Climate Change Impact and Variability on Cereal Productivity among Smallholder Farmers under Future Production Systems in West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Climate Data
2.4. Assessing the Impact of Agricultural Policy on Crop Yields in Future Production Systems
2.5. Simulation of the Impact of Climate and Agricultural Policy on Crop Yields
2.6. Sensitivity of Grain Yield to Weather Parameters
2.7. Model Evaluation
3. Results
3.1. Model Performance
3.2. Projected Changes in Temperature and Rainfall
3.3. Simulated Grain Yield of Cereals under Current and Future Management Practices
3.4. Impact of Future Climate Change on Grain Yield and Variation among Smallholder Farms
3.5. Impact of Climate Change on Duration to Flowering and Maturity
3.6. Sensitivity of Grain Yield to Temperature, Rainfall and CO2 Concentration
4. Discussion
4.1. Projected Changes in Temperature and Rainfall
4.2. Sensitivity of Cereal Yields to Temperature, Rainfall and CO2 Concentration
4.3. Cereals Yields under Improved Management Scenarios
4.4. Climate Change Impact on Crop Yields
4.5. Variation in Climate Change Impact among Smallholder Farms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Genetic Coefficient | Definition | Maize Nioro du Rip | Maize Navrongo | ||
---|---|---|---|---|---|
TZEEY-SRBC5 | TZEEY-SRBC5-1 | Obatanpa | Obatanpa_1 | ||
P1 | Thermal time from seedling emergence to the end of the juvenile phase | 250 | 200 | 280 | 224 |
P5 | Thermal time from silking to physiological maturity | 720 | 770 | 837 | 893 |
G2 | Maximum possible number of kernels per plant | 850 | 1020 | 540 | 648 |
G3 | Kernel filling rate (mg/day) | 8 | 8 | 7.5 | 7.5 |
PHINT | Phylochron interval; thermal time (degree days) between successive leaf tip appearances | 55 | 55 | 40 | 40 |
Genetic Coefficient | Definition | Millet | Sorghum | ||
---|---|---|---|---|---|
CIVT | CIVT-1 | ICSV_III | ICSV_III-2 | ||
P1 | Thermal time from seedling emergence to the end of the juvenile phase (degree days) | 491 | 392.8 | 470 | 423 |
P2O | Critical photoperiod (hours) | 12.4 | 12.4 | 12.6 | 12.6 |
P2R | Photoperiod sensitivity (degree days) | 142 | 142 | 0.01 | 0.01 |
P5 | Thermal time grain filling to physiological maturity | 300 | 398.2 | 620 | 661.5 |
G1 | Scaler for relative leaf size | 1 | 1 | 21 | 21 |
G4 | Scaler for partitioning of assimilates to the panicle (head) | 0.7 | 0.77 | ||
PHINT | Phylochron interval (degree days) | 65 | 65 | 65 | 65 |
References
- Defrance, D.; Sultan, B.; Castets, M.; Famien, A.M.; Baron, C. Impact of climate change in West Africa on cereal production per capita in 2050. Sustainability 2020, 12, 7585. [Google Scholar] [CrossRef]
- Adiku, S.G.K.; MacCarthy, D.S.; Hathie, I.; Diancoumba, M.; Freduah, B.S.; Amikuzuno, J.; Traore, P.S.; Traore, S.; Koomson, E.; Agali, A.; et al. Climate change impacts on west african agriculture: An integrated regional assessment (CIWARA). The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Econmic Assessments, Part 2. In Handboo of Climate Change and Agroecosystems, ICP Series on Climate Change Impacts, Adaptation and Mitigation; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2015; pp. 25–73. [Google Scholar]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [Green Version]
- Sorgho, R.; Quiñonez, C.A.M.; Louis, V.R.; Winkler, V.; Dambach, P.; Sauerborn, R.; Horstick, O. Climate change policies in 16 west african countries: A systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int. J. Env. Res. Public Health 2020, 17, 8897. [Google Scholar] [CrossRef]
- Owusu, K.; Waylen, P.; Qiu, Y. Changing rainfall inputs in the Volta basin: Implications for water sharing in Ghana. GeoJournal 2008, 71, 201–210. [Google Scholar] [CrossRef]
- Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G.; McLean, G.; Lobell, D.B. Robust features of future climate change impacts on sorghum yields in West Africa. Env. Res. Lett. 2014, 9, 104006. [Google Scholar] [CrossRef]
- Traore, B.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.C.; Giller, K.E. Effects of climate variability and climate change on crop production in southern Mali. Eur. J. Agron. 2013, 49, 115–125. [Google Scholar] [CrossRef]
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 2019, 9, 1–15. [Google Scholar]
- Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.; Schleussner, C.-F.; Ruane, A.; Gessner, U. Impacts of 1.5 versus 2.0 C on cereal yields in the West African Sudan Savanna. Env. Res. Lett. 2018, 13, 034014. [Google Scholar] [CrossRef]
- Sonneveld, B.; Keyzer, M.; Adegbola, P.; Pande, S. The impact of climate change on crop production in west Africa: An assessment for the oueme river basin in Benin. Water Resour. Res. 2012, 26, 553–579. [Google Scholar] [CrossRef] [Green Version]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 2013, 8, 014040. [Google Scholar] [CrossRef]
- Singh, P.; Nedumaran, S.; Ntare, B.; Boote, K.J.; Singh, N.P.; Srinivas, K.; Bantilan, M. Potential benefits of drought and heat tolerance in groundnut for adaptation to climate change in India and West Africa. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 509–529. [Google Scholar] [CrossRef]
- Freduah, B.S.; MacCarthy, D.S.; Adam, M.; Ly, M.; Ruane, A.C.; Timpong-Jones, E.C.; Traore, P.S.; Boote, K.J.; Porter, C.; Adiku, S.G. Sensitivity of maize yield in smallholder systems to climate scenarios in semi-arid regions of West Africa: Accounting for variability in farm management practices. Agronomy 2019, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Springer: Dordrecht, The Netherlands, 1998; pp. 41–54. [Google Scholar]
- Porter, C.H.; Jones, J.W.; Adiku, S.; Gijsman, A.J.; Gargiulo, O.; Naab, J. Modeling organic carbon and carbon-mediated soil processes in DSSAT v4. 5. Oper. Res. 2010, 10, 247–278. [Google Scholar]
- Soler, C.M.T.; Sentelhas, P.C.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Adiku, S.G.; Freduah, B.S.; Gbefo, F. Using CERES-Maize and ENSO as decision support tools to evaluate climate-sensitive farm management practices for maize production in the northern regions of Ghana. Front. Plant Sci. 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, D.S.; Kihara, J.; Masikati, P.; Adiku, S.G. Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa. Nutr. Cycl. Agroecosyst. 2018, 110, 343–359. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Twumasi-Afriyie, S.; Sallah, P.; Haag, W. Registration of’Obatanpa GH’maize. Crop Sci. 2006, 46, 1393. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Menkir, A.; Fakorede, M.; Ajala, S.; Ellis-Jones, J. Building Partnerships and Encouraging Innovation for Sustainable Maize Production: The West and Central Africa Collaborative Maize Research Network, Achievements and Impact; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2012. [Google Scholar]
- Murty, D.; Nwasike, C.; Atokple, I. Registration ofICSV 111’Sorghum Cultivar. Crop Sci. 1998, 38, 1716–1717. [Google Scholar] [CrossRef]
- Akponikpè, P.I.; Gérard, B.; Michels, K.; Bielders, C. Use of the APSIM model in long term simulation to support decision making regarding nitrogen management for pearl millet in the Sahel. Eur. J. Agron. 2010, 32, 144–154. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, D.S.; Vlek, P.L.; Bationo, A.; Tabo, R.; Fosu, M. Modeling nutrient and water productivity of sorghum in smallholder farming systems in a semi-arid region of Ghana. Field Crop. Res. 2010, 118, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Batjes, N.H. Harmonized soil profile data for applications at global and continental scales: Updates to the WISE database. Soil Use Manag. 2009, 25, 124–127. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Sommer, R.; Vlek, P.L. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crop. Res. 2009, 113, 105–115. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Ruane, A.C.; McDermid, S.P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspect. 2017, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, R.O.; Antle, J.M.; Rosenzweig, C.; Ruane, A.C.; Vervoort, J.; Ashfaq, M.; Hathie, I.; Tui, S.H.-K.; Mulwa, R.; Nhemachena, C.; et al. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation; Imperial College Press: London, UK, 2015; Volume 3, pp. 101–156. [Google Scholar]
- Legates, D.R.; McCabe Jr, G. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Akumaga, U.; Tarhule, A.; Piani, C.; Traore, B.; Yusuf, A.A. Utilizing process-based modeling to assess the impact of climate change on crop yields and adaptation options in the Niger River Basin, West Africa. Agronomy 2018, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Tsusaka, T.W.; Otsuka, K. The changes in the effects of temperature and rainfall on cereal crop yields in Sub-Saharan Africa: A country level panel data study, 1989 to 2004. Environ. Econ. 2013, 4, 70–80. [Google Scholar]
- Naab, J.; Mahama, G.; Koo, J.; Jones, J.; Boote, K. Nitrogen and phosphorus fertilization with crop residue retention enhances crop productivity, soil organic carbon, and total soil nitrogen concentrations in sandy-loam soils in Ghana. Nutr. Cycl. Agroecosyst. 2015, 102, 33–43. [Google Scholar] [CrossRef]
- Adam, M.; MacCarthy, D.S.; Traoré, P.C.S.; Nenkam, A.; Freduah, B.S.; Ly, M.; Adiku, S.G. Which is more important to sorghum production systems in the Sudano-Sahelian zone of West Africa: Climate change or improved management practices? Agric. Syst. 2020, 185, 102920. [Google Scholar] [CrossRef]
- Falconnier, G.N.; Corbeels, M.; Boote, K.J.; Affholder, F.; Adam, M.; MacCarthy, D.S.; Ruane, A.C.; Nendel, C.; Whitbread, A.M.; Justes, É. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa. Glob. Chang. Biol. 2020, 26, 5942–5964. [Google Scholar] [CrossRef] [PubMed]
- Chemura, A.; Schauberger, B.; Gornott, C. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLoS ONE 2020, 15, e0229881. [Google Scholar] [CrossRef]
- Hou, P.-F.; Chang, Y.-T.; Lai, J.-M.; Chou, K.-L.; Tai, S.-F.; Tseng, K.-C.; Chow, C.-N.; Jeng, S.-L.; Huang, H.-J.; Chang, W.-C. Long-Term effects of fertilizers with regional climate variability on yield trends of sweet corn. Sustainability 2020, 12, 3528. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Ekeleme, F.; Chikoye, D.; Omoigui, L.O. Planting date and cultivar effects on grain yield in dryland corn production. Agron. J. 2009, 101, 91–98. [Google Scholar] [CrossRef]
GCMs | ||
---|---|---|
Climate Scenario | RCP 4.5 | RCP 8.5 |
Navrongo | ||
Cool/Wet | CCSM4 | CCSM4 |
Hot/Wet | CMCC-CM | CMCC-CMS |
Middle | MRI-CGCM3 | GFDL-ESM2M |
Cool/Dry | bcc-csm1-1 | BNU-ESM |
Hot/Dry | CMCC-CMS | MPI-ESM-MR |
Nioro du Rip | ||
Cool/Wet | GFDL-ESM2M | GFDL-ESM2M |
Hot/Wet | GISS-ES-H | GISS-E2-H |
Middle | bcc-csm1-1 | BNU-ESM |
Cool/Dry | MRI-CGCM3 | CESMI-BGC |
Hot/Dry | IPSL-CM5B-LR | CMCC-CM |
RAPs Element | RAP 4–SDP | RAP 5–USDP |
---|---|---|
Maize | ||
Fertiliser application: Inorganic | +30 kg N ha−1 | +45 kg N ha−1 |
Soil health: Topsoil depth | No change | 5 cm topsoil loss |
Genotypes | Improved cultivar | Improved cultivar |
Agronomy: Plant density | 4 plant m−2 | 5.5 plant m−2 |
Sorghum | ||
Fertilisation: Inorganic | +10 kg N ha−1 | +15 kg N ha−1 |
Soil health: Topsoil depth | No change | 5 cm topsoil loss |
Genotypes | Improved cultivar | Improved cultivar |
Agronomy: Plant density | 4 plant m−2 | 5.5 plant m−2 |
Millet | ||
Fertilisation: Inorganic | +10 kg N ha−1 | +20 kg N ha−1 |
Soil health: Topsoil depth | No change | 5 cm topsoil loss |
Genotypes | Improved cultivar | Improved cultivar |
Agronomy: Plant density | 2 plant m−2 | 3 plant m−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacCarthy, D.S.; Adam, M.; Freduah, B.S.; Fosu-Mensah, B.Y.; Ampim, P.A.Y.; Ly, M.; Traore, P.S.; Adiku, S.G.K. Climate Change Impact and Variability on Cereal Productivity among Smallholder Farmers under Future Production Systems in West Africa. Sustainability 2021, 13, 5191. https://doi.org/10.3390/su13095191
MacCarthy DS, Adam M, Freduah BS, Fosu-Mensah BY, Ampim PAY, Ly M, Traore PS, Adiku SGK. Climate Change Impact and Variability on Cereal Productivity among Smallholder Farmers under Future Production Systems in West Africa. Sustainability. 2021; 13(9):5191. https://doi.org/10.3390/su13095191
Chicago/Turabian StyleMacCarthy, Dilys S., Myriam Adam, Bright S. Freduah, Benedicta Yayra Fosu-Mensah, Peter A. Y. Ampim, Mouhamed Ly, Pierre S. Traore, and Samuel G. K. Adiku. 2021. "Climate Change Impact and Variability on Cereal Productivity among Smallholder Farmers under Future Production Systems in West Africa" Sustainability 13, no. 9: 5191. https://doi.org/10.3390/su13095191
APA StyleMacCarthy, D. S., Adam, M., Freduah, B. S., Fosu-Mensah, B. Y., Ampim, P. A. Y., Ly, M., Traore, P. S., & Adiku, S. G. K. (2021). Climate Change Impact and Variability on Cereal Productivity among Smallholder Farmers under Future Production Systems in West Africa. Sustainability, 13(9), 5191. https://doi.org/10.3390/su13095191