Next-Generation Smart Response Web (NG-SRW): An Operational Spatial Decision Support System for Maritime Oil Spill Emergency Response in the Gulf of Finland (Baltic Sea)
Abstract
:1. Introduction
2. Study Area and Intended End Users of the DSS
3. Scientific Basis
4. Oil Spill Emergency Response: Conceptual Framework
5. Common Situational Awareness for Oil Spill Response Operations: Architecture and Implementation of the NG-SRW
5.1. Next-Generation Smart Response Web (NG-SRW)
5.2. Seatrack Web (STW)
5.3. Accidental Damage and Spill Assessment Model—Grounding (ADSAM-G)
5.4. Environmental Sensitivity Index (ESI) Map Layers
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- HELCOM. Assessment on Maritime Activities in the Baltic Sea 2018. Baltic Sea Environment Proceedings No. 152; Helsinki Commission: Helsinki, Finland, 2018; 253p. [Google Scholar]
- Sonninen, S.; Nuutinen, M.; Rosqvist, T. Development Process of the Gulf of Finland Mandatory Ship Reporting System—Reflections on the Methods; VTT Publications 614: Espoo, Finland, 2006. [Google Scholar]
- Goerlandt, F.; Goite, H.; Valdez, B.O.A.; Höglund, A.; Ahonen-Rainio, P.; Lensu, M. An analysis of wintertime navigational systems in the Northern Baltic Sea. Saf. Sci. 2017, 92, 66–84. [Google Scholar] [CrossRef]
- Goerlandt, F.; Montewka, J. A framework for risk analysis of maritime transportation systems: A case study for oil spill from tankers in a ship–ship collision. Saf. Sci. 2015, 76, 42–66. [Google Scholar] [CrossRef]
- Helle, I.; Ahtiainen, H.; Luomaa, E.; Hänninen, M.; Kuikka, S. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland. J. Environ. Manag. 2015, 158, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Valdez, B.O.A.; Goerlandt, F.; Kuzmin, V.; Kujalaa, P.; Montewka, J. Risk management model of winter navigation operations. Mar. Pollut. Bull. 2016, 108, 242–262. [Google Scholar] [CrossRef]
- Valdez, B.O.A.; Goerlandt, F.; Montewka, J.; Kujala, P. A risk analysis of winter navigation in Finnish sea areas. Accid. Anal. Prev. 2015, 79, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Leppäranta, M.; Gästgifvars, M.; Vainio, J.; Wang, C. The drift and spreading of the Runner 4 oil spill and the ice conditions in the Gulf of Finland, winter 2006. Est. J. Earth Sci. 2008, 57, 181–191. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Luoma, E.; Mäntyniemi, S.; Kuikka, S. Optimizing the Recovery Efficiency of Finnish Oil Combating Vessels in the Gulf of Finland Using Bayesian Networks. Environ. Sci. Technol. 2013, 47, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Goerlandt, F.; Valdez, B.O.A.; Kujalaa, P.; Höglund, A.; Arneborg, L. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice-covered Northern Baltic Sea. Mar. Pollut. Bull. 2019, 139, 440–458. [Google Scholar] [CrossRef]
- Environmental Sensitivity Index Guidelines, Version 3; NOAA Technical Memorandum Nos OR&R 11; Hazardous Materials Response Division, National Ocean Service: Seattle, WA, USA, 2002.
- Montewka, J.; Weckström, M.; Kujala, P. A probabilistic model estimating oil spill clean-up costs—A case study for the Gulf of Finland. Mar. Pollut. Bull. 2013, 76, 61–71. [Google Scholar] [CrossRef]
- Pourvakhshouri, S.Z.; Mansor, S. Decision support system in oil spill cases (literature review). Disaster Prev. Manag. 2003, 12, 217–221. [Google Scholar] [CrossRef]
- Pourvakhshouri, S.Z.; Shattri, B.M.; Zelina, Z.I.; Noordin, A. Decision support system in oil spill management. In Proceedings of the ISPRS Technical Commission II Symposium, Vienna, Austria, 12–14 July 2006; pp. 93–96. [Google Scholar]
- Keenan, P.B.; Jankowski, P. Spatial Decision Support Systems: Three decades on. Decis. Support Syst. 2019, 116, 64–76. [Google Scholar] [CrossRef]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Ciappa, A.C. Reverse trajectory study of oil spill risk in Cyclades Islands of the Aegean Sea. Reg. Stud. Mar. Sci. 2021, 41, 101580. [Google Scholar] [CrossRef]
- Amir-Heidari, P.; Raie, M. Response planning for accidental oil spills in Persian Gulf: A decision support system (DSS) based on consequence modeling. Mar. Pollut. Bull. 2019, 140, 116–128. [Google Scholar] [CrossRef] [PubMed]
- De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Lardner, R. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting—Part 1: Theory. Geosci. Model Dev. 2013, 6, 1851–1869. [Google Scholar] [CrossRef] [Green Version]
- Zodiatis, G.; Lardner, R.; Hayes, D.; Georgiou, G.; Pinardi, N.; De Dominicis, M.; Panayidou, X. The Mediterranean oil spill and trajectory prediction model in assisting the EU response agencies. In Proceedings of the Congreso Nacional de Salvamento en la Mar, Cadiz, Spain, 2–4 October 2008; pp. 535–547. [Google Scholar]
- De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Archetti, R. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting—Part 2: Numerical simulations and validations. Geosci. Model Dev. 2013, 6, 1871–1888. [Google Scholar] [CrossRef] [Green Version]
- Liubartseva, S.; Coppini, G.; Pinardi, N.; De Dominicis, M.; Lecci, R.; Turrisi, G.; Cretì, S.; Martinelli, S.; Agostini, P.; Marra, P.; et al. Decision support system for emergency management of oil spill accidents in the Mediterranean Sea. Nat. Hazards Earth Syst. Sci. 2016, 16, 2009–2020. [Google Scholar] [CrossRef] [Green Version]
- Kokkonen, T.; Ihaksi, T.; Jolmaa, A.; Kuikka, S. Dynamic mapping of nature values to support prioritization of coastal oil combating. Environ. Model. Softw. 2010, 25, 248–257. [Google Scholar] [CrossRef]
- Haapasaari, P.; Dahlbo, K.; Aps, R.; Brunila, O.-P.; Fransas, A.; Goerlandt, F.; Hänninen, M.; Jönsson, A.; Laurila-Pant, M.; Lehikoinen, A.; et al. Minimizing Risks of Maritime Oil Transport by Holistic Safety Strategies (MIMIC); Kotka Maritime Research Centre, Merikotka: Kotka, Finland, 2014; 64p. [Google Scholar]
- Aps, R.; Tõnisson, H.; Suursaar, Ü.; Orviku, K. Regional Environmental Sensitivity Index (RESI) Classification of Estonian Shoreline (Baltic Sea). J. Coast. Res. 2016, 75, 972–976. [Google Scholar] [CrossRef]
- HELCOM. Convention on the Protection of the Marine Environment of the Baltic Sea Area, 1992 (Helsinki Convention); as amended; HELCOM: Helsinki, Finland, 2013. [Google Scholar]
- Halonen, J.; Lanki, A. Efficiency of maritime simulator training in oil spill response competence development. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 199–204. [Google Scholar] [CrossRef] [Green Version]
- IMO. Mandatory Ship Reporting Systems; International Maritime Organization: London, UK, 2003. [Google Scholar]
- IMO. Mandatory Ship Reporting Systems. SN. 1/Circ. 258; International Maritime Organization: London, UK, 2006. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Jankowski, P.; Keim, D.; Kraak, M.J.; MacEachren, A.; Wrobel, S. Geovisual analytics for spatial decision support: Setting the research agenda. Int. J. Geogr. Inf. Sci. 2007, 21, 839–857. [Google Scholar] [CrossRef]
- Arneborg, L.; Höglund, A.; Axell, L.; Lensu, M.; Liungman, O.; Mattsson, J. Oil drift modelling in pack ice: Sensitivity to oil-in-ice parameters. Ocean Eng. 2017, 144, 340–350. [Google Scholar] [CrossRef]
- Raudsepp, U.; Laanemets, J.; Maljutenko, I.; Hongisto, M.; Jalkanen, J.-P. Impact of ship-borne nitrogen deposition on the Gulf of Finland ecosystem: An evaluation. Oceanologia 2013, 55, 837–857. [Google Scholar] [CrossRef] [Green Version]
- Isaev, A.V.; Eremina, T.R.; Ryabchenko, V.A.; Savchuk, O.P. Model estimates of the impact of bioirrigation activity of Marenzelleria spp. on the Gulf of Finland ecosystem in a changing climate. J. Mar. Sys. 2017, 171, 81–88. [Google Scholar] [CrossRef]
- Hedelin, B.; Evers, M.; Alkan-Olsson, J.; Jonsson, A. Participatory modelling for sustainable development: Key issues derived from five cases of natural resource and disaster risk management. Environ. Sci. Policy 2017, 76, 185–196. [Google Scholar] [CrossRef]
- Rodel, R.; Bregt, A.K.; Ligtenberg, A.; Pérez-Soba, M.; Verweij, P. The social side of spatial decision support systems: Investigating knowledge integration and learning. Environ. Sci. Policy 2017, 76, 177–184. [Google Scholar] [CrossRef]
- Luokkala, P.; Nikander, J.; Korpi, J.; Virrantaus, K.; Torkki, P. Developing a concept of a context-aware operational picture. Saf. Sci. 2017, 93, 277–295. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.; Ronald, M.; Atlasd, R.M.; Philp, J.C. Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Process. Impacts 2015, 17, 1201–1219. [Google Scholar] [CrossRef] [Green Version]
- Luokkala, P.; Virrantaus, K. Developing information systems to support situational awareness and interaction in time-pressuring crisis situations. Saf. Sci. 2014, 63, 191–203. [Google Scholar] [CrossRef]
- Chang, S.E.; Stone, J.; Demes, K.; Piscitelli, M. Consequences of oil spills: A review and framework for informing planning. Ecol. Soc. 2014, 19, 26. [Google Scholar] [CrossRef] [Green Version]
- IPIECA. Choosing Spill Response Options to Minimize Damage: Net Environmental Benefit Analysis; (IPIECA Report Series, 10); International Petroleum Industry Environmental Conservation Association: London, UK, 2015. [Google Scholar]
- Jensen, J.R.; Halls, J.N.; Michel, J. A Systems Approach to Environmental Sensitivity lndex (ESI) Mapping for Oil Spill Contingency Planning and Response. PE RS 1998, 64, 1003–1014. [Google Scholar]
- Aps, R.; Tõnisson, H.; Anfuso, G.; Perales, J.A.; Orviku, K.; Suursaar, Ü. Incorporating dynamics factor to the Environmental Sensitivity Index (ESI) shoreline classification—Estonian and Spanish example. J. Coast. Res. 2014, 70, 235–240. [Google Scholar] [CrossRef]
- Aps, R.; Herkül, K.; Kotta, J.; Kotta, I.; Kopti, M.; Leiger, R.; Mander, Ü.; Suursaar, Ü. Bayesian inference for oil spill related Net Environmental Benefit Analysis. In Coastal Processes; Brebbia, C., Benassai, G., Rodriguez, G., Eds.; WIT Press: Southampton, UK; Boston, MA, USA, 2009; pp. 235–246. [Google Scholar]
- Aps, R.; Fetissov, M.; Herkül, K.; Kotta, J.; Leiger, R.; Mander, Ü.; Suursaar, Ü. Bayesian inference for predicting potential oil spill related ecological risk. In Safety and Security Engineering; Guarascio, M., Brebbia, C.A., Garzia, F., Eds.; WIT Press: Southampton, UK, 2009; pp. 149–159. [Google Scholar]
- Aps, R.; Fetissov, M.; Goerlandt, F.; Kopti, M.; Kujala, P. STAMP—Mar based safety management of maritime navigation in the Gulf of Finland (Baltic Sea). In Proceedings of the European Navigation Conference, Helsinki, Finland, 30 May–2 June 2016; pp. 1–8. [Google Scholar]
- Ambjörn, C.; Liungman, O.; Mattsson, J.; Håkansson, B. Seatrack Web: The HELCOM Tool for Oil Spill Prediction and Identification of Illegal Polluters. In Oil Pollution in the Baltic Sea. The Handbook of Environmental Chemistry; Kostianoy, A., Lavrova, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 27, pp. 155–184. [Google Scholar]
- HELCOM. Openrisk Guideline for Regional Risk Management to Improve European Preparedness and Response at Sea; HELCOM: Helsinki, Finland, 2018. [Google Scholar]
- Ambjorn, C. SeatrackWeb, forecasts of oil spills, a new version. In Proceedings of the 2006 IEEE US/EU Baltic International Symposium, Klaipeda, Lithuania, 23–26 May 2006. [Google Scholar]
- HELCOM. HELCOM STW Oil Drift Modelling; HELCOM: Helsinki, Finland, 2020. [Google Scholar]
- Nordström, J.; Goerlandt, F.; Sarsama, J.; Leppänen, P.; Nissilä, M.; Ruponen, P.; Lubcke, T.; Sonninen, S. Vessel TRIAGE: A method for assessing and communicating the safety status in maritime distress situations. Saf. Sci. 2016, 85, 117–129. [Google Scholar] [CrossRef]
- Fournier, M.; Hilliard, R.C.; Rezaee, S.; Pelot, R. Past, present, and future of the satellite-based automatic identification system: Areas of applications (2004–2016). WMU J. Marit. Aff. 2018, 17, 311–345. [Google Scholar] [CrossRef] [Green Version]
- Goerlandt, F.; Laine, V.; Bal Beşikçi, E.; Baldauf, M.; Al-Quhali, M.A.; Koldenhof, Y. End-user and stakeholder views on selected risk assessment tools for marine oil spill preparedness and response, including future research and development needs. TransNav 2019, 13, 213–220. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetissov, M.; Aps, R.; Goerlandt, F.; Jänes, H.; Kotta, J.; Kujala, P.; Szava-Kovats, R. Next-Generation Smart Response Web (NG-SRW): An Operational Spatial Decision Support System for Maritime Oil Spill Emergency Response in the Gulf of Finland (Baltic Sea). Sustainability 2021, 13, 6585. https://doi.org/10.3390/su13126585
Fetissov M, Aps R, Goerlandt F, Jänes H, Kotta J, Kujala P, Szava-Kovats R. Next-Generation Smart Response Web (NG-SRW): An Operational Spatial Decision Support System for Maritime Oil Spill Emergency Response in the Gulf of Finland (Baltic Sea). Sustainability. 2021; 13(12):6585. https://doi.org/10.3390/su13126585
Chicago/Turabian StyleFetissov, Mihhail, Robert Aps, Floris Goerlandt, Holger Jänes, Jonne Kotta, Pentti Kujala, and Robert Szava-Kovats. 2021. "Next-Generation Smart Response Web (NG-SRW): An Operational Spatial Decision Support System for Maritime Oil Spill Emergency Response in the Gulf of Finland (Baltic Sea)" Sustainability 13, no. 12: 6585. https://doi.org/10.3390/su13126585