Worldwide Research on Land Use and Land Cover in the Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location
2.2. Methods—Data Processing
2.2.1. Phase I: Search Criteria
2.2.2. Phase II: Search and Document Compilation
2.2.3. Phase III: Software Selection and Data Extraction
2.2.4. Phase IV: Data Analysis
3. Results
3.1. Performance Analysis
3.1.1. Analysis of Scientific Production
- Period 1—Decade 1980s: The first period has 19 publications that represent 1.19% of the total articles. The most cited article was published by Vörösmarty et al. [95] in the journal Global Biogeochemical Cycles and had 259 citations. The article studies the construction of a water balance and transport model to provide information on soil moisture, evapotranspiration, runoff, river discharge, and floodplains. During this period, studies related to deforestation [96], hydrobiogeochemistry [97], biogeochemistry [98], radar analysis [99], ecological analysis [100], and rainforest LULC change [101] were also presented.
- Period 2—Decade 1990s: The second period has 122 articles, representing 7.66% of the total articles. The most cited article was published by Adams et al. [102] in the journal Remote Sensing of Environment with 631 citations. The article deals with Landsat images classification to determine land cover, in which techniques of spectral fractions of shadow, soil, and vegetation were applied. In addition, during this period, studies related to carbon storage and dynamics [103,104], deforestation [105,106], LULC [107,108], LULC change [109], and ecotourism and conservation [110] were presented.
- Period 3—Decade 2000s: The third period produced 434 articles that represent 27.26% of the total sample size. The most cited article was published by Feddema et al. [6] in the journal Science, with a total of 660 citations. The article addresses LULC changes. It reveals how agricultural expansion causes climate change in the Amazon associated with factors that influence the Monson and Hadley circulations of tropical climates. Additionally, during this period, studies related to biodiversity [111], agriculture [30], cloud cover [112], flood dynamics [113], effects of soil fertility [114], remote sensing [115,116], and LULC [117,118] were presented.
- Period 4—Decade 2010s: The fourth period presents 1015 articles and represents 63.76% of the sample size. The most cited article was published by Asner et al. [119] in the journal Proceedings of the National Academy of Sciences of the United States of America, with 410 citations. The article addresses the mapping of carbon stocks and emissions, indicating the determinants of forest carbon density. The authors’ results revealed that emissions from LULC changes accounted for 1.1% of the region’s carbon, and deforestation increased emissions by 47%. During this period, studies related to agriculture [120], fire mapping [121], deforestation [122], land-use change [123], biological diversity [124], land management [125], drought–fire interactions [121], LULC change [126], and vegetation dynamics [127] were presented. This decade highlighted a great interest in the scientific community, with a high quantity of publications produced compared to previous decades.
3.1.2. Regional and Country Contribution
3.1.3. Authors Contribution
3.1.4. Frequently Cited Documents
3.2. Analysis of the Intellectual Structure
3.2.1. Co-Occurrence Author Keyword Network
3.2.2. Cocitation Network of Cited Authors
3.2.3. Cocitation Journal Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glinskis, E.A.; Gutiérrez-Vélez, V.H. Quantifying and understanding land cover changes by large and small oil palm expansion regimes in the Peruvian Amazon. Land Use Policy 2019, 80, 95–106. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van der Werf, G.R. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Perz, S.G.; Qiu, Y.; Xia, Y.; Southworth, J.; Sun, J.; Marsik, M.; Rocha, K.; Passos, V.; Rojas, D.; Alarcón, G.; et al. Trans-boundary infrastructure and land cover change: Highway paving and community-level deforestation in a tri-national frontier in the Amazon. Land Use Policy 2013, 34, 27–41. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; de Lima, A.; Adami, M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS Int. J. Geo-Inf. 2020, 9, 583. [Google Scholar] [CrossRef]
- Llerena-Montoya, S.; Velastegui-Montoya, A.; Zhirzhan-Azanza, B.; Herrera-Matamoros, V.; Adami, M.; de Lima, A.; Moscoso-Silva, F.; Encalada, L. Multitemporal Analysis of Land Use and Land Cover within an Oil Block in the Ecuadorian Amazon. ISPRS Int. J. Geo-Inf. 2021, 10, 191. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. Atmospheric science: The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, C.A.; de Lucia-Lobo, F.; Dibike, Y.B.; de Farias Costa, M.P.; dos Santos, V.; Novo, E.M.L.M. Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin. Water 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Turner, B. Land Change as a Forcing Function in Global Environmental Change: Our Earth’s Changing Land: An Encyclopedia of Land-Use and Land-Cover Change; Geist, H., Ed.; Greenwood Press: London, UK, 2006; Volume 1. [Google Scholar]
- Lambin, E.F.; Geist, H. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32201-6. [Google Scholar]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Rindfuss, R.R.; Walsh, S.J.; Mishra, V. People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS; Fox, J., Rindfuss, R.R., Walsh, S.J., Mishra, V., Eds.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Yang, Y.; Zhang, S.; Yang, J.; Chang, L.; Bu, K.; Xing, X. A review of historical reconstruction methods of land use/land cover. J. Geogr. Sci. 2014, 24, 746–766. [Google Scholar] [CrossRef]
- Fearnside, P.M. Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruídam) and the energy policy implications. Water. Air. Soil Pollut. 2002, 133, 69–96. [Google Scholar] [CrossRef]
- Fearnside, P.M. Greenhouse gases from deforestation in Brazilian Amazonia: Net committed emissions. Clim. Chang. 1997, 35, 321–360. [Google Scholar] [CrossRef]
- Grieg-Gran, M.; Porras, I.; Wunder, S. How can market mechanisms for forest environmental services help the poor? Preliminary lessons from Latin America. World Dev. 2005, 33, 1511–1527. [Google Scholar] [CrossRef]
- Fearnside, P.M. Environmental services as a strategy for sustainable development in rural Amazonia. Ecol. Econ. 1997, 20, 53–70. [Google Scholar] [CrossRef]
- Pitman, N.C.A.; Terborgh, J.W.; Silman, M.R.; Núñez, P.V.; Neill, D.A.; Cerón, C.E.; Palacios, W.A.; Aulestia, M. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 2001, 82, 2101–2117. [Google Scholar] [CrossRef]
- Laurance, W.F. ENVIRONMENT: The Future of the Brazilian Amazon. Science 2001, 291, 438–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finer, M.; Jenkins, C.N.; Pimm, S.L.; Keane, B.; Ross, C. Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 2008, 3. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeler, R.A.; Mittermeler, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Fearnside, P.M. The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.L.M.; Pellizari, V.H.; Mueller, R.; Baek, K.; Jesus, E.D.C.; Paula, F.S.; Mirza, B.; Hamaou, G.S.; Tsai, S.M.; Feiglf, B.; et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2013, 110, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, R.; de Aguiar, A.P.D.; Amaral, S. Diversity of cattle raising systems and its effects over forest regrowth in a core region of cattle production in the Brazilian Amazon. Reg. Environ. Chang. 2020, 20. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Biggs, T.; Stow, D.; Numata, I. Mapping heterogeneous forest-pasture mosaics in the Brazilian Amazon using a spectral vegetation variability index, band transformations and random forest classification. Int. J. Remote Sens. 2020, 41, 8682–8692. [Google Scholar] [CrossRef]
- De Almeida, C.A.; Coutinho, A.C.; Esquerdo, J.C.; dalla, M.; Adami, M.; Venturieri, A.; Diniz, C.G.; Dessay, N.; Durieux, L.; Gomes, A.R. High spatial resolution land use and land cover mapping of the Brazilian legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz. 2016, 46, 291–302. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-use and climate change risks in the amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.C.; de Fries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [Green Version]
- Battisti, C.; Poeta, G.; Fanelli, G. An Introduction to Disturbance Ecology; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-32475-3. [Google Scholar]
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.; Neugarten, R.; Butchart, S.H.M.; Collen, B.; Cox, N.; Master, L.L.; O’Connor, S.; et al. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef]
- Velástegui, A.D.; de Lima, A.M.; Adami, M. Mapeamento e Análise Temporal da Paisagem no Entorno do Reservatório de Tucuruí-PA. Anu. Inst. Geociencias 2018, 41, 553–567. [Google Scholar] [CrossRef]
- Lima, A.; Silva, T.S.F.; de Aragão, L.E.O.e.C.; de Feitas, R.M.; Adami, M.; Formaggio, A.R.; Shimabukuro, Y.E. Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Appl. Geogr. 2012, 34, 239–246. [Google Scholar] [CrossRef]
- Alvarez-Berrios, N.L.; Mitchell Aide, T. Global demand for gold is another threat for tropical forests. Environ. Res. Lett. 2015, 10, 14006. [Google Scholar] [CrossRef] [Green Version]
- Kalamandeen, M.; Gloor, E.; Johnson, I.; Agard, S.; Katow, M.; Vanbrooke, A.; Ashley, D.; Batterman, S.A.; Ziv, G.; Holder-Collins, K.; et al. Limited biomass recovery from gold mining in Amazonian forests. J. Appl. Ecol. 2020, 57, 1730–1740. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sonter, L.J.; Sánchez, L.E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 2020, 67. [Google Scholar] [CrossRef]
- Ometto, J.P.; Aguiar, A.P.D.; Martinelli, L.A. Amazon deforestation in Brazil: Effects, drivers and challenges. Carbon Manag. 2011, 2, 575–585. [Google Scholar] [CrossRef]
- Randerson, J.T.; Hoffman, F.M.; Thornton, P.E.; Mahowald, N.M.; Lindsay, K.; Lee, Y.H.; Nevison, C.D.; Doney, S.C.; Bonan, G.; Stöckli, R.; et al. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob. Chang. Biol. 2009, 15, 2462–2484. [Google Scholar] [CrossRef] [Green Version]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Tucker Lima, J.M.; Vittor, A.; Rifai, S.; Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.; Pistorius, T.; Rohde, S.; Gerold, G.; Pacheco, P. Policy options to reduce deforestation based on a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy 2013, 30, 895–907. [Google Scholar] [CrossRef]
- Lessmann, J.; Muñoz, J.; Bonaccorso, E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol. Evol. 2014, 4, 2410–2422. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Molina, J.R.; Macedo-Pezzopane, J.E.; Herrera-Machuca, M.A. Fragmentation patterns and systematic transitions of the forested landscape in the upper Amazon region, Ecuador 1990-2008. J. For. Res. 2014, 25, 301–309. [Google Scholar] [CrossRef]
- Boyle, S.A.; Smith, A.T. Can landscape and species characteristics predict primate presence in forest fragments in the Brazilian Amazon? Biol. Conserv. 2010, 143, 1134–1143. [Google Scholar] [CrossRef]
- Arima, E.Y.; Walker, R.T.; Souza, C.; Pereira, R.; do Canto, O. Spontaneous Colonization and Forest Fragmentation in the Central Amazon Basin. Ann. Assoc. Am. Geogr. 2013, 103, 1485–1501. [Google Scholar] [CrossRef]
- Villa, P.M.; Martins, S.V.; de Oliveira Neto, S.N.; Rodrigues, A.C.; Safar, N.V.H.; Monsanto, L.D.; Cancio, N.M.; Ali, A. Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance in the northern Amazon. Ecol. Indic. 2018, 95, 687–694. [Google Scholar] [CrossRef]
- Coe, M.T.; Marthews, T.R.; Costa, M.H.; Galbraith, D.R.; Greenglass, N.L.; Imbuzeiro, H.M.A.; Levine, N.M.; Malhi, Y.; Moorcroft, P.R.; Muza, M.N.; et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, W.D.; Mustin, K. The highly threatened and little known Amazonian savannahs. Nat. Ecol. Evol. 2017, 1. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: The need for an evidence- informed approach. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Keathley-Herring, H.; Van Aken, E.; Gonzalez-Aleu, F.; Deschamps, F.; Letens, G.; Orlandini, P.C. Assessing the maturity of a research area: Bibliometric review and proposed framework. Scientometrics 2016, 109, 927–951. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide research on geoparks through bibliometric analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- De Bellis, N. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics; Scarecrow Press, Inc.: Lanham, MD, USA, 2009. [Google Scholar]
- Do Prado, J.W.; de Castro Alcântara, V.; de Melo Carvalho, F.; Vieira, K.C.; Machado, L.K.C.; Tonelli, D.F. Multivariate analysis of credit risk and bankruptcy research data: A bibliometric study involving different knowledge fields (1968–2014). Scientometrics 2016, 106, 1007–1029. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic geomorphology: A review of worldwide research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Vogel, B.; Reichard, R.J.; Batistič, S.; Černe, M. A bibliometric review of the leadership development field: How we got here, where we are, and where we are headed. Leadersh. Q. 2020, 101381. [Google Scholar] [CrossRef]
- Gao, H.; Ding, X.H.; Wu, S. Exploring the domain of open innovation: Bibliometric and content analyses. J. Clean. Prod. 2020, 275, 122580. [Google Scholar] [CrossRef]
- Abad-Segura, E.; de la Fuente, A.B.; González-Zamar, M.D.; Belmonte-Ureña, L.J. Effects of circular economy policies on the environment and sustainable growth: Worldwide research. Sustainability 2020, 12, 5792. [Google Scholar] [CrossRef]
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Bartolacci, F.; Caputo, A.; Soverchia, M. Sustainability and financial performance of small and medium sized enterprises: A bibliometric and systematic literature review. Bus. Strateg. Environ. 2020, 29, 1297–1309. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; de la Cruz Del Río-Rama, M.; Álvarez-García, J.; García-Vélez, D.F. Mapping of scientific coverage on education for Entrepreneurship in Higher Education. J. Enterp. Commun. 2019, 13, 84–104. [Google Scholar] [CrossRef]
- Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall research: A bibliometric analysis and future trends. Geosciences 2020, 10, 403. [Google Scholar] [CrossRef]
- De la Cruz del Río-Rama, M.; Maldonado-Erazo, C.P.; Álvarez-García, J.; Durán-Sánchez, A. Cultural and natural resources in tourism Island: Bibliometric mapping. Sustainability 2020, 12, 724. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, E.; Jenerowicz, A.; Pokonieczny, K.; Borkowska, S. Land cover changes and flows in the Polish Baltic coastal zone: A qualitative and quantitative approach. Remote Sens. 2020, 12, 88. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sens. 2020, 12, 62. [Google Scholar] [CrossRef]
- De Moya-Anegón, F.; Chinchilla-Rodríguez, Z.; Vargas-Quesada, B.; Corera-Álvarez, E.; Muñoz-Fernández, F.J.; González-Molina, A.; Herrero-Solana, V. Coverage analysis of Scopus: A journal metric approach. Scientometrics 2007, 73, 53–78. [Google Scholar] [CrossRef] [Green Version]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Travis Waller, S. Reviewing the transport domain: An evolutionary bibliometrics and network analysis. Scientometrics 2017, 110, 843–865. [Google Scholar] [CrossRef]
- León-Castro, M.; Rodríguez-Insuasti, H.; Montalván-Burbano, N.; Victor, J.A. Bibliometrics and Science Mapping of Digital Marketing, Proceedings of the Marketing and Smart Technologies, Tenerife, Spain, 2–4 December 2021; Rocha, Á., Reis, J.L., Peter, M.K., Cayolla, R., Loureiro, S., Bogdanović, Z., Eds.; Springer: Singapore, 2021; pp. 95–107. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of scientific production on organizational innovation. Cogent Bus. Manag. 2020, 7. [Google Scholar] [CrossRef]
- Payán-Sánchez, B.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N.; Pérez-Valls, M. Open Innovation for Sustainability or Not: Literature Reviews of Global Research Trends. Sustainability 2021, 13, 1136. [Google Scholar] [CrossRef]
- Ertz, M.; Leblanc-Proulx, S. Sustainability in the collaborative economy: A bibliometric analysis reveals emerging interest. J. Clean. Prod. 2018, 196, 1073–1085. [Google Scholar] [CrossRef]
- Homrich, A.S.; Galvão, G.; Abadia, L.G.; Carvalho, M.M. The circular economy umbrella: Trends and gaps on integrating pathways. J. Clean. Prod. 2018, 175, 525–543. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Toresano-Sánchez, F.; Camacho-Ferre, F. Biodegradable raffia as a sustainable and cost-effective alternative to improve the management of agricultural waste biomass. Agronomy 2020, 10, 1261. [Google Scholar] [CrossRef]
- De la Cruz-Lovera, C.; Perea-Moreno, A.J.; de la Cruz-Fernández, J.L.; Alvarez-Bermejo, J.A.; Manzano-Agugliaro, F. Worldwide research on energy efficiency and sustainability in public buildings. Sustainability 2017, 9, 1294. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Erazo, C.P.; Álvarez-García, J.; de la Cruz del Río-Rama, M.; Durán-Sánchez, A. Scientific mapping on the impact of climate change on cultural and natural heritage: A systematic scientometric analysis. Land 2021, 10, 76. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Zhai, X.; He, Y.; Chen, R.; Zhou, J.; Li, M.; Wang, Q. Publication trends of research on diabetes mellitus and T cells (1997–2016): A 20-year bibliometric study. PLoS ONE 2017, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sweileh, W.M. Bibliometric analysis of medicine—Related publications on refugees, asylum-seekers, and internally displaced people: 2000–2015. BMC Int. Health Hum. Rights 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chernysh, Y.; Roubík, H. International collaboration in the field of environmental protection: Trend analysis and covid-19 implications. Sustainability 2020, 12, 384. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Thenkabail, P.S.; Wang, P. A bibliometric profile of the Remote Sensing Open Access Journal published by MDPI between 2009 and 2018. Remote Sens. 2019, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, F.T. Worldwide trends in research on the San Andreas Fault System. Arab. J. Geosci. 2015, 8, 10893–10909. [Google Scholar] [CrossRef]
- Noyons, E.C.M.; Moed, H.F.; van Raan, A.F.J. Integrating research performance analysis and science mapping. Scientometrics 1999, 46, 591–604. [Google Scholar] [CrossRef]
- Baier-Fuentes, H.; Merigó, J.M.; Amorós, J.E.; Gaviria-Marín, M. International entrepreneurship: A bibliometric overview. Int. Entrep. Manag. J. 2019, 15, 385–429. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Bandy, D.E.; Villachica, J.H.; Nicholaides, J. Amazon Basin Soils: Management for continuous crop production. Science 1982, 216, 821–827. [Google Scholar] [CrossRef]
- García-García, P.; López-Muñoz, F.; Rubio, G.; Martín-Agueda, B.; Alamo, C. Phytotherapy and psychiatry: Bibliometric study of the scientific literature from the last 20 years. Phytomedicine 2008, 15, 566–576. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, F.; Vieta, E.; Rubio, G.; García-García, P.; Alamo, C. Bipolar disorder as an emerging pathology in the scientific literature: A bibliometric approach. J. Affect. Disord. 2006, 92, 161–170. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Moore, B.; Grace, A.L.; Gildea, M.P.; Melillo, J.M.; Peterson, B.J.; Rastetter, E.B.; Steudler, P.A. Continental scale models of water balance and fluvial transport: An application to South America. Glob. Biogeochem. Cycles 1989, 3, 241–265. [Google Scholar] [CrossRef]
- Henderson-Sellers, A.; Gornitz, V. It is widely recognized that destruction of the tropical rain forests is environmentally. Clim. Chang. 1984, 6, 231–257. [Google Scholar] [CrossRef]
- Brinkmann, W.L.F. Studies on hydrobiogeochemistry of a tropical lowland forest system. GeoJournal 1985, 11, 89–101. [Google Scholar] [CrossRef]
- Mortatti, J.; Ferreira, J.R.; Martinelli, L.A.; Victoria, R.L.; Tancredi, A.C.F. Biogeochemistry of the Madeira river basin. GeoJournal 1989, 19, 391–397. [Google Scholar] [CrossRef]
- Stone, T.A.; Woodwell, G.M. Shuttle imaging radar a analysis of land use in Amazonia. Int. J. Remote Sens. 1988, 9, 95–105. [Google Scholar] [CrossRef]
- Fearnside, P.M. An ecological analysis of predominant land uses in the Brazilian Amazon. Environmentalist 1988, 8, 281–300. [Google Scholar] [CrossRef]
- Lal, R. Conversion of Tropical Rainforest: Agronomic Potential and Ecological Consequences. Adv. Agron. 1986, 39, 173–264. [Google Scholar] [CrossRef]
- Adams, J.; Sabol, D.; Kapos, V.; Almeida, R.; Roberts, D.; Smith, M.; Gillespie, A. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; David McGuire, A.; Helfrich, J.V.K.; Moore, B.; Vörösmarty, C.J. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 1998, 396, 664–667. [Google Scholar] [CrossRef]
- Trumbore, S.E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Glob. Biogeochem. Cycles 1993, 7, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, A.S.P. What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. J. Environ. Econ. Manag. 1999, 37, 26–43. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Soares, J.V.; Alves, D.S. Mapping deforestation and land use in Amazon rainforest by using SIR-C imagery. Remote Sens. Environ. 1997, 59, 191–202. [Google Scholar] [CrossRef]
- Walker, R.; Kingo, A.; Homma, O. Land use and land cover dynamics in the Brazilian Amazon: An overview. Ecol. Econ. 1996, 18, 67–75. [Google Scholar] [CrossRef]
- Moran, E.F. Deforestation and land use in the Brazilian Amazon. Hum. Ecol. 1993, 21, 1–21. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Moran, E.F.; Mausel, P.; Wu, Y. Land use change in the Amazon estuary: Patterns of caboclo settlement and landscape management. Hum. Ecol. 1994, 22, 249–278. [Google Scholar] [CrossRef]
- Yu, W.D.; Hendrickson, T.; Castillo, A. Ecotourism and conservation in Amazonian Peru: Short-term and long-term challenges. Environ. Conserv. 1997, 24, 130–138. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Avila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Martinez, J.M.; le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Moran, E.F.; Brondizio, E.S.; Tucker, J.M.; da Silva-Forsberg, M.C.; McCracken, S.; Falesi, I. Effects of soil fertility and land-use on forest succession in Amazônia. For. Ecol. Manag. 2000, 139, 93–108. [Google Scholar] [CrossRef]
- Vieira, I.; de Almeida, A.; Davidson, E.; Stone, T.; de Carvalho, C.; Guerrero, J. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sens. Environ. 2003, 87, 470–481. [Google Scholar] [CrossRef]
- Mura, C.; Santos, R.; Freitas, C.C.; Araujo, L.S.; Dutra, L.V.; Gama, F.; Soler, L.S.; Anna, S.J.S.S. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sens. Environ. 2003, 87, 482–493. [Google Scholar] [CrossRef]
- Oliveira, P.J.C.; Asner, G.P.; Knapp, D.E.; Almeyda, A.; Galvan-Gildemeister, R.; Keene, S.; Raybin, R.F.; Smith, R.C. Land-Use Allocation Protects the Peruvian Amazon. Science 2007, 317, 1233–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da C Jesus, E.; Marsh, T.L.; Tiedje, J.M.; de S Moreira, F.M. Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J. 2009, 3, 1004–1011. [Google Scholar] [CrossRef]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 2010, 30, 1970–1979. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Siqueira, J.O. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 2011, 21, 255–267. [Google Scholar] [CrossRef]
- Macedo, M.; Coe, M.; de Fries, R.; Uriarte, M.; Brando, P.; Neil, C.; Walker, W. Land-use-driven stream warming in southeastern Amazonia Supplemental Text (S-Text). Philos. Trans. R. Soc. Biol. Sci. 2013, 368, 20120153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, C.F.; Walsh, S.J.; Frizzelle, B.G.; Xiaozheng, Y.; Malanson, G.P. Land use change on household farms in the Ecuadorian Amazon: Design and implementation of an agent-based model. Appl. Geogr. 2011, 31, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.W.; Kuramae, E.E.; Navarrete, A.A.; van Veen, J.A.; Tsai, S.M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 2014, 8, 1577–1587. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S. Expansion of sugarcane ethanol production in Brazil: Environmental and social challenges. Ecol. Appl. 2008, 18, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Veldman, J.W.; Putz, F.E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 2011, 144, 1419–1429. [Google Scholar] [CrossRef]
- Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manag. 2009, 258, 1643–1649. [Google Scholar] [CrossRef]
- Thiele, G. The dynamics of farm development in the Amazon: The Barbecho crisis model. Agric. Syst. 1993, 42, 179–197. [Google Scholar] [CrossRef]
- Armenteras, D.; Rudas, G.; Rodriguez, N.; Sua, S.; Romero, M. Patterns and causes of deforestation in the Colombian Amazon. Ecol. Indic. 2006, 6, 353–368. [Google Scholar] [CrossRef]
- Fujisaka, S.; Bell, W.; Thomas, N.; Hurtado, L.; Crawford, E. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agric. Ecosyst. Environ. 1996, 59, 115–130. [Google Scholar] [CrossRef]
- Fujisaka, S.; White, D. Pasture or permanent crops after slash-and-burn cultivation? Land-use choice in three Amazon colonies. Agrofor. Syst. 1998, 42, 45–59. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; López-Ulloa, M.; Vanwalleghem, T.; Herrera-Machuca, M.Á. Effects of Land Use Change on Soil Quality Indicators in Forest Landscapes of the Western Amazon. Soil Sci. 2017, 182, 128–136. [Google Scholar] [CrossRef]
- Bovolo, C.I.; Wagner, T.; Parkin, G.; Hein-Griggs, D.; Pereira, R.; Jones, R. The Guiana Shield rainforests-overlooked guardians of South American climate. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Roux, E.; da Silva, J.S.; Getirana, A.C.V.; Bonnet, M.P.; Calmant, S.; Martinez, J.M.; Seyler, F. Producing time series of river water height by means of satellite radar altimetry—A comparative study. Hydrol. Sci. J. 2010, 55, 104–120. [Google Scholar] [CrossRef]
- Smith, R.C.; Benavides, M.; Pariona, M.; Tuesta, E. Mapping the past and the future: Geomatics and indigenous territories in the Peruvian Amazon. Hum. Organ. 2003, 62, 357–368. [Google Scholar] [CrossRef] [Green Version]
- López-Parodi, J.; Freitas, D. Geographical aspects of forested wetlands in the lower Ucayali, Peruvian Amazonia. For. Ecol. Manag. 1990, 33–34, 157–168. [Google Scholar] [CrossRef]
- Espejo, J.C.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef] [Green Version]
- Villa, P.M.; Martins, S.V.; de Oliveira Neto, S.N.; Rodrigues, A.C.; Martorano, L.G.; Monsanto, L.D.; Cancio, N.M.; Gastauer, M. Intensification of shifting cultivation reduces forest resilience in the northern Amazon. For. Ecol. Manag. 2018, 430, 312–320. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Martinelli, L.A.; Pérez, T.; Rasse, R.; Ometto, J.P.H.B.; Siqueira Pacheco, F.; Machado Lins, S.R.; Marquina, S. Nitrogen management challenges in major watersheds of South America. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.H.; Wang, G.F.; Wan, Y.; Liu, J.; Liu, Q.; Ma, F.-C. Bibliometric trend analysis on global graphene research. Scientometrics 2011, 88, 399–419. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and Mining Towards the Development of Geotourism: A Global Perspective. Int. J. Des. Nat. Ecodyn. 2021, 16, 191–201. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Henrique Cattânio, J.; Ackerman, I.L.; Carvalho, J.E.M. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, K.T.; Chomentowski, W.H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 2000, 403, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; Schwartzman, S.; Bamberger, B.; Santilli, M.; Ray, D.; Schlesinger, P.; Lefebvre, P.; Alencar, A.; Prinz, E.; Fiske, G.; et al. Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv. Biol. 2006, 20, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, S.; Houghton, R.A.; dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 2007, 13, 816–837. [Google Scholar] [CrossRef]
- Houghton, R.A.; Lawrence, K.T.; Hackler, J.L.; Brown, S. The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates. Glob. Chang. Biol. 2001, 7, 731–746. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric moisture recycling: Role of advection and local evaporation. J. Clim. 1999, 12, 1368–1381. [Google Scholar] [CrossRef]
- Van Der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pico-Saltos, R.; Carrión-Mero, P.; Montalván-Burbano, N.; Garzás, J.; Redchuk, A. Research Trends in Career Success: A Bibliometric Review. Sustainability 2021, 13, 4625. [Google Scholar] [CrossRef]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [Google Scholar] [CrossRef]
- Cardille, J.A.; Foley, J.A. Agricultural land-use change in Brazilian Amazônia between 1980 and 1995: Evidence from integrated satellite and census data. Remote Sens. Environ. 2003, 87, 551–562. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Peña-Claros, M.; Kuyper, T.W.; Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 2015, 103, 67–77. [Google Scholar] [CrossRef]
- Bell, A.R.; Caviglia-Harris, J.L.; Cak, A.D. Characterizing land-use change over space and time: Applying principal components analysis in the Brazilian Legal Amazon. J. Land Use Sci. 2015, 10, 19–37. [Google Scholar] [CrossRef]
- De Oliveira Silva, R.; Barioni, L.G.; Queiroz Pellegrino, G.; Moran, D. The role of agricultural intensification in Brazil’s Nationally Determined Contribution on emissions mitigation. Agric. Syst. 2018, 161, 102–112. [Google Scholar] [CrossRef]
- Asner, G.P.; Nepstad, D.; Cardinot, G.; Ray, D. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc. Natl. Acad. Sci. USA 2004, 101, 6039–6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchard, E.T.A.; Feldpausch, T.R.; Brienen, R.J.W.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L.; Lloyd, J.; Quesada, C.A.; Gloor, M.; et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 2014, 23, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Buermann, W.; Saatchi, S.; Smith, T.B.; Zutta, B.R.; Chaves, J.A.; Milá, B.; Graham, C.H. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 2008, 35, 1160–1176. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M.; et al. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Zaiatz, A.P.S.R.; Zolin, C.A.; Vendrusculo, L.G.; Lopes, T.R.; Paulino, J. Agricultural land use and cover change in the Cerrado/Amazon ecotone: A case study of the upper Teles Pires river basin. Acta Amaz. 2018, 48, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Albernaz, A.K.M.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 2002, 29, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Arantes, C.C.; Winemiller, K.O.; Petrere, M.; Castello, L.; Hess, L.L.; Freitas, C.E.C. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 2018, 55, 386–395. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Garrett, R.D.; Koh, I.; Lambin, E.F.; le Polain de Waroux, Y.; Kastens, J.H.; Brown, J.C. Intensification in agriculture-forest frontiers: Land use responses to development and conservation policies in Brazil. Glob. Environ. Chang. 2018, 53, 233–243. [Google Scholar] [CrossRef]
- Renó, V.F.; Novo, E.M.L.M.; Suemitsu, C.; Rennó, C.D.; Silva, T.S.F. Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens. Environ. 2011, 115, 3446–3456. [Google Scholar] [CrossRef]
- Pongratz, J.; Bounoua, L.; Defries, R.S.; Morton, D.C.; Anderson, L.O.; Mauser, W.; Klink, C.A. The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil. Earth Interact. 2006, 10. [Google Scholar] [CrossRef]
- Sangermano, F.; Toledano, J.; Eastman, R. Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landsc. Ecol. 2012, 27, 571–584. [Google Scholar] [CrossRef]
- Pontes, P.R.M.; Cavalcante, R.B.L.; Sahoo, P.K.; Silva Júnior, R.O.d.; da Silva, M.S.; Dall’Agnol, R.; Siqueira, J.O. The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. J. Environ. Manag. 2019, 235, 489–499. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Estrella-Bastidas, A.; Molina, J.R.; Herrera, M.Á. Socioecological system and potential deforestation in Western Amazon forest landscapes. Sci. Total Environ. 2018, 644, 1044–1055. [Google Scholar] [CrossRef]
- Nepstad, D.; Lefebvre, P.; da Silva, U.L.; Tomasella, J.; Schlesinger, P.; Solórzano, L.; Moutinho, P.; Ray, D.; Benito, J.G. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Chang. Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Neill, C.; Melillo, J.M.; Steudler, P.A.; Cerri, C.C.; Jener, F.L.; Moraes, D.; Piccolo, M.C.; Brito, M.; Applications, S.E.; Nov, N. Soil Carbon and Nitrogen Stocks Following Forest Clearing for Pasture in the Southwestern Brazilian Amazon. Ecol. Soc. Am. 1997, 7, 1216–1225. [Google Scholar] [CrossRef]
- Lima, H.N.; Schaefer, C.E.R.; Mello, J.W.V.; Gilkes, R.J.; Ker, J.C. Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma 2002, 110, 1–17. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Lal, R.; Resck, D.V.S. Changes in soil organic carbon stocks under agriculture in Brazil. Soil Tillage Res. 2005, 84, 28–40. [Google Scholar] [CrossRef]
- Batjes, N.H.; Dijkshoorn, J.A. Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma 1999, 89, 273–286. [Google Scholar] [CrossRef]
- De Carvalho, M.A.C.; Panosso, A.R.; Ribeiro Teixeira, E.E.; Araújo, E.G.; Brancaglioni, V.A.; Dallacort, R. Multivariate approach of soil attributes on the characterization of land use in the southern Brazilian Amazon. Soil Tillage Res. 2018, 184, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, C.W.A.; Lima, L.H.V.; da Silva, F.L.; Biondi, C.M.; Campos, M.C.C. Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef] [PubMed]
- Soltangheisi, A.; de Moraes, M.T.; Cherubin, M.R.; Alvarez, D.O.; de Souza, L.F.; Bieluczyk, W.; Navroski, D.; Bettoni Teles, A.P.; Pavinato, P.S.; Martinelli, L.A.; et al. Forest conversion to pasture affects soil phosphorus dynamics and nutritional status in Brazilian Amazon. Soil Tillage Res. 2019, 194, 104330. [Google Scholar] [CrossRef]
- Pichón, F.J. Settler Households and Land-Use Patterns in the Amazon Frontier: Farm-Level Evidence from Ecuador. World Dev. 1997, 25, 67–91. [Google Scholar] [CrossRef]
- Gardner, T.A.; Ferreira, J.; Barlow, J.; Lees, A.C.; Parry, L.; Guimarães Vieira, I.C.; Berenguer, E.; Abramovay, R.; Aleixo, A.; Andretti, C.; et al. A social and ecological assessment of tropical land uses at multiple scales: The Sustainable Amazon Network. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [Green Version]
- Perz, S.G. Household demographic factors as life cycle determinants of land use in the Amazon. Popul. Res. Policy Rev. 2001, 20, 159–186. [Google Scholar] [CrossRef]
- Jakimow, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2018, 205, 453–468. [Google Scholar] [CrossRef]
- O’Connell, C.S.; Carlson, K.M.; Cuadra, S.; Feeley, K.J.; Gerber, J.; West, P.C.; Polasky, S. Balancing tradeoffs: Reconciling multiple environmental goals when ecosystem services vary regionally. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Brown, K.S. Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring. J. Insect Conserv. 1997, 1, 25–42. [Google Scholar] [CrossRef]
- Keller, M.; Alencar, A.; Asner, G.P.; Braswell, B.; Bustamante, M.; Davidson, E.; Feldpausch, T.; Fernandes, E.; Goulden, M.; Kabat, P.; et al. Ecological research in the Large-scale Biosphere-Atmosphere Experiment in Amazonia: Early results. Ecol. Appl. 2004, 14, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Gaui, T.D.; Costa, F.R.C.; Coelho de Souza, F.; Amaral, M.R.M.; de Carvalho, D.C.; Reis, F.Q.; Higuchi, N. Long-term effect of selective logging on floristic composition: A 25 year experiment in the Brazilian Amazon. For. Ecol. Manage. 2019, 440, 258–266. [Google Scholar] [CrossRef]
- Castello, L.; Hess, L.L.; Thapa, R.; McGrath, D.G.; Arantes, C.C.; Renó, V.F.; Isaac, V.J. Fishery yields vary with land cover on the Amazon River floodplain. Fish Fish. 2018, 19, 431–440. [Google Scholar] [CrossRef]
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On the protection of “protected areas”. Proc. Natl. Acad. Sci. USA 2008, 105, 6673–6678. [Google Scholar] [CrossRef] [Green Version]
- Decaëns, T.; Jiménez, J.J.; Barros, E.; Chauvel, A.; Blanchart, E.; Fragoso, C.; Lavelle, P. Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agric. Ecosyst. Environ. 2004, 103, 301–312. [Google Scholar] [CrossRef]
- Gallice, G.R.; Larrea-Gallegos, G.; Vázquez-Rowe, I. The threat of road expansion in the Peruvian Amazon. Oryx 2019, 53, 284–292. [Google Scholar] [CrossRef]
- Magnusson, W.E.; Grelle, C.E.V.; Marques, M.C.M.; Rocha, C.F.D.; Dias, B.; Fontana, C.S.; Bergallo, H.; Overbeck, G.E.; Vale, M.M.; Tomas, W.M.; et al. Effects of Brazil’s political crisis on the science needed for biodiversity conservation. Front. Ecol. Evol. 2018, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Chen, M.L. Publication trends and co-citation mapping of translation studies between 2000 and 2015. Scientometrics 2015, 105, 1111–1128. [Google Scholar] [CrossRef]
- Santana, N.C.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F. Burned-area detection in Amazonian environments using standardized time series per pixel in MODIS data. Remote Sens. 2018, 10, 1904. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Cardozo, F.; Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C. Analysis and assessment of the spatial and temporal distribution of burned areas in the amazon forest. Remote Sens. 2014, 6, 8002–8025. [Google Scholar] [CrossRef] [Green Version]
- Hagensieker, R.; Waske, B. Evaluation of multi-frequency SAR images for tropical land cover mapping. Remote Sens. 2018, 10, 257. [Google Scholar] [CrossRef] [Green Version]
Rank | Country | Region | Documents | Citations |
---|---|---|---|---|
1 | Brazil | America | 920 | 33,462 |
2 | United States | America | 737 | 37,429 |
3 | United Kingdom | Europe | 162 | 6727 |
4 | Germany | Europe | 115 | 3463 |
5 | France | Europe | 105 | 3037 |
6 | Netherlands | Europe | 64 | 3371 |
7 | Canada | America | 62 | 1812 |
8 | Colombia | America | 55 | 1835 |
9 | Peru | America | 54 | 1779 |
10 | Sweden | Europe | 48 | 1378 |
11 | Australia | Oceania | 42 | 1905 |
12 | Ecuador | America | 37 | 879 |
13 | Spain | Europe | 37 | 680 |
14 | Indonesia | Asia | 31 | 865 |
15 | Bolivia | America | 23 | 633 |
Author | Country | Affiliation | Intelectual Structure | Global Publication | H-Index | ||
---|---|---|---|---|---|---|---|
Articles | Citations | Articles | Citations | ||||
Perz S.G. | United States | University of Florida | 31 | 1208 | 93 | 2807 | 28 |
Cerri C.C. | Brazil | Universidade de Sao Paulo | 29 | 1707 | 224 | 10,013 | 59 |
Shimabukuro Y.E. | Brazil | Instituto Nacional de Pesquisas Espaciais | 28 | 1873 | 236 | 6725 | 39 |
Moran E. | United States | Michigan State University | 27 | 1545 | 150 | 12,948 | 47 |
Walker R. | United States | University of Florida | 26 | 1701 | 86 | 3680 | 35 |
Asner G.P. | United States | Arizona State University | 25 | 2507 | 549 | 46,763 | 105 |
Barlow J. | United Kingdom | Lancaster Environment Centre | 25 | 1878 | 190 | 10,492 | 53 |
Cerri C.E.P. | Brazil | Universidade de Sao Paulo | 25 | 1004 | 188 | 5304 | 42 |
Nepstad D.C. | United States | Earth Innovation Institution | 25 | 3076 | 122 | 17,392 | 63 |
Davidson E.A. | United States | University of Maryland Center for Environmental Science | 24 | 2773 | 223 | 31,820 | 87 |
Neill C. | United States | Woodwell Climate Research Center | 23 | 1489 | 136 | 6718 | 40 |
Soares-Filho B.S. | Brazil | Universidade Federal de Minas Gerais | 22 | 1299 | 109 | 8075 | 41 |
Brondizio E.S. | United States | Indiana University Bloomington | 21 | 1261 | 118 | 7825 | 38 |
Gardner T.A. | Sweden | Stockholm Environment Institute | 21 | 1633 | 125 | 11,012 | 52 |
Martinelli L.A. | Brazil | Universidade de Sao Paulo | 19 | 1074 | 239 | 15,997 | 61 |
Rank | Author | Article | Citations |
---|---|---|---|
1 | Feddema et al. [6] | Atmospheric science: The importance of land-cover change in simulating future climates | 660 |
2 | Davidson et al. [146] | Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia | 640 |
3 | Barlow et al. [111] | Quantifying the biodiversity value of tropical primary, secondary, and plantation forests | 633 |
4 | Adams et al. [102] | Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon | 631 |
5 | Morton et al. [30] | Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon | 600 |
6 | Houghton et al. [147] | Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon | 545 |
7 | Nepstad et al. [148] | Inhibition of Amazon deforestation and fire by parks and indigenous lands | 484 |
8 | Saatchi et al. [149] | Distribution of aboveground live biomass in the Amazon basin | 414 |
9 | Asner et al. [119] | High-resolution forest carbon stocks and emissions in the Amazon | 410 |
10 | Houghton et al. [150] | The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates | 377 |
11 | Trenberth et al. [151] | Atmospheric moisture recycling: Role of advection and local evaporation | 367 |
12 | Macedo et al. [120] | Decoupling of deforestation and soy production in the southern Amazon during the late 2000s | 342 |
13 | Tian et al. [103] | Effect of interannual climate variability on carbon storage in Amazonian ecosystems | 340 |
14 | Van Der Ent et al. [152] | Origin and fate of atmospheric moisture over continents | 336 |
15 | Trumbore [104] | Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements | 331 |
SUM OF TOP 15 CITATIONS | 7110 | ||
TOTAL CITATIONS (1590 ARTICLES) | 57,305 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalván-Burbano, N.; Velastegui-Montoya, A.; Gurumendi-Noriega, M.; Morante-Carballo, F.; Adami, M. Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability 2021, 13, 6039. https://doi.org/10.3390/su13116039
Montalván-Burbano N, Velastegui-Montoya A, Gurumendi-Noriega M, Morante-Carballo F, Adami M. Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability. 2021; 13(11):6039. https://doi.org/10.3390/su13116039
Chicago/Turabian StyleMontalván-Burbano, Néstor, Andrés Velastegui-Montoya, Miguel Gurumendi-Noriega, Fernando Morante-Carballo, and Marcos Adami. 2021. "Worldwide Research on Land Use and Land Cover in the Amazon Region" Sustainability 13, no. 11: 6039. https://doi.org/10.3390/su13116039
APA StyleMontalván-Burbano, N., Velastegui-Montoya, A., Gurumendi-Noriega, M., Morante-Carballo, F., & Adami, M. (2021). Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability, 13(11), 6039. https://doi.org/10.3390/su13116039