E.; Memon, L.A.; Rahman, S.A. Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diesel engine. J. Clean. Prod. 2014, 65, 304–310. [Google Scholar] [CrossRef]
- Hellier, P.; Jamil, F.; Zaglis-Tyraskis, E.; Al-Muhtaseb, A.H.; Al Haj, L.; Ladommatos, N. Combustion and emissions characteristics of date pit methyl ester in a single cylinder direct injection diesel engine. Fuel 2019, 243, 162–171. [Google Scholar] [CrossRef]
- Arunkumar, M.; Kannan, M.; Murali, G. Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renew. Energy 2019, 131, 737–744. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Rep. 2019, 5, 1560–1579. [Google Scholar] [CrossRef]
- Reşitoğlu, İ.A.; Altinişik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Novotná, B.; Sikorová, J.; Milcová, A.; Pechout, M.; Dittrich, L.; Vojtíšek-Lom, M.; Rossner, P.; Brzicová, T.; Topinka, J. The genotoxicity of organic extracts from particulate truck emissions produced at various engine operating modes using diesel or biodiesel (B100) fuel: A pilot study. Mutat. Res. Toxicol. Environ. Mutagen. 2019, 845, 403034. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.A.; García-Contreras, R.; de la Fuente, J.; Armas, O.; Orozco-Jiménez, L.Y.; Agudelo, J.R. Genotoxicity and mutagenicity of particulate matter emitted from diesel, gas to liquid, biodiesel, and farnesane fuels: A toxicological risk assessment. Fuel 2020, 282, 118763. [Google Scholar] [CrossRef]
- Antonini, J. Health Effects Associated with Welding. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 49–70. [Google Scholar]
- Wu, C.-W.; Chen, R.-H.; Pu, J.-Y.; Lin, T.-H. The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmos. Environ. 2004, 38, 7093–7100. [Google Scholar] [CrossRef]
- Walsh, M.P. Mobile Source Related Air Pollution: Effects on Health and the Environment. In Encyclopedia of Environmental Health; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 803–809. ISBN 9780444522726. [Google Scholar]
- Stork, C.M. Carbon Monoxide. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 682–684. ISBN 9780123864543. [Google Scholar]
- National Biodiesel Board Biodiesel emissions and health effects testing. In Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 745–748.
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 9781260116106. [Google Scholar]
- Machado Corrêa, S.; Arbilla, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos. Environ. 2008, 42, 769–775. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Kuna-Dibbert, B.; Schneider, J. Health Effects of Transport-Related Air Pollution; Krzyzanowski, M., Ku-na-Dibbert, B., Schneider, J., Eds.; World Health Organization: Copenhagen, Denmark, 2005; ISBN 92-890-1373-7. [Google Scholar]
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Boningari, T.; Smirniotis, P.G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr. Opin. Chem. Eng. 2016, 13, 133–141. [Google Scholar] [CrossRef]
- Ramalingam, S.; Rajendran, S. Assessment of performance, combustion, and emission behavior of novel annona bio-diesel-operated diesel engine. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 391–405. [Google Scholar]
- Lee, T.; Park, J.; Kwon, S.; Lee, J.; Kim, J. Variability in operation-based NOx emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles. Sci. Total Environ. 2013, 461, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, O.; Ahmed, N.A. Exhaust emissions and engine performance analysis of a marine diesel engine fuelled with Parinari polyandra biodiesel-diesel blends. Energy Rep. 2020, 6, 2999–3007. [Google Scholar] [CrossRef]
- Tayari, S.; Abedi, R.; Rahi, A. Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renew. Energy 2020, 147, 1058–1069. [Google Scholar] [CrossRef]
- Stanek, L.W.; Brown, J.S. Air Pollution: Sources, Regulation, and Health Effects. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Grewe, V.; Dahlmann, K.; Matthes, S.; Steinbrecht, W. Attributing ozone to NOx emissions: Implications for climate mitigation measures. Atmos. Environ. 2012, 59, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.K. Air Pollution Control. In Thermal Power Plant; Elsevier: Amsterdam, The Netherlands, 2015; pp. 479–522. [Google Scholar]
- Speight, J.G. Process classification. In Standard Handbook of Petroleum and Natural Gas Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–276. [Google Scholar]
- Geddes, J.; Murphy, J. The science of smog: A chemical understanding of ground level ozone and fine particulate matter. In Metropolitan Sustainability; Elsevier: Amsterdam, The Netherlands, 2012; pp. 205–230. [Google Scholar]
- El Morabet, R. Effects of outdoor air pollution on human health. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 278–286. ISBN 9780444639523. [Google Scholar]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Global Carbon Project Global Carbon Project (GCP). Available online: https://www.globalcarbonproject.org/ (accessed on 1 May 2021).
- Hartmann, D.L.; Tanka, M.G.K.; Rusticucci, M. IPCC Fifth Assessment Report. Available online: http://www.climatechange2013.org/report/reports-graphic/ch2-graphics/ (accessed on 1 May 2013).
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Ruedy, R.A. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change AR5 Synthesis Report: Climate Change 2014. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 6 October 2020).
- Monitoring Progress of Europe’s Transport Sector towards Its Environment, Health and Climate Objectives. Available online: https://www.eea.europa.eu/publications/monitoring-progress-of-europe2019s-transport/monitoring-progress-of-europes-transport (accessed on 5 December 2017).
- United States Environmental Protection Agency Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 6 October 2020).
- Ghosh, I. Visualizing the Human Impact on the Ocean Economy. Available online: https://www.visualcapitalist.com/human-impact-ocean-economy/ (accessed on 5 September 2020).
- International Energy Agency (IEA). Global Energy and CO2 Status Report. The Latest Ttrends in Energy and Emissions in 2018. Available online: https://www.iea.org/reports/global-energy-co2-status-report-2019 (accessed on 6 October 2020).
- IEA Key World Energy Statistics 2020. Available online: https://www.iea.org/reports/key-world-energy-statistics-2020 (accessed on 31 August 2020).
- World Resource Institute CAIT Climate Data Explorer—Historical Emissions. Available online: https://www.climatewatchdata.org/ghg-emissions (accessed on 31 August 2020).
- USEPA Benefits and Costs of the Clean Air Act 1990–2020, the Second Prospective Study. Available online: https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1990-2020-second-prospective-study (accessed on 20 February 2021).
- Greenstone, M.; Fan, C.Q. The Air Quality-Life Index (AQLI)—EPIC Pollution Index. Available online: https://aqli.epic.uchicago.edu/the-index/#:~:text=TheAirQualityLifeIndex,OrganizationguidelineorNationalstandards (accessed on 20 February 2021).
- Health Effects Institute State of Global Air 2019. Available online: https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf (accessed on 1 May 2021).
- Burtscher, H. Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2005, 36, 896–932. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Alföldy, B.; Drossinos, Y. A metric for health effects studies of diesel exhaust particles. J. Aerosol Sci. 2009, 40, 639–651. [Google Scholar] [CrossRef]
- Goix, S.; Lévêque, T.; Xiong, T.-T.; Schreck, E.; Baeza-Squiban, A.; Geret, F.; Uzu, G.; Austruy, A.; Dumat, C. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores. Environ. Res. 2014, 133, 185–194. [Google Scholar] [CrossRef]
- Chio, C.-P.; Liao, C.-M.; Tsai, Y.I.; Cheng, M.-T.; Chou, W.-C. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan. Atmos. Environ. 2014, 85, 64–72. [Google Scholar] [CrossRef]
- Ristovski, Z.D.; Miljevic, B.; Surawski, N.C.; Morawska, L.; Fong, K.M.; Goh, F.; Yang, I.A. Respiratory health effects of diesel particulate matter. Respirology 2012, 17, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, R.L.; Aucamp, P.J.; Bais, A.F.; Björn, L.O.; Ilyas, M.; Madronich, S. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2011, 10, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; McKenzie, R.L.; et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem. Photobiol. Sci. 2018, 17, 127–129. [Google Scholar] [CrossRef]
- Knothe, G.; Krahl, J.; Van Gerpen, J. The Biodiesel Handbook; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9781893997622. [Google Scholar]
- Yan, Y. Biodiesel. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Milazzo, M.; Spina, F.; Primerano, P.; Bart, J. Soy biodiesel pathways: Global prospects. Renew. Sustain. Energy Rev. 2013, 26, 579–624. [Google Scholar] [CrossRef]
- Huo, H.; Wang, M.; Bloyd, C.; Putsche, V. Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean Derived Biodiesel and Renewable Fuels. Available online: https://pubs.acs.org/doi/10.1021/es8011436 (accessed on 1 May 2021).
- USEPA. Smog, Soot, and Other Air Pollution from Transportation. Available online: https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution#:~:text=Today%2C (accessed on 31 August 2020).
- US EPA Our Nation’s Air 2018. Available online: https://gispub.epa.gov/air/trendsreport/2020/#home (accessed on 31 August 2020).
- Irwin, J.; Williams, M. Acid rain: Chemistry and transport. Environ. Pollut. 1988, 50, 29–59. [Google Scholar] [CrossRef]
- Breeze, P. Combustion Plant Emissions: Sulfur Dioxide, Nitrogen Oxides, and Acid Rain. In Electricity Generation and the Environment; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hirkude, J.B.; Padalkar, A.S. Performance and emission analysis of a compression ignition. Appl. Energy 2012, 90, 68–72. [Google Scholar] [CrossRef]
- Ramadhas, A.; Muraleedharan, C.; Jayaraj, S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew. Energy 2005, 30, 1789–1800. [Google Scholar] [CrossRef]
- Kumar, R.; Dixit, A.K. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio. J. Renew. Energy 2014, 2014, 872923. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.-F.; Huang, J.-H.; Huang, D.-Y. Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel 2009, 88, 1779–1785. [Google Scholar] [CrossRef]
- Fahd, M.E.A.; Wenming, Y.; Lee, P.; Chou, S.; Yap, C.R. Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition. Appl. Energy 2013, 102, 1042–1049. [Google Scholar] [CrossRef]
- Enweremadu, C.C.; Rutto, H.L.; Peleowo, N. Performance evaluation of a diesel engine fueled with methyl ester of shea butter. World Acad. Sci. Eng. Technol. 2011, 5, 1216–1220. [Google Scholar]
- Ogunkunle, O.; Ahmed, N.A. Performance evaluation of a diesel engine using blends of optimized yields of sand apple (Parinari polyandra) oil biodiesel. Renew. Energy 2019, 134, 1320–1331. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Valente, O.S.; da Silva, M.J.; Pasa, V.M.D.; Belchior, C.R.P.; Sodré, J.R. Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 2010, 89, 3637–3642. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Qin, J.-B.; Roskilly, A.P. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel. Fuel Process. Technol. 2010, 91, 1761–1767. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Ali, M.; Baroutian, S.; Saleem, M. Techno-economic comparison between B10 of Eruca sativa L. and other indigenous seed oils in Pakistan. Process. Saf. Environ. Prot. 2011, 89, 165–171. [Google Scholar] [CrossRef]
- Can, Ö. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Convers. Manag. 2014, 87, 676–686. [Google Scholar] [CrossRef]
- Ong, H.C.; Masjuki, H.; Mahlia, T.; Silitonga, A.; Chong, W.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 2014, 69, 427–445. [Google Scholar] [CrossRef]
- Al-Lwayzy, S.H.; Yusaf, T. Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel. Renew. Energy 2017, 101, 690–701. [Google Scholar] [CrossRef]
- Elkelawy, M.; Bastawissi, H.A.-E.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Ponnamma, D.; Walvekar, R. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 2019, 255, 115791. [Google Scholar] [CrossRef]
- Gharehghani, A.; Asiaei, S.; Khalife, E.; Najafi, B.; Tabatabaei, M. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel-Biodiesel blend. J. Clean. Prod. 2019, 210, 1164–1170. [Google Scholar] [CrossRef]
- Tesfa, B.; Gu, F.; Mishra, R.; Ball, A. Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks. Energies 2014, 7, 334–350. [Google Scholar] [CrossRef]
- Nayak, S.K.; Pattanaik, B.P. Experimental Investigation on Performance and Emission Characteristics of a Diesel Engine Fuelled with Mahua Biodiesel Using Additive. Energy Procedia 2014, 54, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Imtenan, S.; Masjuki, H.; Varman, M.; Arbab, M.; Sajjad, H.; Fattah, I.M.R.; Abedin, M.; Hasib, A.S.M. Emission and Performance Improvement Analysis of Biodiesel-diesel Blends with Additives. Procedia Eng. 2014, 90, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Bari, S. Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel. Appl. Energy 2014, 124, 35–43. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, H.-A. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel 2006, 85, 298–305. [Google Scholar] [CrossRef]
- Sukjit, E.; Herreros, J.; Piaszyk, J.; Dearn, K.D.; Tsolakis, A. Finding Synergies in Fuels Properties for the Design of Renewable Fuels—Hydroxylated Biodiesel Effects on Butanol-Diesel Blends. Environ. Sci. Technol. 2013, 47, 3535–3542. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, K.; Velraj, R.; Ganesan, R. Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew. Energy 2008, 33, 2294–2302. [Google Scholar] [CrossRef]
- Rao, T.V.; Rao, G.P.; Chandra, K.H. Experimental Investigation of Pongamia, Jatropha and Neem Methyl Esters as Bio-diesel on C.I. Engine. Jordan J. Mech. Ind. Eng. 2008, 2, 117–122. [Google Scholar]
- Sanjid, A.; Kalam, A.; Masjuki, H.H.; Varman, M.; Zulkifli, N.W.B.M.; Abedin, J. Performance and emission of multi-cylinder diesel engine using biodiesel blends obtained from mixed inedible feedstocks. J. Clean. Prod. 2016, 112, 4114–4122. [Google Scholar] [CrossRef]
- Kannan, D.; Nabi, N.; Hustad, J.E. Influence of Ethanol Blend Addition on Compression Ignition Engine Performance and Emissions Operated with Diesel and Jatropha Methyl Ester. Available online: https://www.sae.org/publications/technical-papers/content/2009-01-1808/ (accessed on 15 June 2009).
- Surawski, N.C.; Ristovski, Z.D.; Brown, R.J.; Situ, R. Gaseous and particle emissions from an ethanol fumigated compression ignition engine. Energy Convers. Manag. 2012, 54, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Lee, W.J.; Wu, T.S.; Wu, C.Y.; Chen, S.J. Use of water containing acetone-butanol-ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel. Energy 2014, 64, 678–687. [Google Scholar] [CrossRef]
- Tse, H.; Leung, C.W.; Cheung, C.S. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015, 83, 343–350. [Google Scholar] [CrossRef]
- Ramalingam, S.; Rajendran, S.; Ganesan, P. Performance improvement and exhaust emissions reduction in biodiesel operated diesel engine through the use of operating parameters and catalytic converter: A review. Renew. Sustain. Energy Rev. 2018, 81, 3215–3222. [Google Scholar] [CrossRef]
- Ramalingam, S.; Rajendran, S.; Ganesan, P.; Govindasamy, M. Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine—A review. Renew. Sustain. Energy Rev. 2018, 81, 775–788. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K.; Jhalani, A. A Comprehensive Review on 1st-Generation Biodiesel Feedstock Palm Oil: Production, Engine Performance, and Exhaust Emissions. Bioenergy Res. 2021, 14, 1–22. [Google Scholar] [CrossRef]
- Sarvi, A.; Zevenhoven, R. Large-scale diesel engine emission control parameters. Energy 2010, 35, 1139–1145. [Google Scholar] [CrossRef]
- Saravanan, S.; Nagarajan, G.; Sampath, S. Multi response optimization of NOx emission of a stationary diesel engine. Fuel 2010, 89, 3235–3240. [Google Scholar] [CrossRef]
- Du, H.; Huque, Z.; Kommalapati, R.R. Impacts of Biodiesel Applied to the Transportation Fleets in the Greater Houston Area. J. Renew. Energy 2018, 2018, 7350715. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA) Global Energy Review: CO2 Emissions in 2020. Available online: https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020 (accessed on 31 August 2020).
- Mackay, A. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. J. Environ. Qual. 2008, 37, 2407. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, R. Climate Change 2014: Impacts, Adaptation and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Eds.; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107415386. [Google Scholar]
- Campbell-Lendrum, D.; Prüss-Ustün, A. Climate change, air pollution and noncommunicable diseases. Bull. World Health Organ. 2019, 97, 160–161. [Google Scholar] [CrossRef]
- Yadav, A.K.; Khan, M.E.; Dubey, A.M.; Pal, A. Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel. Case Stud. Therm. Eng. 2016, 8, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Miri, S.M.R.; Seyedi, S.R.M.; Ghobadian, B. Effects of biodiesel fuel synthesized from non-edible rapeseed oil on performance and emission variables of diesel engines. J. Clean. Prod. 2017, 142, 3798–3808. [Google Scholar] [CrossRef]
- Saraee, H.S.; Jafarmadar, S.; Sayadi, M.; Parikhani, A.; Kheyrollahi, J.; Pourvosoughi, N. Green fuel production from Pistacia Khinjuk and its engine test analysis as a promising alternative. J. Clean. Prod. 2017, 156, 106–113. [Google Scholar] [CrossRef]
- Bergthorson, J.M.; Thomson, M.J. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 2015, 42, 1393–1417. [Google Scholar] [CrossRef]
- Mohsin, R.; Majid, Z.; Shihnan, A.; Nasri, N.; Sharer, Z. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Convers. Manag. 2014, 88, 821–828. [Google Scholar] [CrossRef]
- Raghuvaran, S.; Ashok, B.; Veluchamy, B.; Ganesh, N. Evaluation of performance and exhaust emission of C.I diesel engine fuel with palm oil biodiesel using an artificial neural network. Mater. Today Proc. 2021, 37, 1107–1111. [Google Scholar] [CrossRef]
- Simsek, S.; Uslu, S. Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions. Fuel 2020, 280, 118613. [Google Scholar] [CrossRef]
- Sayin, C.; Gumus, M. Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Appl. Therm. Eng. 2011, 31, 3182–3188. [Google Scholar] [CrossRef]
- Gumus, M.; Sayin, C.; Canakci, M. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends. Fuel 2012, 95, 486–494. [Google Scholar] [CrossRef]
- Soriano, J.A.; García-Contreras, R.; Leiva-Candia, D.; Soto, F. Influence on Performance and Emissions of an Automotive Diesel Engine Fueled with Biodiesel and Paraffinic Fuels: GTL and Biojet Fuel Farnesane. Energy Fuels 2018, 32, 5125–5133. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.; Kalam, M.; Atabani, A. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 2013, 55, 879–887. [Google Scholar] [CrossRef]
- Jaliliantabar, F.; Ghobadian, B.; Carlucci, A.P.; Najafi, G.; Ficarella, A.; Strafella, L.; Santino, A.; de Domenico, S. Comparative evaluation of physical and chemical properties, emission and combustion characteristics of brassica, cardoon and coffee based biodiesels as fuel in a compression-ignition engine. Fuel 2018, 222, 156–174. [Google Scholar] [CrossRef]
- Geng, P.; Cao, E.; Tan, Q.; Wei, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renew. Sustain. Energy Rev. 2017, 71, 523–534. [Google Scholar] [CrossRef]
- Kumar, S.; Dinesha, P. Use of alternative fuels in compression ignition engines: A review. Biofuels 2017, 10, 525–535. [Google Scholar] [CrossRef]
- Jindal, S.; Nandwana, B.P.; Rathore, N.S.; Vashistha, V. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Appl. Therm. Eng. 2010, 30, 442–448. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Abedin, M.J. Assessment of emission and performance of compression ignition engine with varying injection timing. Renew. Sustain. Energy Rev. 2014, 35, 221–230. [Google Scholar] [CrossRef]
- Sayin, C.; Ozsezen, A.N.; Canakci, M. The influence of operating parameters on the performance and emissions of a DI diesel engine using methanol-blended-diesel fuel. Fuel 2010, 89, 1407–1414. [Google Scholar] [CrossRef]
- Venkanna, B.K.; Wadawadagi, S.B.; Reddy, C.V. Effect of Injection Pressure on Performance, Emission and Combustion Characteristics of Direct Injection Diesel Engine Running on Blends of Pongamia pinnata Linn Oil (Honge oil) and Diesel Fuel. Agric. Eng. Int. CIGR E J. 2009, 11, 1–17. [Google Scholar]
- Uherek, E.; Halenka, T.; Borken-Kleefeld, J.; Balkanski, Y.; Berntsen, T.; Borrego, C.; Gauss, M.; Hoor, P.; Juda-Rezler, K.; Lelieveld, J. Transport impacts on atmosphere and climate: Land transport. Atmos. Environ. 2010, 44, 4772–4816. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2020, 244, 117834. [Google Scholar] [CrossRef]
- Holman, C. Sources of Air Pollution. In Air Pollution and Health; Elsevier: Amsterdam, The Netherlands, 1999; pp. 115–148. [Google Scholar]
- Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rypdal, K.; Skeie, R.B. Climate forcing from the transport sectors. Proc. Natl. Acad. Sci. USA 2008, 105, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teague, W.S.; Zick, C.D.; Smith, K.R. Soft Transport Policies and Ground-Level Ozone: An Evaluation of the “Clear the Air Challenge” in Salt Lake City. Policy Stud. J. 2015, 43, 399–415. [Google Scholar] [CrossRef]
- Poorfakhraei, A.; Tayarani, M.; Rowangould, G. Evaluating health outcomes from vehicle emissions exposure in the long range regional transportation planning process. J. Transp. Health 2017, 6, 501–515. [Google Scholar] [CrossRef]
- US EPA Biological Pollutants’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/biological-pollutants-impact-indoor-air-quality#:~:text=Mold%2Cdustmites%2C (accessed on 15 September 2020).
- Wagner, I. Passenger Road Transport—Carbon Dioxide Emissions 2010–2020. Available online: https://www.statista.com/statistics/1107970/carbon-dioxide-emissions-passenger-transport/ (accessed on 15 September 2020).
- International Energy Agency (IEA) Tracking Transport. Available online: https://www.iea.org/reports/tracking-transport-2020/electric-vehicles (accessed on 1 April 2021).
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel-Biodiesel-Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, F.C.; Coelho, S.T. History, evolution, and environmental impact of biodiesel in Brazil: A review. Renew. Sustain. Energy Rev. 2017, 75, 168–179. [Google Scholar] [CrossRef]
- Kamil, M.; Ramadan, K.M.; Awad, O.I.; Ibrahim, T.K.; Inayat, A.; Ma, X. Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine. Sci. Total Environ. 2019, 675, 13–30. [Google Scholar] [CrossRef] [PubMed]
- United Nations Sustainable Development Goals: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/index.html (accessed on 7 September 2020).
- United Nations Sustainable Knowledge Platform. United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 1 May 2021).
- Bhatia, S.C. Energy resources and their utilisation. In Advanced Renewable Energy Systems; Bhatia, S.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–31. ISBN 978-1-78242-269-3. [Google Scholar]
- Carrington, D. Air Pollution May Be ‘Key Contributor’ to Covid-19 Deaths—Study. Available online: https://www.theguardian.com/environment/2020/apr/20/air-pollution-may-be-key-contributor-to-covid-19-deaths-study (accessed on 31 October 2020).
Pollutant | Source of Emission | Adverse Impacts on Human Health |
---|---|---|
Carbon monoxide (CO) | Fossil fuel combustion, burning coal, oil industrial activities, oil and wood, smoke | Hypoxia (oxygen deprivation by displacing oxygen in bonding with hemoglobin. Common side effects include cardiovascular and coronary problems, risk of stroke, impaired learning ability, dexterity, and sleep). |
Carbon dioxide (CO2) | Fossil fuel combustion, burning coal, oil industrial activities, oil and wood, smoke | Inflammation, reduction in cognitive abilities, kidney calcification, bone demineralization, heart dysfunction. |
Sulfur dioxide (SO2) | Burning coal, fossil fuel combustion | Adverse effects on respiratory and central nervous systems, eye irritation. |
Particulate matter (PM) (often estimated for 10 and 2.5 microns) | Fossil fuel combustion, industrial activities, smokes | Permanent deterioration of respiratory function, dysfunction of central nervous and reproductive systems, cardiovascular diseases, and cancer. |
Lead (Pb) | Lead smelting, industrial activities, leaded petrol | Heart disease, premature death, and behavioral and development problems in children. |
Nitrogen dioxide (NO2) | Vehicular exhaust, fossil fuel combustion | Damaged lung tissue, liver, spleen, and impaired respiratory functions. |
Polycyclic aromatic hydrocarbons (PAHs) | Fuel combustion, wood fires, motor engines | Damage to respiratory and central nervous systems, cancer. |
Ozone (O3) | Vehicular exhaust, industrial activities | Impaired respiratory function (short-term exposure), cardiovascular dysfunctions, and eye irritation. |
Volatile organic compounds (VOCs) | Fossil fuel production and combustion, use of heavy chemicals (paints and coatings), biomass combustion | Irritation of eyes, nose, throat, and mucosal membranes, cancer. |
Emissions | Increase in Emission | Decrease in Emission | ||
---|---|---|---|---|
Number of Studies | % | Number of Studies | % | |
CO2 | 6 | 46.2 | 5 | 38.5 |
CO | 7 | 10.6 | 57 | 84.4 |
THC | 3 | 5.3 | 51 | 89.5 |
NOx | 45 | 65.2 | 20 | 29.0 |
Reference | Feedstock | Fuel Blends | Engine Condition | Emissions Reduction Compared to Fossil Diesel (%) | |||
---|---|---|---|---|---|---|---|
CO2 | CO | HC | NOx | ||||
[45] | Parinari polyandra | B10, B20, B30 | 1700 to 2000 rpm | −21.7 to –53.8 | −53.4 to −81.7 | −7.8 to −13.8 | 24.8 to 51.1 |
[46] | Chlorella vulgaris | B10, B20 | −3.4 to −5.4 | −41.8 to −47.4 | −44.3 to −51.1 | 1.9 to 5.1 | |
[91] | Jatropha | B100 | 1500 and 2000 rpm | – | −20 to −25 | −17 to −23 | −0.3 to −4.5 |
[91] | Soybean | B5, B20, B50, B85 | 9.6 to 35.7 kW | −0.89 to 1.48 | 28 to 48 | −9 to 18 | - |
[92] | Eruca sativa | B10 | 5.88 kW at 2600 rpm | 160 | −30 | - | 108 |
[93] | Waste oil | B5, B10 | 0.12 to 0.48 MPa, 2200 rpm | 3.3 to 5 | −11.8 to −51 | −2 to −29 | 6.4 to 8.7 |
[94] | Jatropha | B10, B20, B30, B50 | Full load, 1500 to 2400 rpm | 13.08 | − 16.3 | − 7.4 | 27.25 |
[95] | Chlorella protothecoides | B20, B50, B100 | 1700 to 2900 rpm | −0.7 to −4.2 | −12.3 to −28 | – | −2.4 to −7.4 |
[96] | Sunflower and soybean oil | B30, B50, B70 | 5 HP; 7 kW at 1500 rpm | −6.06 to −14.17 | −15.02 to −30.73 | −1.83 to −4.18 | 4.28 to 11.9 |
[97] | Fish oil | B5 | 1200 rpm, 25% to full load | −25 | −8 | −8 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. https://doi.org/10.3390/su13105465
Ogunkunle O, Ahmed NA. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability. 2021; 13(10):5465. https://doi.org/10.3390/su13105465
Chicago/Turabian StyleOgunkunle, Oyetola, and Noor A. Ahmed. 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario" Sustainability 13, no. 10: 5465. https://doi.org/10.3390/su13105465
APA StyleOgunkunle, O., & Ahmed, N. A. (2021). Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability, 13(10), 5465. https://doi.org/10.3390/su13105465