Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Convolutional Neural Networks
2.3. Evaluation Metrics
2.3.1. Accuracy
2.3.2. Precision
2.3.3. Recall
2.3.4. F1-Score
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations Classifications and Standards. 2019. Available online: http://www.fao.org/faostat/en/#data (accessed on 28 December 2019).
- Cristofori, V.; Ferramondo, S.; Bertazza, G.; Bignami, C. Nut and kernel traits and chemical composition of hazelnut (Corylus avellana L.) cultivars. J. Sci. Food Agric. 2008, 88, 1091–1098. [Google Scholar] [CrossRef]
- Köksal, İ.A. Ankara University Faculty of Agriculture Department of Horticulture; Turkish Hazelnut Cultivars: Ankara, Turkey, 2018; ISBN 978-975-8991-37-2. [Google Scholar]
- Giraudo, A.; Calvini, R.; Orlandi, G.; Ulrici, A.; Geobaldo, F.; Savorani, F. Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colour grams. Food Control 2018, 94, 233–240. [Google Scholar] [CrossRef]
- Solak, S.; Altınısık, U. Detection and classification of hazelnut fruit by using image processing techniques and clustering methods. Sak. Univ. J. Sci. 2018, 22, 56–65. [Google Scholar]
- Menesatti, P.; Costa, C.; Paglia, G.; Pallottino, F.; D’Andrea, S.; Rimatori, V.; Aguzzi, J. Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosyst. Eng. 2008, 101, 417–424. [Google Scholar] [CrossRef]
- Güvenc, S.A.; Senel, F.A.; Cetisli, B. Classification of processed hazelnuts with computer vision. In Proceedings of the 23th Signal Processing and Communications Applications Conference, Malatya, Turkey, 16–19 May 2015; pp. 1362–1365. [Google Scholar]
- Koc, C.; Gerdan, D.; Eminoglu, M.B.; Yegül, U.; KOC, B.; Vatandas, M. Classification of hazelnut cultivars: Comparison of DL4J and ensemble learning algorithms. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 2316–2327. [Google Scholar] [CrossRef]
- Gokirmak, T.; Mehlenbacher, S.A.; Bassil, N.V. Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genet. Resour. Crop. Evol. 2009, 56, 147–172. [Google Scholar] [CrossRef]
- Ciarmiello, L.F.; Pontecorvo, G.; Piccirillo, P.; De Luca, A.; Carillo, P.; Kafantaris, I.; Woodrow, P. Use of nuclear and mitochondrial single nucleotide polymorphisms to characterize English walnut (Juglans regia L.) genotypes. Plant Mol. Biol. Rep. 2013, 31, 1116–1130. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Coppin, B. Artificial Intelligence Illuminated; Jones & Bartlett Learning: Burlington, MA, USA, 2004. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wang, W.; Siau, K. Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: A review and research agenda. J. Database Manag. 2019, 30, 61–79. [Google Scholar] [CrossRef]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 2000, 44, 206–226. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
- Femling, F.; Olsson, A.; Alonso-Fernandez, F. Fruit and Vegetable Identification Using Machine Learningfor Retail Applications. In Proceedings of the IEEE 2018 14th International Conference on Signal-ImageTechnology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 26–29 November 2018; pp. 9–15. [Google Scholar]
- Singh, R.; Balasundaram, S. Application of extreme learning machine method for time series analysis. Int. J. Intell. Technol. 2007, 2, 256–262. [Google Scholar]
- Qiu, Z.; Jian, C.; Zhao, Y.; Zhu, S.; Yong, H.; Chu, Z. Variety Identification of Single Rice Seed Using Hyperspectral Imaging Combined with Convolutional Neural Network. Appl. Sci. 2018, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.C.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lin, T.; Xu, J.; Luo, X.; Ying, Y. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Yu, X.; Tang, L.; Wu, X.; Lu, H. Nondestructive Freshness Discriminating of Shrimp Using Visible/Near-Infrared Hyperspectral Imaging Technique and Deep Learning Algorithm. Food Anal. Methods 2018, 11, 768–780. [Google Scholar] [CrossRef]
- Yue, J.; Mao, S.; Li, M. A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens. Lett. 2016, 7, 875–884. [Google Scholar] [CrossRef]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Li, J.; Zhang, Y.; Tian, X.; Wang, Q.; He, X.; Zhang, C.; Huang, W. On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 2020, 286, 110102. [Google Scholar] [CrossRef]
- Koirala, A.; Walsh, K.B.; Wang, Z.; Anderson, N. Deep Learning for Mango (Mangifera indica) Panicle Stage Classification. Agronomy 2020, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017, 235, 228–235. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; García-Amicis, V.M.; García-Mateos, G.; Molina-Martínez, J.M.; Ruiz-Canales, A. Automatic Classification of Chickpea Varieties Using Computer Vision Techniques. Agronomy 2019, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Knoll, F.J.; Czymmek, V.; Harders, L.O.; Hussmann, S. Real-time classification of weeds in organic carrot production using deep learning algorithms. Comput. Electron. Agric. 2019, 167, 105097. [Google Scholar] [CrossRef]
- Przybylak, A.; Kozłowski, R.; Osuch, E.; Osuch, A.; Rybacki, P.; Przygodzi’ nski, P. Quality Evaluation of Potato Tubers Using Neural Image Analysis Method. Agriculture 2020, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, H. Multi-level learning features for automatic classification of field crop pests. Comput. Electron. Agric. 2018, 152, 233–241. [Google Scholar] [CrossRef]
- Torres, J.N.; Mora, M.; Hernández-García, R.; Barrientos, R.J.; Fredes, C.; Valenzuela, A. A Review of Convolutional Neural Network Applied to Fruit Image Processing. Appl. Sci. 2020, 10, 3443. [Google Scholar] [CrossRef]
- Sakib, S.; Ashrafi, Z.; Siddique, M.A.B. Implementation of Fruits Recognition Classifier using Convolutional Neural Network Algorithm for Observation of Accuracies for Various Hidden Layers. arXiv 2019, arXiv:1904.00783. [Google Scholar]
- Oltean, M. Fruits 360 Dataset. Mendeley Data, 2018. Available online: https://data.mendeley.com/datasets/rp73yg93n8/1 (accessed on 1 June 2021).
- Mureşan, H.; Oltean, M. Fruit recognition from images using deep learning. Acta Univ. Sapientiae Inform. 2018, 10, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Chen, Y. Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique. Multim. Tools Appl. 2018, 79, 1–17. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Li, C.; Wu, J.; Yue, J. High performance vegetable classification from images based on alexnet deep learning model. Int. J. Agric. Biol. Eng. 2018, 11, 217–223. [Google Scholar] [CrossRef]
- Lu, S.; Lu, Z.; Aok, S.; Graham, L. Fruit classification based on six layer convolutional neural network. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar]
- Zeng, G. Fruit and vegetables classification system using image saliency and convolutional neural network. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongquing, China, 3–5 October 2017; pp. 613–617. [Google Scholar]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chao, X. ANN-Based Continual Classification in Agriculture. Agriculture 2020, 10, 178. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. Artif. Intell. Stat. 2016, 464–472. [Google Scholar]
- Scherer, D.; Müller, A.; Behnke, S. Evaluation of pooling operations in convolutional architectures for object recognition. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2010; pp. 92–101. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1-score and accuracy in binary classification evaluation. Chicco Jurman BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gulzar, Y.; Hamid, Y.; Soomro, A.B.; Alwan, A.A.; Journaux, l. A Convolution Neural Network-Based Seed Classification System. Symmetry 2020, 12, 2018. [Google Scholar] [CrossRef]
- Abdipour, M.; Younessi-Hmazekhanlu, M.; RezaRamazani, S.H.; Omidi, A.H. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind. Crop. Prod. 2019, 127, 185–194. [Google Scholar] [CrossRef]
- Lu, Y. Food image recognition by using convolutional neural networks (CNNs). arXiv 2019, arXiv:1612.00983. [Google Scholar]
- Zhang, Y.D.; Dong, Z.; Chen, X.; Jia, W.; Du, S.; Muhammad, K.; Wang, S.H. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multim. Tools Appl. 2019, 78, 3613–3632. [Google Scholar] [CrossRef]
- Katarzyna, R.; Paweł, M. A Vision-Based Method Utilizing Deep Convolutional Neural Networks for Fruit Variety Classification in Uncertainty Conditions of Retail Sales. Appl. Sci. 2019, 9, 3971. [Google Scholar] [CrossRef] [Green Version]
- Kandel, I.; Castelli, M.; Popovic, A. Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning. J. Imaging 2020, 6, 127. [Google Scholar] [CrossRef]
Cultivars | Length (mm) | Width (mm) | Thickness (mm) | Shape Index | Nut Weight (g) | Shell Weight (g) | Shell Thickness (mm) | Kernel Ratio (%) |
---|---|---|---|---|---|---|---|---|
Acı | 17.6 ± 0.3 | 14.6 ± 0.1 | 12.5 ± 0.2 | 1.3 | 1.3 | 0.8 | 1 | 43.8 |
Allahverdi | 20.7 ± 0.1 | 18.1 ± 0.1 | 18.0 ± 0.1 | 1.15 | 1.8 | 0.79 | 0.89 | 48.8 |
Cavcava | 18.8 ± 0.1 | 17.5 ± 0.1 | 16.1 ± 0.1 | 1.1 | 1.6 | 0.7 | 1 | 54.5 |
Çakıldak | 19.1 ± 0.1 | 18.7 ± 0.1 | 17.0 ± 0.1 | 1.1 | 1.9 | 0.9 | 1.2 | 47.9 |
Foşa | 17.2 ± 0.1 | 15.9 ± 0.1 | 13.9 ± 0.1 | 1.2 | 1.1 | 0.6 | 1 | 38.3 |
İncekara | 22.0 ± 0.1 | 17.8 ± 0.1 | 16.2 ± 0.1 | 1.3 | 2 | 1 | 1.2 | 43.3 |
Kalınkara | 19.8 ± 0.1 | 18.2 ± 0.2 | 15.7 ± 0.1 | 1.2 | 2.3 | 0.9 | 1.4 | 32.2 |
Kan | 17.9 ± 0.2 | 15.8 ± 0.1 | 14.4 ± 0.1 | 1.2 | 1.6 | 0.9 | 1 | 51.2 |
Karafındık | 18.8 ± 0.1 | 16.9 ± 0.1 | 13.7 ± 0.1 | 1.2 | 1.7 | 0.8 | 1.2 | 33.9 |
Kargalak | 20.4 ± 0.1 | 25.9 ± 0.1 | 23.4 ± 0.1 | 0.8 | 3.8 | 2.1 | 1.4 | 45.5 |
Kuş | 19.3 ± 0.1 | 16.6 ± 0.1 | 15.1 ± 0.1 | 1.2 | 1.8 | 1 | 1.3 | 49.7 |
Palaz | 16.9 ± 0.1 | 19.5 ± 0.1 | 17.1 ± 0.1 | 0.9 | 1.9 | 1 | 1.3 | 47.3 |
Sivri | 20.7 ± 0.1 | 16.1 ± 0.1 | 14.4 ± 0.1 | 1.4 | 1.8 | 0.9 | 1.2 | 47.6 |
Tombul | 18.2 ± 0.1 | 17.6 ± 0.1 | 15.8 ± 0.1 | 1.1 | 1.9 | 0.9 | 1.2 | 49.9 |
Uzunmusa | 18.1 ± 0.1 | 18.1 ± 0.1 | 16.4 ± 0.1 | 1.1 | 1.8 | 0.8 | 0.9 | 55.7 |
Yassı Badem | 25.6 ± 0.1 | 17.5 ± 0.1 | 12.8 ± 0.1 | 1.7 | 2.5 | 1.4 | 1.5 | 45.5 |
YuvarlakBadem | 24.3 ± 0.1 | 15.2 ± 0.1 | 13.4 ± 0.1 | 1.7 | 1.7 | 0.8 | 0.9 | 48.6 |
Varieties | Training | Validation | Test |
---|---|---|---|
Acı | 205 | 15 | 30 |
Allahverdi | 205 | 15 | 30 |
Çakıldak | 205 | 15 | 30 |
Cavcava | 205 | 15 | 30 |
Foşa | 205 | 15 | 30 |
İncekara | 205 | 15 | 30 |
Kalınkara | 205 | 15 | 30 |
Karafındık | 205 | 15 | 30 |
Kargalak | 205 | 15 | 30 |
Kuş | 205 | 15 | 30 |
Okay28 | 205 | 15 | 30 |
Palaz | 205 | 15 | 30 |
Sivri | 205 | 15 | 30 |
Tombul | 205 | 15 | 30 |
Uzunmusa | 205 | 15 | 30 |
YassıBadem | 205 | 15 | 30 |
YuvarlakBadem | 205 | 15 | 30 |
Total | 3485 | 255 | 510 |
Data Set | Evaluation Metrics | CNN Models | ||||
---|---|---|---|---|---|---|
Lprtnr1 | VGG16 | VGG19 | InceptionV3 | ResNet50 | ||
Validation | Loss | 0.03491 | 9.1336 | 7.5501 | 5.4935 | 7.8169 |
Accuracy | 0.9882 | 0.6941 | 0.6745 | 0.5843 | 0.7725 | |
Recall | 0.9894 | 0.7178 | 0.7247 | 0.6350 | 0.8019 | |
Precision | 0.9882 | 0.6941 | 0.6941 | 0.5843 | 0.7725 | |
F1-Score | 0.9888 | 0.7058 | 0.7091 | 0.6086 | 0.7870 | |
Test | Loss | 0.0443 | 7.1046 | 6.6648 | 5.4052 | 6.9467 |
Accuracy | 0.9863 | 0.7314 | 0.7214 | 0.6118 | 0.8000 | |
Recall | 0.9867 | 0.7580 | 0.7580 | 0.6669 | 0.8240 | |
Precision | 0.9863 | 0.7255 | 0.7471 | 0.6118 | 0.8000 | |
F1-Score | 0.9865 | 0.7414 | 0.7525 | 0.6381 | 0.8118 | |
Depth | 6 | 16 | 19 | 159 | 168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taner, A.; Öztekin, Y.B.; Duran, H. Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut. Sustainability 2021, 13, 6527. https://doi.org/10.3390/su13126527
Taner A, Öztekin YB, Duran H. Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut. Sustainability. 2021; 13(12):6527. https://doi.org/10.3390/su13126527
Chicago/Turabian StyleTaner, Alper, Yeşim Benal Öztekin, and Hüseyin Duran. 2021. "Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut" Sustainability 13, no. 12: 6527. https://doi.org/10.3390/su13126527
APA StyleTaner, A., Öztekin, Y. B., & Duran, H. (2021). Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut. Sustainability, 13(12), 6527. https://doi.org/10.3390/su13126527