How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.?
Abstract
:1. Introduction
2. Methodology
3. Phosphate Sources in the United States
4. Mobilization of Agricultural Phosphorus
5. Phosphorus Eutrophication of U.S. Freshwaters
6. Phosphorus Mitigation Strategies in the U.S.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubrovsky, N.; Burow, K.; Clark, G.; Gronberg, J.; Hamilton, P. The quality of our Nation’s waters—Nutrients in the Nation’s streams and groundwater, 1992–2004. U.S. Geol. Surv. Circ. 2010, 1350, 174. [Google Scholar]
- Withers, P.; Neal, C.; Jarvie, H.; Doody, D. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Mohammad, F. Eutrophication: Challenges and Solutions; Springer Science + Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Carpenter, S. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 32–11039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, A.; Ludeke, K. Phosphorus as a Plant Nutrient. In Plant Nutrients in Desert Environments. Adaptations of Desert Organisms; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Life’s Bottleneck: Sustaining the World’s Phosphorus for a Food Secure Future. Ann. Rev. Environ. Resour. 2014, 39, 161–188. [Google Scholar] [CrossRef]
- Gatiboni, L.; Brunetto, G.; Pavinato, P.; George, T. Legacy Phosphorus in Agriculture: Role of Past Management and Perspectives for the Future. Front. Earth Sci. 2020. [Google Scholar] [CrossRef]
- Asomaning, S. Processes and factors affecting Phosphorus sorption in soils. In Sorption in 2020s; Intech Open: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.; Vallentyne, J. The Algal Bowl: Over Fertilization of the World’s Freshwaters and Estuaries; University of Alberta Press: Edmonton, AB, Canada, 2008. [Google Scholar]
- Schindler, D. Whole-lake eutrophication experiments with phosphorus, nitrogen, and carbon. Verh. Int. Ver. Limnol. 1975, 19, 3221–3231. [Google Scholar] [CrossRef]
- Russell, M.; Weller, D.; Jordan, T.; Sigwart, K.; Sullivan, K. Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 2008, 88, 285–304. [Google Scholar] [CrossRef]
- Kleinman, P.; Sharpley, A.; McDowell, R.; Flaten, D.; Buda, A.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing agricultural phosphorus for water quality protection: Principles for progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Arend, K.; Beletsky, D.; DePinto, J.; Ludsin, S.; Roberts, J.; Rucinski, D.; Scavia, D.; Schwab, D.J.; Höök, T.O. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshw. Biol. 2011, 56, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Dodd, R.; Sharpley, A. Conservation practice effectiveness and adoption: Unintended consequences and implications for sustainable phosphorus management. Nutr. Cycl. Agroecosyst. 2016, 104, 373–392. [Google Scholar] [CrossRef]
- Newman, J.; Anderson, N.; Bennion, H.; Bowes, M.; Carvalho, L.; Dawson, F.H.; Furse, M.; Gunn, I.; Hilton, J.; Hughes, R.; et al. Eutrophication in Rivers: An Ecological Perspective; Center for Ecology and Hydrology: Lancaster, UK, 2005. [Google Scholar] [CrossRef]
- Hilton, J.; O’Hare, M.; Michael, J.; Bowes, J.; Jones, I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total Environ. 2006, 365, 66–83. [Google Scholar] [CrossRef]
- Withers, P.; Jarvie, H. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef]
- Feuchtmayr, H.; Moran, R.; Hatton, K.; Connor, L.; Heyes, T.; Moss, B.; Harvey, I.; Atkinson, D. Global warming and eutrophication: Effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. J. Appl. Ecol. 2009, 46, 713–723. [Google Scholar] [CrossRef]
- Grote, U.; Craswell, E.; Vlek, P. Nutrient flows in international trade: Ecology and policy issues. Environ. Sci. Policy 2005, 8, 439–451. [Google Scholar] [CrossRef]
- Haygarth, P.; Jarvie, H.; Powers, S.; Sharpley, A.; Elser, J.; Shen, J.; Peterson, H.; Chan, N.; Howden, N.; Burt, T.; et al. Sustainable phosphorus management and the need for a long-term perspective: The legacy hypothesis. Environ. Sci. Technol. 2014, 48, 8417–8419. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Bergström, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Börling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. AMBIO 2015, 44, 163–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, D. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Jarvie, H.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [Green Version]
- Stackpoole, S.; Stets, E.; Sprague, L. Variable impacts of contemporary versus legacy agricultural phosphorus on US river water quality. Proc. Natl. Acad. Sci. USA 2019, 116, 20562–20567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture. Trends and Challenges. 2017. Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 18 March 2021).
- Brodt, S.; Six, J.; Feenstra, G.; Ingels, C.; Campbell, D. Sustainable Agriculture. Nat. Ed. Knowl. 2011, 3, 1. [Google Scholar]
- Diaz-Ambrona, C.; Maletta, E. Achieving Global Food Security through Sustainable Development of Agriculture and Food Systems with Regard to Nutrients, Soil, Land, and Waste Management. Curr. Sustain. Renew. Energy Rep. 2014, 1, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Johnson, L.; LaBarge, G.; Penn, C.J.; Stumpf, R.P.; Baker, D.B.; Shao, G. Less Agricultural Phosphorus Applied in 2019 Led to Less Dissolved Phosphorus Transported to Lake Erie. Environ. Sci. Technol. 2021, 55, 283–291. [Google Scholar] [CrossRef]
- Haque, S. Hydrogeochemical Characterization of Groundwater Quality in the States of Texas and Florida in Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions; Elsevier: New York, NY, USA, 2020. [Google Scholar]
- Ihnken, S.; Eggert, A.; Beardall, J. Exposure times in rapid light curves affect photosynthetic parameters in algae. Aqua 2010, 93, 185–194. [Google Scholar] [CrossRef]
- Paerl, H.; Otten, T. Blooms Bite the Hand That Feeds Them. Science 2013, 342, 433–434. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Food Security. Geneva: World Health Organization. 2014. Available online: http://www.who.int (accessed on 15 March 2021).
- WaterAid. Water Security Framework. WaterAid, London, UK. 2012. Available online: https://washmatters.wateraid.org/sites/g/files/jkxoof256/files/download-our-water-security-framework.pdf (accessed on 20 March 2021).
- Samreen, S.; Kausar, S. Phosphorus Fertilizaton: The original and commercial sources. In Phosphorus—Recovery and Recycling; Tao Zhang, T., Ed.; Intechopen Limited: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bindraban, P.; Dimkpa, C.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Heffer, P.; Prud’homme, M.; Muirhead, B.; Isherwood, K. Phosphorus Fertilization: Issues and Outlook. Proc. Int. Fertil. Soc. 2006, 586, 30. [Google Scholar]
- USGS (United States Geological Survey). Mineral Commodity Summaries 2020. 2020. Available online: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf (accessed on 30 March 2021).
- Notholt, A.; Sheldon, R.; Davidson, D. Phosphate Deposits of the World. In Phosphate Rock Resources; Cambridge University Press: Cambridge, UK, 1989; p. 2. [Google Scholar]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Metson, G.S.; MacDonald, G.K.; Haberman, D.; Nesme, T.; Bennett, E.M. Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Sci. Total Environ. 2016, 542, 1117–1126. [Google Scholar] [CrossRef]
- Hellerstein, D.; Vilorio, D.; Ribaudo, M. Agricultural Resources and Environmental Indicators, 2019. Econ. Inf. Bull. 2019, 208, 7. Available online: https://www.ers.usda.gov/webdocs/publications/93026/eib-208.pdf (accessed on 22 March 2021).
- Aspelin, A.; Grube, A. Pesticides Industry Sales and Usage: 1996 and 1997 Market Estimates; U.S. Environmental Protection Agency: Washington, DC, USA, 1999; p. 30. [Google Scholar]
- Daberkow, S.; Huang, W. Nutrient management. In Agricultural Resources and Environmental Indicators; Wiebe, K., Gollehon, N., Eds.; EIB-16; U.S. Department of Agriculture, Economic Research Service: Honolulu, HI, USA. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=44109 (accessed on 15 March 2021).
- Natural Resources Conservation Services (NRCS) USDA. 2006; p. 172. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_012874.pdf (accessed on 1 April 2021).
- Morgan, R. Soil Erosion & Conservation, 3rd ed.; Wiley-Blackwell: Malden, MA, USA, 2005. [Google Scholar]
- Gentry, L.; David, M.; Royer, T.; Mitchell, C.; Starks, K. Phosphorus Transport Pathways to Streams in Tile-Drained Agricultural Watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Kolpin, D. Importance of the Mississippi River Basin for investigating agricultural–chemical contamination of the hydrologic cycle. Sci. Total Environ. 2000, 248, 2–3. [Google Scholar] [CrossRef]
- Goolsby, D.; Pereira, W. Pesticides in the Mississippi River. Contaminants in the Mississippi River. USGS Circul. 1995, 1133. Available online: https://pubs.usgs.gov/circ/circ1133/pesticides.html (accessed on 8 April 2021).
- Andersen, J.; Conley, D.; Hedal, S. Palaeoecology, reference conditions and classification of ecological status: The EU Water Framework Directive in practice. Mar. Pollut. Bull. 2004, 49, 283–290. [Google Scholar] [CrossRef]
- Nixon, S. Eutrophication and the macroscope. Hydrobiologia 2009, 629, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, W.; Anderson, G.; Perterson, D. Artificial Eutrophication of Lake Washington. Limnol. Oceanogr. 1956, 1, 147–153. [Google Scholar] [CrossRef]
- Edmondson, W. The Uses of Ecology: Lake Washington and Beyond; University of Washington Press: Seattle, DC, USA, 1991. [Google Scholar]
- ReVelle, P.; ReVelle, C. The Environment—Issues and Choices for Society; Jones and Bartlett: Boston, MA, USA, 1988; p. 749. [Google Scholar]
- Dolan, D. Point Source Loadings of Phosphorus to Lake Erie: 1986–1990. J. Great Lakes Res. 1993, 19, 212–223. [Google Scholar] [CrossRef]
- Oglesby, R.; Edmondson, W. Control of Eutrophication. J. Water Pollut. Control. Fed. 1966, 38, 1452–1460. [Google Scholar]
- Joosse, P.; Baker, D. Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes. Can. J. Soil Sci. 2011, 91, 317–327. [Google Scholar] [CrossRef]
- LCBP (Lake Champlain Basin Program). Opportunities for action: An evolving plan for the future of the Lake Champlain Basin; LCBP: Grand Isle, VT, USA, 1996. [Google Scholar]
- Meals, D. Watershed-scale response to agricultural diff use pollution control programs in Vermont, USA. Water Sci. Technol. 1996, 33, 197–204. [Google Scholar] [CrossRef]
- Smeltzer, E. Reducing phosphorus levels in Lake Champlain. In A Clean Lake for Tomorrow: Proceedings; Lake Champlain Committee: Burlington, VT, USA, 1992; pp. 9–21. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Phosphorus TMDLs for Vermont Segments of Lake Champlain. Boston, MA, USA; 2016. Available online: https://www.epa.gov/sites/production/files/2016-06/documents/phosphorus-tmdls-vermont-segments-lake-champlain-jun-17-2016.pdf (accessed on 14 May 2021).
- USGS. National Water Quality Program. 2021. Available online: https://www.usgs.gov/water-resources/national-water-quality-program (accessed on 29 March 2021).
- Litke, D. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality. U.S. Geological Survey. National Water Quality Assessment Program. Water Resour. Investig. Rep. 1999, 99. [Google Scholar]
- Turner, R.; Rabalais, N. Changes in the Mississippi River this century: Implications for coastal food webs. Bioscience 1991, 41, 140–147. [Google Scholar] [CrossRef]
- Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 1996, 35, 75–139. [Google Scholar]
- Jordan, T.; Correll, D.; Weller, D. Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resour. Res. 1997, 33, 2579–2590. [Google Scholar] [CrossRef]
- Turner, R. Nitrogen and phosphorus concentration and retention in water flowing over freshwater wetlands. In Ecology and Management of Bottomland Hardwood Systems: The State of Our Understanding; Fredrikson, L.H., King, S.L., Kaminski, R.M., Eds.; Gaylord Memorial Laboratory, University of Missouri–Columbia: Puxico, MO, USA; New York, NY, USA, 2003. [Google Scholar]
- Maki, A.; Porcella, D.; Wendt, R. The impact of detergent phosphorus bans on receiving water quality. Water Res. 1984, 18, 893–903. [Google Scholar] [CrossRef]
- USEPA. EPA Survey Finds More Than Half of the Nation’s River and Stream Miles in Poor Condition. 2013. Available online: https://archive.epa.gov/epapages/newsroom_archive/newsreleases/26a31559bb37a7d285257b3a00589ddf.html (accessed on 20 March 2021).
- Holman, I.P.; Whelan, M.; Howden, N.; Bellamy, P.; Willby, N.; Rivas-Casado, M.; McConvey, P. Phosphorus in groundwater: An overlooked contributor to eutrophication? Hydrol. Proc. 2008, 22, 5121–5127. [Google Scholar] [CrossRef]
- Roy, J.; Bickerton, G. Elevated dissolved phosphorus in riparian groundwater along gaining urban streams. Environ. Sci. Technol. 2014, 48, 1492–1498. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Giles, C.; Darch, T.; Timothy, G.; Blackwell, M.; Stutter, M.; Shand, C.; Lumsdon, D.; Cooper, P.; Wendler, R.; et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant Soil 2018, 427, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, R.; Sharpley, A.; Chalmers, A. Land use and flow regime effects on phosphorus chemical dynamics in the fluvial sediment of the Winooski River, Vermont. Ecol. Eng. 2002, 18, 477–487. [Google Scholar] [CrossRef]
- Sharpley, A.; Kleinman, P.; Jordan, P.; Bergstrom, L.; Allen, A. Evaluating the success of phosphorus management from field to watershed. J. Environ. Qual. 2009, 38, 1981–1988. [Google Scholar] [CrossRef]
- Reddy, K.; Newman, S.; Osborne, T.; White, R.; Fitz, H. Phosphorus cycling in the Everglades ecosystem: Legacy phosphorus implications for management and restoration. Crit. Rev. Environ. Sci. Technol. 2011, 41, 149–186. [Google Scholar] [CrossRef]
- Ekholm, P.; Valkama, P.; Jaakkola, E.; Kiirikki, M.; Lahti, K.; Pietola, L. Gypsum amendment of soils reduces phosphorus losses in an agricultural catchment. Agric. Food Sci. 2012, 21, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, R.; Ylivainio, K.; Hyväluoma, J.; Rasa, K.; Kaseva, J.; Nylund, P.; Pietola, L.; Turtola, E. The effects of gypsum on the transfer of phosphorus and other nutrients through clay soil monoliths. Agric. Food Sci. 2012, 21, 260–278. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture (USDA). Using Gypsum to Help Reduce Phosphorus Runoff. 2017. Available online: https://www.usda.gov/media/blog/2015/09/01/using-gypsum-help-reduce-phosphorus-runoff (accessed on 25 March 2021).
- Iho, A.; Laukkanen, M. Gypsum amendment as a means to reduce agricultural phosphorus loading: An economic appraisal. Agric. Food Sci. 2012, 21, 3. [Google Scholar] [CrossRef]
- USDA-NRCS (U.S. Department of Agriculture’s Natural Resource Conservation Service). 2013. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1192371.pdf (accessed on 1 May 2021).
- Mallarino, A.; Stewart, B.; Baker, J.; Downing, J.; Sawyer, J. Phosphorus indexing for cropland: Overview and basic concepts of the Iowa phosphorus index. J. Soil Water Conserv. 2002, 6, 440–447. [Google Scholar]
- Wurtsbaugh, W.; Paerl, H.; Dodds, W. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Jokela, W.; Clausen, J.; Meals, D.; Sharpley, A. Effectiveness of Agricultural Best Management Practices in Reducing Phosphorous Loading to Lake Champlain. In Lake Champlain: Partnerships and Research in the New Millennium; Manley, T.O., Manley, P.L., Mihuc, T.B., Eds.; Springer: Boston, MA, USA, 2004. [Google Scholar] [CrossRef]
- Han, H.; Bosch, N.; Allan, J. Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 2011, 102, 45–58. [Google Scholar] [CrossRef]
- Osmond, D.; Hoag, D.; Luloff, A.; Meals, D.; Neas, K. Farmers’ use of nutrient management: Lessons from watershed case studies. J. Environ. Qual. 2015, 44, 382–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z. Sustanable intensification in agricultural systems. Ann. Bot. 2014, 114, 8, 1571–1596. [Google Scholar] [CrossRef]
- Scholz, R.; Roy, A.; Brand, F.; Hellums, D.; Ulrich, A. (Eds.) Sustainable Phosphorus Management. A Global Transdisciplinary Roadmap; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Spiegal, S.; Bestelmeyer, B.; Acher, D.; Augustine, D.; Boughton, E.; Boughton, R.K.; Cavigelli, M.A.; Clark, P.E.; Derner, J.D.; Duncan, E.W.; et al. Evaluating strategies for sustainable intensification of US agriculture through the Long-Term Agroecosystem Research network. Environ. Res. Lett. 2018, 13, 034031. [Google Scholar] [CrossRef]
- Petersen, B.; Snapp, S. What is sustainable intensification? Views from experts. Land Use Pol. 2015, 46, 1–10. [Google Scholar] [CrossRef]
- Robertson, D.; Saad, D. Nitrogen and Phosphorus Sources and Delivery from the Mississippi/Atchafalaya River Basin: An Update Using 2012 SPARROW Models. J. Am. Water Resour. As. JAWR-20-0047-P 2021. [Google Scholar] [CrossRef]
- Howarth, R.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R. Limnology, Lake and River Ecosystems, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Conley, D.; Paerl, H.; Howarth, R.; Boesch, D.; Seitzinger, S.; Havens, K.; Lancelot, C.; Likens, G. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Lewis, W.W., Jr.; Wurtsbaugh, A.W.; Paerl, H. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 2011, 45, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.; Valdes, L.; Joyner, A.; Piehler, M. Solving Problems Resulting from Solutions: Evolution of a Dual Nutrient Management Strategy for the Eutrophying Neuse River Estuary, North Carolina. Environ. Sci. Technol. 2004, 38, 3068. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Cassman, K.; Cleveland, C.; Crews, T.E.; Field, C.B.; Grimm, N.B.; Howarth, R.W.; Marino, R.; Matinello, L.A.; Rastetter, E.B.; et al. Towards an Ecological Understanding of Biological Nitrogen Fixation. Biogeochemistry 2012, 57, 1. [Google Scholar] [CrossRef]
- Maere, T.; Neethling, J.; Clark, D.; Pramanik, A.; Vanrolleghe, P. Wastewater treatment nutrient regulations: An international perspective with focus on innovation. WEF/IWA Nutrient Removal Conference, Denver, CO, USA. 2016. Available online: https://www.researchgate.net/publication/305490602_Wastewater_treatment_nutrient_regulations_An_international_perspective_with_focus_on_innovation (accessed on 17 May 2021).
- Cornel, P.; Schaum, C. Phosphorus recovery from wastewater: Needs, techniques and costs. Water Sci. Technol. 2009, 59, 1069–1076. [Google Scholar] [CrossRef]
- Nobaharan, K.; Novair, S.; Lajayer, B.; van Hullebusch, E. Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13, 517. [Google Scholar] [CrossRef]
- USEPA. Available online: https://www.epa.gov/nutrient-policy-data/what-epa-doing-reduce-nutrient-pollution#promote (accessed on 10 May 2021).
Acres | P Dissolved in Runoff | P Dissolved in Leachate | P Lost with Waterborne Sediments | P Lost with Windborne Sediments | All Loss Pathways (Total) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | Tons | % | Tons | % | Tons | % | Tons | % | Tons | % | |
Regions of the U.S. | |||||||||||
Northeast | 4.6 | 4811 | 6.9 | 684 | 9.5 | 23,387 | 10.3 | 282 | 0.5 | 29,163 | 8.1 |
Northern Great Plains | 24.3 | 5628 | 8.0 | 145 | 2.0 | 24,441 | 10.7 | 21,294 | 38.5 | 51,506 | 14.3 |
South Central | 15.2 | 18,271 | 26.1 | 2573 | 35.6 | 42,014 | 18.4 | 1543 | 2.8 | 64,401 | 17.9 |
Southeast | 4.5 | 5850 | 8.4 | 984 | 13.6 | 10,814 | 4.7 | 19 | 0 | 17,667 | 4.90 |
Southern Great Plains | 10.8 | 1976 | 2.8 | 177 | 2.5 | 8356 | 3.7 | 28,372 | 51.3 | 38,881 | 10.8 |
Upper Midwest | 37.7 | 31,742 | 45.4 | 2550 | 35.3 | 116,841 | 51.3 | 3553 | 6.4 | 154,686 | 42.9 |
West | 3.0 | 1689 | 2.4 | 109 | 1.5 | 2012 | 0.9 | 247 | 0.4 | 4057 | 1.1 |
All regions | 100 | 69,967 | 100 | 7222 | 100 | 227,865 | 100 | 55,310 | 100 | 360,361 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, S.E. How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability 2021, 13, 6565. https://doi.org/10.3390/su13126565
Haque SE. How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability. 2021; 13(12):6565. https://doi.org/10.3390/su13126565
Chicago/Turabian StyleHaque, Shama E. 2021. "How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.?" Sustainability 13, no. 12: 6565. https://doi.org/10.3390/su13126565
APA StyleHaque, S. E. (2021). How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability, 13(12), 6565. https://doi.org/10.3390/su13126565