No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study System
2.2. Hand Pollination Experiment
2.3. Fiber Processing
2.4. Statistics
3. Results
3.1. Fiber Processing
3.2. Statistics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Bauhus, J.; van der Meer, P.; Kanninen, M. Ecosystem Goods and Services from Plantation Forests; Earthscan: New York, NY, USA, 2010. [Google Scholar]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar] [CrossRef]
- Decocq, G.; Andrieu, E.; Brunet, J.; Chabrerie, O.; De Frenne, P.; De Smedt, P.; Wulf, M. Ecosystem services from small forest patches in agricultural landscapes. Curr. For. Rep. 2016, 2, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Reich, P.B. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Thompson, I.D.; Okabe, K.; Tylianakis, J.M.; Kumar, P.; Brockerhoff, E.G.; Schellhorn, N.A.; Nasi, R. Forest biodiversity and the delivery of ecosystem goods and services: Translating science into policy. BioScience 2011, 61, 972–981. [Google Scholar] [CrossRef]
- Diaz, S.; Settele, J.; Brondízio, E.; Ngo, H.T.; Guèze, M.; Agard, J.; Zayas, C.N. Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on the work of its seventh session. In Proceedings of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Paris, France, 29 April 2020; Volume 7. [Google Scholar]
- Small, N.; Munday, M.; Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang. 2017, 44, 57–67. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Zurek, M.B. Ecosystems and human well-being-Synthesis. In A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- National Research Council. Status of Pollinators in North America; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Sapir, G.; Baras, Z.; Azmon, G.; Goldway, M.; Shafir, S.; Allouche, A.; Stern, R.A. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 2017, 219, 107–117. [Google Scholar] [CrossRef]
- Garratt, M.P.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.A.; Alvi, A.M.; Khan, K.A.; Rehmani, M.I.A.; Ansari, M.J.; Atta, S.; Tariq, M. Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi J. Biol. Sci. 2018, 25, 1291–1297. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Biol. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Winfree, R.; Williams, N.M.; Gaines, H.; Ascher, J.S.; Kremen, C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 2008, 45, 793–802. [Google Scholar] [CrossRef]
- Viola, D.V.; Mordecai, E.A.; Jaramillo, A.G.; Sistla, S.A.; Albertson, L.K.; Gosnell, J.S.; Levine, J.M. Competition–defense tradeoffs and the maintenance of plant diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 17217–17222. [Google Scholar] [CrossRef] [Green Version]
- Spoel, S.H.; Johnson, J.S.; Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 2007, 104, 18842–18847. [Google Scholar] [CrossRef] [Green Version]
- Venable, D.L. Size-number trade-offs and the variation of seed size with plant resource status. Am. Nat. 1992, 140, 287–304. [Google Scholar] [CrossRef]
- Roff, D.A. Trade-offs between growth and reproduction: An analysis of the quantitative genetic evidence. J. Evol. Biol. 2000, 13, 434–445. [Google Scholar] [CrossRef]
- Schussler, J.R.; Westgate, M.E. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth. Crop. Sci. 1991, 31, 1189–1195. [Google Scholar] [CrossRef]
- Gambín, B.L.; Borrás, L.; Otegui, M.E. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop. Res. 2006, 95, 316–326. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Guo, P.; Qiu, R.; Chen, R.; Gu, F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agric. Water Manag. 2014, 146, 131–148. [Google Scholar] [CrossRef]
- González-Paleo, L.; Vilela, A.E.; Ravetta, D.A. Back to perennials: Does selection enhance tradeoffs between yield and longevity? Ind. Crop. Prod. 2016, 91, 272–278. [Google Scholar] [CrossRef]
- Paterson, A.H.; Saranga, Y.; Menz, M.; Jiang, C.X.; Wright, R. QTL analysis of genotype× environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 2003, 106, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Culp, T.W.; Harrell, D.C. Influence of lint percentage, boll size, and seed size on lint yield of upland cotton with high fiber strength. Crop Sci. 1975, 15, 741–745. [Google Scholar] [CrossRef]
- Green, C.C.; Culp, T.W. Simultaneous improvement of yield, fiber quality, and yarn strength in Upland cotton. Crop Sci. 1990, 30, 66–69. [Google Scholar] [CrossRef]
- Kerr, T. Yield Components in Cotton and Their Interrelations with Fiber Quality. 1966. Available online: www.cicr.org.in/isci/5-2/Paper_1.pdf (accessed on 25 March 2021).
- Miller, P.A.; Williams, J.C.; Robinson, H.F.; Comstock, R.E. Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. J. Agron. 1958, 50, 126–131. [Google Scholar] [CrossRef]
- Scholl, R.L.; Miller, P.A. Genetic association between yield and fiber strength in upland cotton. Crop. Sci. 1976, 16, 780–783. [Google Scholar] [CrossRef]
- Worley, S.; Ramey, H.H.; Harrell, D.C.; Culp, T.W. Ontogenetic model of cotton yield. Crop. Sci. 1976, 16, 30–34. [Google Scholar] [CrossRef]
- Freeland, T.B., Jr.; Pettigrew, B.; Thaxton, P.; Andrews, G.L. Agrometeorology and cotton production. Guide Agric. Meteorol. Pract. 2006, 10, 1–17. [Google Scholar]
- Hasanbeigi, A.; Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 2015, 95, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, R.M.; Mackiewicz-Talarczyk, M. Handbook of Natural Fibres: Volume 2: Processing and Applications; Woodhead Publishing: Camnbridge, MA, USA, 2020. [Google Scholar]
- USDA ERS. Available online: https://usda.library.cornell.edu/concern/publications/mp48sc79x?locale=en (accessed on 25 March 2021).
- Proto, M.; Supino, S.; Malandrino, O. Cotton: A flow cycle to exploit. Ind. Crop. Prod. 2000, 11, 173–178. [Google Scholar] [CrossRef]
- Soth, J.; Grasser, C.; Salerno, R.; Thalmann, P. The Impact of Cotton on Freshwater Resources and Ecosystems: A Preliminary Synthesis; WWF Background Paper; WWF: Gland, Switzerland, 1999. [Google Scholar]
- Free, J.B. Insect Pollination of Crops, 2nd ed.; Academic press: London, UK, 1993. [Google Scholar]
- Cusser, S.; Neff, J.L.; Jha, S. Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. Agric. Ecosyst. Environ. 2016, 226, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, W.; Ahmad, M.; Ahmad, I. Pollination behavior of cotton crop and its management. In Cotton Production and Uses; Springer: Singapore, 2020; pp. 163–175. [Google Scholar]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web service-based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Davidonis, G.H.; Johnson, A.S.; Landivar, J.A.; Fernandez, C.J. Cotton fiber quality is related to boll location and planting date. J. Agron. 2004, 96, 42–47. [Google Scholar] [CrossRef]
- Davidonis, G.; Hinojosa, O. Influence of seed location on cotton fiber development in planta and in vitro. Plant Sci. 1994, 103, 107–113. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R Packag. Vers. 2014, 1, 1–23. [Google Scholar]
- Rhodes, J. Cotton pollination by honeybees. Aust. J. Exp. Agric. 2002, 42, 513–518. [Google Scholar] [CrossRef]
- USDA. Statistics by state. US Department of Agriculture, National Agricultural Statistics Service, Washington DC. Available online: https://www.nass.usda.gov/Statistics_by_State/ (accessed on 25 March 2021).
- Bradow, J.M.; Danidonis, G.H. Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J. Cotton Sci. 2000, 4, 34–64. [Google Scholar]
- Culp, T.W.; Harrell, D.C.; Kerr, T. Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Sci. 1979, 19, 481–484. [Google Scholar] [CrossRef]
Df | Sum Sq | Mean Sq | F Value | p Value | |
---|---|---|---|---|---|
Seed-Cotton Weight (g) | |||||
Treatment | 2 | 32.05 | 16.023 | 82.98 | <0.001 |
Residuals | 33 | 6.37 | 0.193 | ||
Seeds/Boll | |||||
Treatment | 2 | 368.2 | 184.09 | 22.75 | <0.001 |
Residuals | 33 | 267 | 8.09 | ||
Fiber Length (in) | |||||
Treatment | 2 | 1.25 | 0.627 | 0.196 | 0.823 |
Residuals | 33 | 105.73 | 3.204 | ||
Fiber Fineness (mTEX) | |||||
Treatment | 2 | 28 | 14.19 | 0.096 | 0.909 |
Residuals | 33 | 4891 | 148.22 |
Estimate | Std. Error | df | T Value | p Value | |
---|---|---|---|---|---|
Fiber Length (in) | |||||
Intercept | 1.111019 | 0.085632 | 33 | 12.974 | <0.001 |
Seed-cotton weight (g) | −0.016764 | 0.021525 | 33 | −0.779 | 0.442 |
Number of seeds per boll | 0.003094 | 0.005294 | 33 | 0.585 | 0.563 |
Fiber Fineness (mTEX) | |||||
Intercept | 204.9357 | 13.4956 | 33 | 15.185 | <0.001 |
Seed-cotton weight (g) | 3.5867 | 3.3923 | 33 | 1.057 | 0.298 |
Number of seeds per boll | −0.8429 | 0.8343 | 33 | −1.01 | 0.320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusser, S.; Jha, S. No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination. Sustainability 2021, 13, 6079. https://doi.org/10.3390/su13116079
Cusser S, Jha S. No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination. Sustainability. 2021; 13(11):6079. https://doi.org/10.3390/su13116079
Chicago/Turabian StyleCusser, Sarah, and Shalene Jha. 2021. "No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination" Sustainability 13, no. 11: 6079. https://doi.org/10.3390/su13116079
APA StyleCusser, S., & Jha, S. (2021). No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination. Sustainability, 13(11), 6079. https://doi.org/10.3390/su13116079