Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals
Abstract
:1. Introduction
2. Sustainable Forest Management—SDG 12
3. Climate Actions—SDG 13
4. Life on Land—SDG 15
5. Discussion
6. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, K.; Malmaeus, M. Ecosystem services in Swedish forests. Scand. J. For. Res. 2016, 31, 626–640. [Google Scholar] [CrossRef]
- Lawlor, K.; Sills, E.; Atmadja, S.; Lin, L.; Songwathana, K.; Sunderland, T.C.H.; O’Connor, A.; Muir, G.; Nerfa, L.; Nodari, G.R.; et al. Sustainable Development Goals: Their Impacts on Forests and People. 2019. Available online: http://www.bosquesandinos.org/wp-content/uploads/2020/01/Sustainable_Development_Goals__Their_Impacts_on_Forests_and_People_compressed.pdf (accessed on 20 January 2021).
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Abbas, D.; Current, D.; Phillips, M.; Rossman, R.; Hoganson, H.; Brooks, K.N. Guidelines for harvesting forest biomass for energy: A synthesis of environmental considerations. Biomass Bioenergy 2011, 35, 4538–4546. [Google Scholar] [CrossRef]
- Strandberg, G.; Kjellström, E.; Poska, A.; Wagner, S.; Gaillard, M.-J.; Trondman, A.-K.; Mauri, A.; Davis, B.A.S.; Kaplan, J.O.; Birks, H.J.B.; et al. Regional climate model simulations for Europe at 6 and 0.2 k BP: Sensitivity to changes in anthropogenic deforestation. Clim. Past 2014, 10, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Futter, M.N.; Högbom, L.; Valinia, S.; Sponseller, R.A.; Laudon, H. Conceptualizing and communicating management effects on forest water quality. AMBIO 2016, 45, 188–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Liu, S.; Wei, X. Impacts of forest changes on hydrology: A case study of large watersheds in the upper reaches of Minjiang River watershed in China. Hydrol. Earth Syst. Sci. 2012, 16, 4279–4290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Bremer, L.L.; Farley, K.A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Lindhjem, H.; Reinvang, R.; Zandersen, M. Landscape experiences as a cultural ecosystem service in a Nordic context. Conceptsvalues Decis. Mak. 2015, 2015, 549. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.; Fyfe, R.M.; Woodbridge, J.; Gaillard, M.-J.; Davis, B.A.S.; Kaplan, J.O.; Marquer, L.; Mazier, F.; Nielsen, A.B.; Sugita, S.; et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Poska, A.; Väli, V.; Tomson, P.; Vassiljev, J.; Kihno, K.; Alliksaar, T.; Villoslada, M.; Saarse, L.; Sepp, K. Reading past landscapes: Combining modern and historical records, maps, pollen-based vegetation reconstructions, and the socioeconomic background. Landsc. Ecol. 2018, 33, 529–546. [Google Scholar] [CrossRef]
- Päivänen, J.; Hånell, B. Peatland Ecology and Forestry—A Sound Approach. Helsingin Yliopiston Metsätieteiden Laitoksen Julkaisuja; Department of Forest Sciences, University of Helsinki: Helsinki, Finland, 2012; Volume 3, 267p. [Google Scholar]
- Nieminen, M.; Sarkkola, S.; Laurén, A. Impacts of forest harvesting on nutrient, sediment and dissolved organic carbon exports from drained peatlands: A literature review, synthesis and suggestions for the future. For. Ecol. Manag. 2017, 392, 13–20. [Google Scholar] [CrossRef]
- Nieminen, M.; Piirainen, S.; Sikström, U.; Löfgren, S.; Marttila, H.; Sarkkola, S.; Laurén, A.; Finér, L. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options. AMBIO 2018, 47, 535–545. [Google Scholar] [CrossRef]
- Päivinen, R.; Päivinen, R.; Lehikoinen, M.; Lehikoinen, M.; Schuck, A.; Schuck, A.; Häme, T.; Häme, T.; Väätäinen, S.; Väätäinen, S.; et al. Mapping Forest in Europe by Combining Earth Observation Data and Forest Statistics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 76, pp. 279–294. [Google Scholar]
- Schuck, A.; Van Brusselen, J.; Päivinen, R.; Häme, T.; Folving, S. Compilation of a calibrated European forest map derived from NOAA-AVHRR data. European Forest Institute. EFI Intern. Rep. 2002, 13, 44. [Google Scholar]
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-Miguel-Ayanz, J. Data Fusion of Different Spatial Resolution Remote Sensing Images Applied to Forest-Type Mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Anonymous. Forest Statistics, Official Statistics of Sweden; Swedish University of Agricultural Sciences: Umeå, Sweden, 2019; 144p, Available online: www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/forest-statistics/forest-statistics/ (accessed on 20 January 2021).
- Anonymous. Forest Resources by Region [Web Publication]; Natural Resources Institute: Helsinki, Finland, 2019; Available online: Stat.luke.fi/en/forest-resources-region_en-2 (accessed on 31 August 2020).
- Anonymous. Total Roundwood Removals and Drain [Web Publication]; Natural Resources Institute: Helsinki, Finland, 2020; Available online: Stat.luke.fi/en/roundwood-removals-and-drain (accessed on 31 August 2020).
- Sheil, D. How plants water our planet: Advances and imperatives. Trends Plant Sci. 2014, 19, 209–211. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 2007, 11, 1013–1033. Available online: www.hydrol-earth-syst-sci.net/11/1013/2007/1 (accessed on 31 August 2020). [CrossRef] [Green Version]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Contreras-Hermosilla, A. Towards Sustainable Forest Management: An Examination of the Technical, Economic and Institutional Feasibility of Improving Management of the Global Forest Estate; FAO Forestry Policy and Planning Division: Rome, Italy, 1999; Available online: Agris.fao.org/agris-search/search.do?recordID=XF2000394043 (accessed on 20 January 2021).
- Svensson, J.; Neumann, W.; Bjärstig, T.; Zachrisson, A.; Thellbro, C. Landscape Approaches to Sustainability—Aspects of Conflict, Integration, and Synergy in National Public Land-Use Interests. Sustainability 2020, 12, 5113. [Google Scholar] [CrossRef]
- Sandström, C.; Moen, J.; Widmark, C.; Danell, Ö. Progressing toward co-management through collaborative learning: Forestry and reindeer husbandry in dialogue. Int. J. Biodivers. Sci. Manag. 2006, 2, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S.; et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, B.G.; Svensson, J.; Mikusiński, G.; Manton, M.; Angelstam, P. European Union’s Last Intact Forest Landscapes are at A Value Chain Crossroad between Multiple Use and Intensified Wood Production. Forests 2019, 10, 564. [Google Scholar] [CrossRef] [Green Version]
- Svensson, J.; Bubnicki, J.W.; Jonsson, B.G.; Andersson, J.; Mikusiński, G. Conservation significance of intact forest landscapes in the Scandinavian Mountains Green Belt. Landsc. Ecol. 2020, 35, 2113–2131. [Google Scholar] [CrossRef]
- Svensson, J.; Andersson, J.; Sandström, P.; Mikusiński, G.; Jonsson, B.G. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure. Conserv. Biol. 2019, 33, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. The European Green Deal. COM/2019/640 Final. 2019. Available online: Eur-lex.europa.eu/legalcontent/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640 (accessed on 20 January 2021).
- Lilja, K.; Loukola-Ruskeeniemi, K. Wood-Based Bioeconomy Solving Global Challenges; Finnish Ministry of Economic Affairs and Employment, Enterprise and Innovation Department: Helsinki, Finland, 2017; ISSN 2342-7922. [Google Scholar]
- Winkler, G. Towards a Sustainable European Forest-Based Bioeconomy—Assessment and the Way Forward. European Forest Institute. Available online: Efi.int/sites/default/files/files/publication-bank/2018/efi_wsctu8_2017.pdf (accessed on 20 January 2021).
- Kauppi, P.E.; Ausubel, J.H.; Fang, J.; Mather, A.S.; Sedjo, R.A.; Waggoner, P.E. Returning forests analyzed with the forest identity. Proc. Natl. Acad. Sci. USA 2006, 103, 17574–17579. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste Biomass Valorization 2021, 12, 65–80. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Bioenergy from Boreal Forests: Swedish Approach to Sustainable Wood Use; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-119-5. [Google Scholar]
- Kolström, M.; Lindner, M.; Vilén, T.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Kremer, A.; Delzon, S.; Barbati, A.; et al. Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. Forests 2011, 2, 961–982. [Google Scholar] [CrossRef] [Green Version]
- Seedre, M.; Kopáček, J.; Janda, P.; Bače, R.; Svoboda, M. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. For. Ecol. Manag. 2015, 346, 106–113. [Google Scholar] [CrossRef]
- Ķēniņa, L.; Jaunslaviete, I.; Liepa, L.; Zute, D.; Jansons, Ā. Carbon Pools in Old-Growth Scots Pine Stands in Hemiboreal Latvia. Forests 2019, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2012, 3, 203–207. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, M.; Wardle, D.A. Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biol. Lett. 2009, 6, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.; Burivalova, Z.; Koh, L.P.; Hellweg, S. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs. Sci. Rep. 2016, 6, 23954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Nilsson, M.B.; Kljun, N.; Wallerman, J.; Fransson, J.E.; Laudon, H.; Lundmark, T.; Peichl, M. The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden. Agric. For. Meteorol. 2019, 274, 29–41. [Google Scholar] [CrossRef]
- Rebane, S.; Jõgiste, K.; Kiviste, A.; Stanturf, J.A.; Kangur, A.; Metslaid, M. C-exchange and balance following clear-cutting in hemiboreal forest ecosystem under summer drought. For. Ecol. Manag. 2020, 472, 118249. [Google Scholar] [CrossRef]
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Lindner, M.; Marelli, L.; Paré, D.; Pingoud, K.; et al. Forest biomass, carbon neutrality and climate change mitigation. Sci. Policy 2016, 3, 3–27. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Cowie, A.L.; Egnell, G.; Holmström, H.; Ågren, G.I. The climate effect of increased forest bioenergy use in Sweden: Evaluation at different spatial and temporal scales. Wiley Interdiscip. Rev. Energy Environ. 2016, 5, 351–369. [Google Scholar] [CrossRef] [Green Version]
- Lilja, S.; Wallenius, T.; Kuuluvainen, T. Structure and development of oldPicea abiesforests in northern boreal Fennoscandia. Écoscience 2006, 13, 181–192. [Google Scholar] [CrossRef]
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nat. Cell Biol. 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Nabuurs, G.-J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Marklund, L.G. Biomassafunktioner för gran i Sverige. Sver. Lantbr. Inst. För Skogstaxeringrapport 1987, 43, 127. (In Swedish) [Google Scholar]
- Hakkila, P. Utilization of Residual Forest Biomass; Springer: Berlin/Heidelberg, Germany, 1989; p. 568. [Google Scholar]
- Petersson, H.; Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 2006, 21, 84–93. [Google Scholar] [CrossRef]
- Armolaitis, K.; Varnagirytė-Kabašinskienė, I.; Stupak, I.; Kukkola, M.; Mikšys, V.; Wójcik, J. Carbon and nutrients of Scots pine stands on sandy soils in Lithuania in relation to bioenergy sustainability. Biomass Bioenergy 2013, 54, 250–259. [Google Scholar] [CrossRef]
- Liski, J.; Ilvesniemi, H.; Mäkelä, A.; Starr, M. Model analysis of the effects of soil age, fires and harvesting on the carbon storage of boreal forest soils. Eur. J. Soil Sci. 1998, 49, 407–416. [Google Scholar] [CrossRef]
- Armolaitis, K.; Stakėnas, V.; Varnagirytė-Kabašinskienė, I.; Gudauskienė, A.; Žemaitis, P. Leaching of organic carbon and plant nutrients at clear cutting of Scots pine stand on arenosol. Baltic For. 2018, 24, 50–59. [Google Scholar]
- Oni, S.K.; Tiwari, T.; Ledesma, J.L.J.; Ågren, A.M.; Teutschbein, C.; Schelker, J.; Laudon, H.; Futter, M.N. Local- and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests. J. Geophys. Res. Biogeosciences 2015, 120, 2402–2426. [Google Scholar] [CrossRef] [Green Version]
- Campeau, A.; Bishop, K.; Amvrosiadi, N.; Billett, M.F.; Garnett, M.H.; Laudon, H.; Öquist, M.G.; Wallin, M.B. Current forest carbon fixation fuels stream CO2 emissions. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.; Augusto, L.; Cécillon, L.; Ferreira, G.W.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Mjöfors, K.; Strömgren, M.; Nohrstedt, H.Ö.; Johansson, M.-B.; Gärdenäs, A.I. Indications that site preparation increases forest ecosystem carbon stocks in the long term. Scand. J. For. Res. 2017, 32, 717–725. [Google Scholar] [CrossRef]
- Larsson, A.; Bjelke, U.; Dahlberg, A.; Sandström, J. Tillståndet i skogen–rödlistade arter i ett nordiskt perspektiv. ArtDatabanken Rapporterar 2011, 9, 4–13. [Google Scholar]
- Anonymous. Swedish University of Agricultural Sciences, Species Information Centre. 2020. Available online: www.artdatabanken.se/en/ (accessed on 20 January 2021).
- Lindenmeyer, D.; Franklin, J.F. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach; Island Press: Washington, DC, USA, 2002; ISBN 978-1-59726-853-0. [Google Scholar]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 2013, 40, 1649–1663. [Google Scholar] [CrossRef]
- Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 2015, 42, 989–993. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Rybicki, J.; Abrego, N.; Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 2019, 23, 506–517. [Google Scholar] [CrossRef]
- Guerra, C.A.; Heintz-Buschart, A.; Sikorski, J.; Chatzinotas, A.; Guerrero-Ramírez, N.; Cesarz, S.; Beaumelle, L.; Rillig, M.C.; Maestre, F.T.; Delgado-Baquerizo, M.; et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Palmero-Iniesta, M.; Espelta, J.M.; Gordillo, J.; Pino, J. Changes in forest landscape patterns resulting from recent afforestation in Europe (1990–2012): Defragmentation of pre-existing forest versus new patch proliferation. Ann. For. Sci. 2020, 77, 1–15. [Google Scholar] [CrossRef]
- Trumbore, S.E.; Brando, P.M.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Frelich, L.E.; Jõgiste, K.; Stanturf, J.; Jansons, A.; Vodde, F. Are Secondary Forests Ready for Climate Change? It Depends on Magnitude of Climate Change, Landscape Diversity and Ecosystem Legacies. Forests 2020, 11, 965. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palahí, M.; Pantsar, M.; Costanza, R.; Kubiszewski, I.; Potočnik, J.; Stuchtey, M.; Nasi, R.; Lovins, H.; Giovannini, E.; Fioramonti, L.; et al. Investing in Nature as the true engine of our economy: A 10-point Action Plan for a Circular Bioeconomy of Wellbeing. Knowl. Action 2020, 2, 58. [Google Scholar] [CrossRef]
- Widmark, C.; Heräjärvi, H.; Kurttila, M.; Lier, K.; Mutanen, A.A.; Øistad, K.; Routa, J.; Saranpää, P.; Tolvanen, A.; Viitanen, J. The Forest in Northern Europe’s Emerging Bioeconomy—Reflections on the Forest’s Role in the Bioeconomy. 2020. Available online: https://forbioeconomy.com/app/uploads/2021/01/The-Forest-in-Northern-Europe’s-Emerging-Bioeconomy.pdf (accessed on 20 January 2021).
- Jõgiste, K.; Korjus, H.; Stanturf, J.A.; Frelich, L.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Köster, K.; Laarmann, D.; et al. Hemiboreal forest: Natural disturbances and the importance of ecosystem legacies to management. Ecosphere 2017, 8, e01706. [Google Scholar] [CrossRef]
- Summers, J.K.; Smith, L.M.; Fulford, R.S.; Crespo, R.D.J. The Role of Ecosystem Services in Community Well-Being. Ecosyst. Serv. Glob. Ecol. 2018, 145, 13. [Google Scholar]
- Anonymous. EU Biodiversity Strategy for COM/2020/380 Final. 2020. Available online: Eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (accessed on 20 January 2021).
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nat. Cell Biol. 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Hetemäki, L. The role of science in forest policy–Experiences by EFI. For. Policy Econ. 2019, 105, 10–16. [Google Scholar] [CrossRef]
- IRENA International Renewable Energy Agency. Available online: https://irena.org/wind (accessed on 19 March 2021).
- Northrup, J.M.; Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 2012, 16, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, M.; Tafarte, P.; Thrän, D. Towards energy landscapes—“Pathfinder for sustainable wind power locations”. Energy 2017, 134, 611–621. [Google Scholar] [CrossRef]
- Diógenes, J.R.F.; Claro, J.; Rodrigues, J.C.; Loureiro, M.V. Barriers to onshore wind energy implementation: A systematic review. Energy Res. Soc. Sci. 2020, 60, 101337. [Google Scholar] [CrossRef]
- Oliver, C.D.; Nassar, N.T.; Lippke, B.R.; McCarter, J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests. J. Sustain. For. 2014, 33, 248–275. [Google Scholar] [CrossRef]
- Gustavsson, L.; Nguyen, T.; Sathre, R.; Tettey, U. Climate effects of forestry and substitution of concrete buildings and fossil energy. Renew. Sustain. Energy Rev. 2021, 136, 110435. [Google Scholar] [CrossRef]
- Stupak, I.; Asikainen, A.; Jonsell, M.; Karltun, E.; Lunnan, A.; Mizaraite, D.; Pasanen, K.; Parn, H.; Raulundrasmussen, K.; Roser, D. Sustainable utilisation of forest biomass for energy—Possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries. Biomass Bioenergy 2007, 31, 666–684. [Google Scholar] [CrossRef]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector—A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Högbom, L.; Abbas, D.; Armolaitis, K.; Baders, E.; Futter, M.; Jansons, A.; Jõgiste, K.; Lazdins, A.; Lukminė, D.; Mustonen, M.; et al. Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals. Sustainability 2021, 13, 5643. https://doi.org/10.3390/su13105643
Högbom L, Abbas D, Armolaitis K, Baders E, Futter M, Jansons A, Jõgiste K, Lazdins A, Lukminė D, Mustonen M, et al. Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals. Sustainability. 2021; 13(10):5643. https://doi.org/10.3390/su13105643
Chicago/Turabian StyleHögbom, Lars, Dalia Abbas, Kęstutis Armolaitis, Endijs Baders, Martyn Futter, Aris Jansons, Kalev Jõgiste, Andis Lazdins, Diana Lukminė, Mika Mustonen, and et al. 2021. "Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals" Sustainability 13, no. 10: 5643. https://doi.org/10.3390/su13105643