Analysis of Pedestrian–Motor Vehicle Crashes in San Antonio, Texas
Abstract
:1. Introduction
1.1. Literature Review
1.2. Economic Impact and Focus on San Antonio
1.3. Statistical Approaches and Scope of Study
2. Materials and Methods
3. Results and Discussion
3.1. Spatial Analysis
3.2. Bivariate Analysis
3.2.1. Environmental and Temporal Characteristics
3.2.2. Road and Vehicle Characteristics
3.2.3. Pedestrian Characteristics
3.3. Logistic Regression Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, L.F.; Dellinger, A.M.; O’Neil, M.E. Motor Vehicle Crash Injury Rates by Mode of Travel, United States: Using Exposure-Based Methods to Quantify Differences. Am. J. Epidemiol. 2007, 166, 212–218. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Grivna, M.; Nauman, J.; Soteriades, E.S.; Cevik, A.A.; Hashim, M.J.; Govender, R.; Al Azeezi, S.R. Global Incidence and Mortality Patterns of Pedestrian Road Traffic Injuries by Sociodemographic Index, with Forecasting: Findings from the Global Burden of Diseases, Injuries, and Risk Factors 2017 Study. Int. J. Environ. Res. Public Health 2020, 17, 2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegeer, C.V.; Bushell, M. Pedestrian Crash Trends and Potential Countermeasures from around the World. Accid. Anal. Prev. 2012, 44, 3–11. [Google Scholar] [CrossRef]
- Lee, I.-M.; Buchner, D.M. The importance of walking to public health. Med. Sci. Sports Exerc. 2008, 40, S512–S518. [Google Scholar] [CrossRef]
- National Center for Statistics and Analysis. Pedestrian: 2016 Data; Traffic Safety Facts. Report No. DOT HS 812 493; National Highway Traffic Safety Administration: Washington, DC, USA, 2018.
- Hauer, E. The frequency-severity indeterminacy. Accid. Anal. Prev. 2006, 38, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Hauer, E.; Hakkert, A.S. Extent and some implications of incomplete accident reporting. Transp. Res. Rec. 1988, 1185, 17. [Google Scholar]
- Da Silva, M.P.; Smith, J.D.; Najm, W.G. Analysis of Pedestrian Crashes April. 2003. Available online: https://trid.trb.org/view/678125 (accessed on 18 April 2020).
- Ming, S.; Sun, X.; Shan, D. Pedestrian Crash Analysis with Latent Class Clustering Method. Accid. Anal. Prev. 2019, 124, 50–57. [Google Scholar] [CrossRef]
- Fleiter, J.J.; Watson, B. Addressing the Road Trauma Burden in China: Exploring Attitudes, Behaviours, Risk Perceptions and Cultural Uniqueness. Accid. Anal. Prev. 2016, 95, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Highway Traffic Safety Administration. Traffic Safety Facts 2015 Data—Pedestrians; Publication No. DOT-HS-812-375; US Department of Transportation, National Highway Traffic Safety Administration: Washington, DC, USA, 2017. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812375 (accessed on 13 February 2018).
- Chang, D. National Pedestrian Crash Report, June. 2008. Available online: https://trid.trb.org/view/865004 (accessed on 18 April 2020).
- Ferguson, S.A.; Preusser, D.F.; Lund, A.K.; Zador, P.L.; Ulmer, R.G. Daylight saving time and motor vehicle crashes: The reduction in pedestrian and vehicle occupant fatalities. Am. J. Public Health 1995, 85, 92–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, K.J.; Burnier, C.V.; Akar, G. Severity of Injury Resulting from Pedestrian–vehicle Crashes: What Can We Learn from Examining the Built Environment? Transp. Res. Part D Transp. Environ. 2009, 14, 425–436. [Google Scholar] [CrossRef]
- Zhu, M.; Zhao, S.; Coben, J.H.; Smith, G. Why more male pedestrians die in vehicle-pedestrian collisions than female pedestrians: A decompositional analysis. Inj. Prev. 2013, 19, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.W.G.; McLean, A.J.; Farmer, M.J.B.; Lee, B.H.; Brooks, C.G. Vehicle Travel Speeds and the Incidence of Fatal Pedestrian Crashes. Accid. Anal. Prev. 1997, 29, 667–674. [Google Scholar] [CrossRef]
- Lee, C.; Abdel-Aty, M. Comprehensive Analysis of Vehicle–pedestrian Crashes at Intersections in Florida. Accid. Anal. Prev. 2005, 37, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hu, H.; Habib, E.; Magri, D. Quantifying Crash Risk under Inclement Weather with Radar Rainfall Data and Matched-Pair Method. J. Transp. Saf. Secur. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Federal Highway Administration. Road Weather Management Program: How Do Weather Events Impact Roads? 2017. Available online: https://ops.fhwa.dot.gov/weather/qlroadimact.htm (accessed on 3 July 2017).
- Omranian, E.; Sharif, H.; Dessouky, S.; Weissmann, J. Exploring Rainfall Impacts on the Crash Risk on Texas Roadways: A Crash-Based Matched-Pairs Analysis Approach. Accid. Anal. Prev. 2018, 117, 10–20. [Google Scholar] [CrossRef]
- Miller, T.R.; Zaloshnja, E.; Lawrence, B.A.; Crandall, J.; Ivarsson, J.; Finkelstein, A.E. Pedestrian and Pedalcyclist Injury Costs in the United States by Age and Injury Severity. Annu. Proc. Assoc. Adv. Automot. Med. 2004, 48, 265–284. [Google Scholar] [PubMed]
- Blincoe, L.J.; Seay, A.G.; Zaloshnja, E.; Miller, T.R.; Romano, E.O.; Luchter, S.; Spicer, R.S. The Economic Impact of Motor Vehicle Crashes, 2000; National Highway Traffic Safety Administration: Washington, DC, USA, 2002.
- Blincoe, L.J.; Miller, T.R.; Zaloshnja, E.; Lawrence, B.A. The Economic and Societal Impact of Motor Vehicle Crashes, 2010; Report No. DOT HS 812 013; National Highway Traffic Safety Administration: Washington, DC, USA, 2015.
- State-Specific Costs of Motor Vehicle Crash Deaths|Motor Vehicle Safety|CDC Injury Center. 6 November 2020. Available online: https://www.cdc.gov/transportationsafety/statecosts/index.html (accessed on 22 May 2021).
- Gaither, T.W.; Sanford, T.A.; Awad, M.A.; Osterberg, E.C.; Murphy, G.P.; Lawrence, B.A.; Miller, T.R.; Breyer, B.N. Estimated total costs from non-fatal and fatal bicycle crashes in the USA: 1997–2013. Inj. Prev. 2018, 24, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The United States Census Bureau. Fastest-Growing Cities Primarily in the South and West; The United States Census Bureau: Suitland, MD, USA, 2019. Available online: https://www.census.gov/newsroom/press-releases/2019/subcounty-population-estimates.html (accessed on 27 January 2020).
- U.S. Census Bureau QuickFacts: San Antonio City, Texas. Available online: https://www.census.gov/quickfacts/fact/table/sanantoniocitytexas/PST045218#PST045218 (accessed on 1 March 2020).
- Royall, E. Census Data: San Antonio Leads Nation in 2017 Population Growth; Rivard Report. 24 May 2018. Available online: https://therivardreport.com/census-data-san-antonio-leads-nation-in-2017-population-growth (accessed on 3 March 2020).
- List of Cities in Texas on Walk Score. Walk Score. Available online: https://www.walkscore.com/TX/ (accessed on 3 March 2020).
- National Complete Streets Coalition. Smart Growth America. Available online: https://smartgrowthamerica.org/program/national-complete-streets-coalition (accessed on 3 March 2020).
- Davis, D.G.; Braaksma, J.P. Adjusting for luggage-laden pedestrians in Airport terminals. Trans. Res. Part A Gen. 1988, 22, 375–388. [Google Scholar] [CrossRef]
- Qin, X.; Ivan, J. Estimating pedestrian exposure prediction model in rural areas. Trans. Res. Rec. J. Trans. Res. Board 2001, 1773, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Lam, W.W.; Yao, S.; Loo, B.P. Pedestrian exposure measures: A time-space framework. Travel Behav. Soc. 2014, 1, 22–30. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Jiang, X. Multivariate crash modeling for motor vehicle and non-motorized modes at the macroscopic level. Accid. Anal. Prev. 2015, 78, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Abdel-Aty, M.; Choi, K.; Siddiqui, C. Analysis of residence characteristics of drivers, pedestrians, and bicyclists involved in traffic crashes. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Abdel-Aty, M.; Siddiqui, C.; Huang, H.; Wang, X. Integrating trip and roadway characteristics in managing safety at traffic analysis zones. Transp. Res. Rec. J. Transp. Res. Board 2011, 2213, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Milton, J. and F. Mannering. The relationship among highway geometrics, traffic-related elements and motor-vehicle accident frequencies. Transportation. 1998, 25, 395–413. [Google Scholar] [CrossRef]
- Obeng, K. Injury severity, vehicle safety features, and intersection crashes. Traffic Inj. Prev. 2008, 9, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.; Rifaat, S.M. Factors contributing to the severity of intersection crashes. J. Adv. Transp. 2007, 41, 245–265. [Google Scholar] [CrossRef]
- Chin, H.; Quddus, M. Applying the random effect negative binomial model to examine traffic accident occurrence at signalized intersections. Accid. Anal. Prev. 2003, 35, 253–259. [Google Scholar] [CrossRef]
- Huang, H.; Chin, H.C.; Haque, M.M. Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accid. Anal. Prev. 2008, 40, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Kabli, A.; Bhowmik, T.; Eluru, N. A Multivariate Approach For Modeling Driver Injury Severity By Body Region. Anal. Methods Accid. Res. 2020, 28, 100129. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C. Analysis of accident injury-severity outcomes: The zero-inflated hierarchical ordered probit model with correlated disturbances. Anal. Methods Accid. Res. 2018, 20, 30–45. [Google Scholar] [CrossRef]
- Wang, K.; Bhowmik, T.; Zhao, S.; Eluru, N.; Jackson, E. Highway safety assessment and improvement through crash prediction by injury severity and vehicle damage using Multivariate Poisson-Lognormal model and Joint Negative Binomial-Generalized Ordered Probit Fractional Split model. J. Saf. Res. 2021, 76, 44–55. [Google Scholar] [CrossRef]
- Wang, K.; Yasmin, S.; Konduri, K.C.; Eluru, N.; Ivan, J.N. Copula-based joint model of injury severity and vehicle damage in two-vehicle crashes. Transp. Res. Rec. J. Transp. Res. Board 2015, 2514, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, T.; Yasmin, S.; Eluru, N. Do We Need Multivariate Modeling Approaches to Model Crash Frequency by Crash Types? A Panel Mixed Approach to Modeling Crash Frequency by Crash Types. Anal. Methods Accid. Res. 2019, 24, 100107. [Google Scholar] [CrossRef]
- Stoltzfus, J.C. Logistic Regression: A Brief Primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [Google Scholar] [CrossRef]
- Sze, N.N.; Wong, S.C. Diagnostic Analysis of the Logistic Model for Pedestrian Injury Severity in Traffic Crashes. Accid. Anal. Prev. 2007, 39, 1267–1278. [Google Scholar] [CrossRef]
- Sarkar, S.; Tay, R.; Hunt, J.D. Logistic Regression Model of Risk of Fatality in Vehicle–Pedestrian Crashes on National Highways in Bangladesh. Transp. Res. Rec. J. Transp. Res. Board 2011, 2264, 128–137. [Google Scholar] [CrossRef]
- Kim, K.; Brunner, I.M.; Yamashita, E. Modeling Fault among Accident—Involved Pedestrians and Motorists in Hawaii. Accid. Anal. Prev. 2008, 40, 2043–2049. [Google Scholar] [CrossRef]
- Kim, S.; Ulfarsson, G.F. Traffic Safety in an Aging Society: Analysis of Older Pedestrian Crashes. J. Transp. Saf. Secur. 2019, 11, 323–332. [Google Scholar] [CrossRef]
- Savolainen, P.; Mannering, F. Probabilistic Models of Motorcyclists’ Injury Severities in Single- and Multi-Vehicle Crashes. Accid. Anal. Prev. 2007, 39, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Salon, D.; McIntyre, A. Determinants of Pedestrian and Bicyclist Crash Severity by Party at Fault in San Francisco, CA. Accid. Anal. Prev. 2018, 110, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Ulfarsson, G.F.; Kim, S.; Booth, K.M. Analyzing Fault in Pedestrian-Motor Vehicle Crashes in North Carolina. Accid. Anal. Prev. 2010, 42, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Environmental Systems Research Institute (ESRI). ArcGIS Pro Tool Reference. Density Toolset Concept. 2014. Available online: https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works (accessed on 12 June 2020).
- Chainey, S.; Ratcliffe, J. GIS and Crime Mapping; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Vemulapalli, S.S. GIS-Based Spatial and Temporal Analysis of Aging-Involved Crashes in Florida. Ph.D. Thesis, The Florida State University, Tallahassee, FL, USA, 2015. [Google Scholar]
- Harirforoush, H.; Bellalite, L. A New Integrated GIS-Based Analysis to Detect Hotspots: A Case Study of the City of Sherbrooke. Accid. Anal. Prev. 2019, 130, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Park, P.Y. Hotzone identification with GIS-based post-network screening analysis. J. Transp. Geogr. 2014, 34, 106–120. [Google Scholar] [CrossRef]
- Plug, C.; Xia, J.C.; Caulfield, C. Spatial and temporal visualisation techniques for crash analysis. Accid. Anal. Prev. 2011, 43, 1937–1946. [Google Scholar] [CrossRef]
- Truong, L.; Somenahalli, S. Using GIS to Identify Pedestrian-Vehicle Crash Hot Spots and Unsafe Bus Stops. J. Public Transp. 2011, 14. [Google Scholar] [CrossRef] [Green Version]
- RTA. Road Traffic Accidents in NSW—1993; Roads and Traffic Authority of NSW: Sydney, Australia, 1994.
- Geurts, K.; Wets, G.; Brijs, T.; Vanhoof, K. Identification and ranking of black spots: Sensitivity analysis. Transp. Res. Rec. J. Transp. Res. Board 2004, 1897, 34–42. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 12 June 2020).
- Siddiqui, N.A.; Chu, X.; Guttenplan, M. Crossing Locations, Light Conditions, and Pedestrian Injury Severity. Transp. Res. Rec. J. Transp. Res. Board 2006, 1982, 141–149. [Google Scholar] [CrossRef]
- Billah, K.; Adegbite, Q.; Sharif, H.O.; Dessouky, S.; Simcic, L. Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017. Sustainability 2021, 13, 5296. [Google Scholar] [CrossRef]
- Yu, J.; Shacket, R.W. Drinking-driving and riding with drunk drivers among young adults: An analysis of reciprocal effects. J. Stud. Alcohol 1999, 60, 615–621. [Google Scholar] [CrossRef]
- Hezaveh, A.M.; Cherry, C.R. Walking under the influence of the alcohol: A case study of pedestrian crashes in Tennessee. Accid. Anal. Prev. 2018, 121, 64–70. [Google Scholar] [CrossRef]
- Uddin, M.; Ahmed, F. Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio. Safety 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Sharif, H.O. Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018. Sustainability 2020, 12, 7976. [Google Scholar] [CrossRef]
- Paul, S.H.; Sharif, H.O.; Crawford, A.M. Fatalities Caused by Hydrometeorological Disasters in Texas. Geosciences 2018, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, T.; Junge, M.; Rosén, E. Pedestrian injury risk and the effect of age. Accid. Anal. Prev. 2016, 86, 121–128. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, M.; Wei, B.; Sun, D. Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach. Sustainability 2017, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Proven Safety Countermeasures—Leading Pedestrian Intervals—Safety|Federal Highway Administration. Available online: https://safety.fhwa.dot.gov/provencountermeasures/lead_ped_int/ (accessed on 28 April 2021).
- Driver Assistance Technologies|NHTSA. Available online: https://www.nhtsa.gov/equipment/driver-assistance-technologies#collision-intervention-30656 (accessed on 21 May 2021).
- Detwiller, M.; Gabler, H.C. Potential reduction in pedestrian collisions with an autonomous vehicle. In Proceedings of the 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV); Detroit, MI, USA, 5–8 June 2017, National Highway Traffic Safety Administration: Washington, DC, USA, 2017. [Google Scholar]
- Sun, D.; Zhang, K.; Shen, S. Analyzing spatiotemporal traffic line source emissions based on massive didi online car-hailing service data. Transp. Res. Part D Transp. Environ. 2018, 62, 699–714. [Google Scholar] [CrossRef]
- Feliciani, C.; Gorrini, A.; Crociani, L.; Vizzari, G.; Nishinari, K.; Bandini, S. Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. J. Traffic Transp. Eng. 2020, 7, 1–18. [Google Scholar] [CrossRef]
- City of San Antonio Public Works Department. San Antonio Severe Pedestrian Injury Areas Report 2014–2018; City of San Antonio Public Works Department: San Antonio, TX, USA, 2020.
- Wan, Q.; Liang, Q.; Zheng, B.; Wang, H.; Li, Z. Considering Temporal Correlation in Crash Data Analysis. CICTP 2014 2014, 3723–3730. [Google Scholar] [CrossRef]
Num. | Description | Values | Num. | Description | Values |
---|---|---|---|---|---|
1 | Day of Week | Weekend | 9 | Surface Cond. | Wet |
Weekday | Dry | ||||
2 | Season | Winter | 10 | Collision Type | Going Straight |
Spring | Turning Right | ||||
Summer | Turning Left | ||||
Fall | Backing | ||||
3 | Time of Day | 8 p.m.–6 a.m. | 11 | Speed limit | ≤25 mph |
6 a.m.–8 p.m. | >25 mph | ||||
4 | Lighting Cond. | Daylight | 12 | Intersection Presence | Yes |
Dark | No | ||||
5 | Weather Cond. | Rain | 13 | Road Class | Highway/FM Road |
Clear/Cloudy | Other Roads | ||||
6 | Road Alignment | Straight/Curve (Level) | 14 | Gender | Male |
Straight/Curve (Grade/Hilcrest) | Female | ||||
7 | Traffic Control | Divider/Marked Lane | 15 | Age | ≤18 |
Crosswalk/Stop/Signal/None | 19–64 | ||||
8 | Vehicle Type | Car/SUV | ≥65 | ||
Truck/EV | 16 | Ethnicity | Non-Hispanic | ||
Bus/Yellow School Bus/Van | Hispanic | ||||
17 | Alcohol Influence | Yes |
All Pedestrians | Pedestrian-at-Fault | Pedestrian-not-at-Fault | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | N = 5316 | KA% | KAB% | N = 1228 | KA% | KAB% | N = 4088 | KA% | KAB% |
Lighting Condition: Daylight | 3026 | 11.8 | 52.0 | 488 | 18.4 | 63.5 | 2538 | 10.6 | 49.7 |
Dark, not lighted | 600 | 29.0 | 66.3 | 223 | 43.9 | 79.8 | 377 | 20.2 | 58.4 |
Dark, lighted | 1534 | 29.9 | 66.3 | 483 | 51.1 | 79.9 | 1051 | 20.1 | 60.0 |
Weather Condition: Clear | 3892 | 19.5 | 58.3 | 908 | 36.2 | 73.1 | 2984 | 14.4 | 54.1 |
Rain/Hail/Snow | 354 | 18.9 | 54.2 | 86 | 38.8 | 71.8 | 269 | 12.6 | 48.7 |
Cloudy | 1035 | 18.4 | 57.8 | 230 | 37.8 | 75.6 | 805 | 12.8 | 52.7 |
Day of Week: Saturday | 720 | 22.5 | 58.8 | 168 | 42.3 | 75.0 | 552 | 16.5 | 53.8 |
Sunday | 529 | 24.8 | 63.3 | 136 | 41.9 | 77.9 | 393 | 18.8 | 58.3 |
Monday | 755 | 19.5 | 58.7 | 192 | 39.1 | 75.5 | 563 | 12.8 | 52.9 |
Tuesday | 794 | 16.2 | 55.7 | 174 | 32.8 | 68.4 | 620 | 11.6 | 52.1 |
Wednesday | 816 | 16.7 | 56.4 | 173 | 29.5 | 74.0 | 643 | 13.2 | 51.6 |
Thursday | 798 | 17.3 | 55.8 | 175 | 29.7 | 66.9 | 623 | 13.8 | 52.6 |
Friday | 904 | 19.4 | 59.6 | 210 | 41.0 | 76.7 | 694 | 12.8 | 54.5 |
Time: 8 p.m. to 6 a.m. | 1489 | 32.1 | 68.8 | 481 | 52.2 | 82.3 | 1008 | 22.5 | 62.4 |
All other hours | 3827 | 14.1 | 53.9 | 747 | 26.5 | 67.7 | 3080 | 11.1 | 50.5 |
Season: Winter | 1360 | 17.6 | 56.2 | 335 | 37.0 | 71.0 | 1025 | 11.2 | 51.3 |
Spring | 1337 | 17.6 | 56.7 | 303 | 32.7 | 72.3 | 1034 | 13.2 | 52.1 |
Summer | 1102 | 20.1 | 59.3 | 238 | 37.4 | 73.1 | 864 | 15.4 | 55.4 |
Fall | 1517 | 21.2 | 60.1 | 352 | 38.9 | 77.0 | 1165 | 15.9 | 55.0 |
Vehicle Type: 2/4 door car | 2380 | 18.3 | 57.4 | 567 | 33.3 | 70.2 | 1813 | 13.6 | 53.3 |
SUV | 1003 | 18.1 | 58.4 | 254 | 34.6 | 76.4 | 749 | 12.6 | 52.3 |
truck tractor/truck | 242 | 22.3 | 54.5 | 47 | 55.3 | 80.9 | 195 | 14.4 | 48.2 |
Bus | 56 | 14.3 | 57.1 | 15 | 13.3 | 60.0 | 41 | 14.6 | 56.1 |
Motorcycle | 17 | 52.9 | 88.2 | 8 | 50.0 | 87.5 | 9 | 55.6 | 88.9 |
Emergency Vehicles | 16 | 43.8 | 75.0 | 3 | 100.0 | 100.0 | 13 | 30.8 | 69.2 |
Van | 212 | 18.9 | 62.7 | 51 | 35.3 | 78.4 | 161 | 13.7 | 57.8 |
Pickup | 858 | 22.3 | 60.6 | 208 | 40.9 | 75.0 | 650 | 16.3 | 56.0 |
All Pedestrians | Pedestrian-at-Fault | Pedestrian-not-at-Fault | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | N = 5316 | KA% | KAB% | N = 1228 | KA% | KAB% | N = 4088 | KA% | KAB% |
Road Class: Interstate | 322 | 41.6 | 72.4 | 114 | 54.8 | 86.8 | 208 | 32.2 | 64.4 |
US/State Highway | 576 | 30.9 | 69.8 | 230 | 42.2 | 74.8 | 346 | 23.4 | 66.5 |
FM Roads | 217 | 27.7 | 64.5 | 79 | 45.6 | 77.2 | 138 | 17.4 | 57.2 |
City streets | 2765 | 19.2 | 60.1 | 755 | 31.5 | 71.7 | 2010 | 14.6 | 55.7 |
Non trafficway | 1436 | 8.0 | 45.3 | 50 | 22.0 | 58.0 | 1386 | 7.5 | 44.9 |
Surface Condition: Dry | 4718 | 19.4 | 58.6 | 1094 | 36.9 | 74.1 | 3624 | 14.2 | 53.9 |
Wet | 523 | 18.6 | 55.8 | 128 | 35.2 | 70.3 | 395 | 13.2 | 51.1 |
Road Alignment: Straight, level | 4579 | 18.4 | 57.3 | 1051 | 35.5 | 72.4 | 3528 | 13.3 | 52.7 |
Straight, Grade/Hillcrest | 449 | 28.3 | 68.6 | 123 | 47.2 | 80.5 | 326 | 21.2 | 64.1 |
Curve, Level | 89 | 24.7 | 69.7 | 25 | 28.0 | 84.0 | 64 | 23.4 | 64.1 |
Curve, Grade/Hillcrest | 54 | 35.2 | 75.9 | 20 | 50.0 | 80.0 | 34 | 26.5 | 73.5 |
Traffic Control: None | 2154 | 16.6 | 55.9 | 425 | 34.4 | 73.9 | 1729 | 12.2 | 51.5 |
Signal light | 1133 | 15.6 | 57.5 | 232 | 28.0 | 68.1 | 901 | 12.4 | 54.8 |
Stop Sign | 423 | 11.1 | 56.7 | 49 | 16.3 | 69.4 | 374 | 10.4 | 55.1 |
Divider | 182 | 35.2 | 67.0 | 73 | 46.6 | 74.0 | 109 | 27.5 | 62.4 |
Crosswalk | 225 | 11.6 | 50.2 | 27 | 18.5 | 55.6 | 198 | 10.6 | 49.5 |
Marked Lanes | 911 | 34.5 | 68.1 | 393 | 46.8 | 78.6 | 518 | 25.1 | 60.0 |
Speed Limit: 25 mph or less | 1122 | 8.5 | 45.1 | 76 | 18.4 | 63.2 | 1046 | 7.7 | 43.8 |
over 25 mph | 3700 | 23.1 | 62.5 | 1088 | 37.8 | 74.4 | 2612 | 17.0 | 57.5 |
At Intersection: Yes | 1634 | 14.5 | 56.4 | 283 | 27.9 | 68.6 | 1351 | 11.7 | 53.8 |
No | 3682 | 21.2 | 58.8 | 945 | 39.2 | 74.9 | 2737 | 15.0 | 53.3 |
Collision Type: Going Straight | 3270 | 24.5 | 62.8 | 1032 | 39.9 | 76.0 | 2238 | 17.4 | 56.8 |
Turning Right | 382 | 7.3 | 48.2 | 38 | 13.2 | 68.4 | 344 | 6.7 | 45.9 |
Turning Left | 939 | 11.2 | 58.8 | 132 | 20.5 | 62.1 | 807 | 9.7 | 58.2 |
Backing | 551 | 7.8 | 38.1 | 8 | 0.0 | 25.0 | 543 | 7.9 | 38.3 |
All Pedestrians | Pedestrian-at-Fault | Pedestrian-not-at-Fault | |||||||
---|---|---|---|---|---|---|---|---|---|
N = 5694 | KA% | KAB% | N = 1283 | KA% | KAB% | N = 4411 | KA% | KAB% | |
Gender: Male | 3307 | 20.4 | 58.1 | 868 | 37.7 | 73.8 | 2439 | 14.2 | 52.4 |
Female | 2371 | 15.3 | 54.0 | 414 | 30.9 | 68.1 | 1957 | 12.0 | 51.0 |
Age: 18 or less | 1021 | 11.4 | 56.1 | 271 | 20.7 | 67.2 | 750 | 8.0 | 52.1 |
19 to 64 | 3883 | 19.4 | 56.4 | 862 | 39.4 | 74.0 | 3021 | 13.6 | 51.3 |
65 or older | 657 | 23.1 | 62.1 | 122 | 44.3 | 77.0 | 535 | 18.3 | 58.7 |
Ethnicity: White | 1809 | 19.5 | 57.5 | 376 | 40.2 | 76.3 | 1433 | 14.0 | 52.5 |
Hispanic | 3058 | 17.4 | 56.6 | 699 | 33.5 | 71.4 | 2359 | 12.6 | 52.2 |
Black | 611 | 19.5 | 54.5 | 169 | 34.9 | 66.9 | 442 | 13.6 | 49.8 |
Asian | 52 | 19.2 | 65.4 | 11 | 18.2 | 81.8 | 41 | 19.5 | 61.0 |
Other | 67 | 14.9 | 49.3 | 14 | 35.7 | 71.4 | 53 | 9.4 | 43.4 |
Driver Alc.: Yes | 61 | 42.6 | 72.1 | 4 | 75.0 | 100.0 | 57 | 40.4 | 70.2 |
No | 5237 | 18.9 | 58.1 | 1223 | 36.5 | 73.4 | 4014 | 13.6 | 53.4 |
KA | KAB | ||||||
---|---|---|---|---|---|---|---|
Factor | df | Chi-Square Statistic | p-Value | OR | Chi-Square Statistic | p-Value | OR |
Lighting condition: Daylight | 1 | 253.1 | 2.2 × 10–16 | 0.32 | 103.9 | 2.2 × 10–16 | 0.55 |
Dark | 1.00 | 1.00 | |||||
Weather Condition: Rain | 1 | 0.0 | 1.00 | 0.99 | 1.7 | 1.9 × 10–1 | 0.85 |
Clear/Cloudy | 1.00 | 1.00 | |||||
Road Class: Highway/FM Road | 1 | 166.8 | 2.2 × 10–16 | 1.00 | 68.3 | 2.2 × 10–16 | 1.00 |
Other Roads | 0.36 | 0.52 | |||||
Speed limit: ≤25 mph | 1 | 114.9 | 2.2 × 10–16 | 1.00 | 103.4 | 2.2 × 10–16 | 1.00 |
>25 mph | 3.24 | 2.01 | |||||
Day of Week: Weekend | 1 | 18.9 | 1.4 × 10–5 | 1.41 | 4.1 | 4.2 × 10–2 | 1.15 |
Weekday | 1.00 | 1.00 | |||||
Intersection Presence: Yes | 1 | 32.4 | 1.3 × 10–8 | 0.63 | 2.7 | 1.0 × 10–1 | 0.91 |
No | 1.00 | 1.00 | |||||
Season: Winter | 3 | 9.2 | 2.7 × 10–2 | 0.79 | 6.2 | 1.0 × 10–1 | 0.74 |
Spring | 0.79 | 0.75 | |||||
Summer | 0.94 | 0.97 | |||||
Fall | 1.00 | 1.00 | |||||
Time of Day: 8 p.m.–6 a.m. | 1 | 222.6 | 2.2 × 10–16 | 1.00 | 97.6 | 2.2 × 10–16 | 1.00 |
All other hours | 0.35 | 0.53 | |||||
Collision Type: Going Straight | 2 | 124.4 | 2.2 × 10–16 | 2.59 | 33.1 | 2.2 × 10–16 | 1.20 |
Turning Right | 0.63 | 0.66 | |||||
Turning Left | 1.00 | 1.00 | |||||
Alignment: Straight/Curve (Level) | 1 | 31.4 | 2.1 × 10–8 | 0.56 | 26.3 | 3.7 × 10–7 | 0.59 |
Straight/Curve (Grade/Hillcrest) | 1.00 | 1.00 | |||||
Vehicle Type: Car/SUV | 2 | 13.2 | 1.0 × 10–3 | 1.02 | 3.1 | 2.1 × 10–1 | 0.85 |
Truck or EV | 1.38 | 0.94 | |||||
Bus/Van | 1.00 | 1.00 | |||||
Surface Condition: Wet | 1 | 0.2 | 6.4 × 10–1 | 0.94 | 1.6 | 2.1 × 10–1 | 0.89 |
Dry | 1.00 | 1.00 | |||||
Traffic Control: Divider/Marked Lane | 1 | 198.1 | 2.2 × 10–16 | 1.00 | 48.1 | 4.1 × 10–12 | 1.00 |
Crosswalk/Stop/Signal/None | 0.35 | 0.61 | |||||
Gender: Male | 1 | 24.9 | 6.1 × 10–7 | 1.43 | 11.0 | 1.0 × 10–3 | 1.20 |
Female | 1.00 | 1.00 | |||||
Age: ≤18 | 2 | 44.3 | 2.4 × 10–10 | 1.00 | 6.6 | 3.7 × 10–2 | 1.00 |
19–64 | 1.86 | 0.99 | |||||
≥65 | 2.31 | 1.24 | |||||
Ethnicity: Non-Hispanic | 1 | 3.2 | 7.2 × 10–2 | 1.14 | 0.0 | 1.00 | 1.00 |
Hispanic | 1.00 | 1.00 |
KA | KAB | ||||||
---|---|---|---|---|---|---|---|
Factor | df | Chi-Square Statistic | p-Value | OR | Chi-Square Statistic | p-Value | OR |
Lighting condition: Daylight | 1 | 113.6 | 2.2 × 10–16 | 0.24 | 37.9 | 7.3 × 10–10 | 0.44 |
Dark | 1.00 | 1.00 | |||||
Weather Condition: Rain | 1 | 0.0 | 1.00 | 1.02 | 0.3 | 6.0 × 10–1 | 0.85 |
Clear/Cloudy | 1.00 | 1.00 | |||||
Road Class: Highway/FM Road | 1 | 24.6 | 6.9 × 10–7 | 1.00 | 6.4 | 1.1 × 10–2 | 1.00 |
Other Roads | 0.52 | 0.68 | |||||
Speed limit: ≤25 mph | 1 | 10.2 | 1.0 × 10–3 | 1.00 | 3.4 | 6.4 × 10–2 | 1.00 |
>25 mph | 2.64 | 1.64 | |||||
Day of Week: Weekend | 1 | 5.0 | 2.6 × 10–2 | 1.36 | 1.5 | 2.3 × 10–1 | 1.22 |
Weekday | 1.00 | 1.00 | |||||
Intersection Presence: Yes | 1 | 11.1 | 1.0 × 10–3 | 0.61 | 3.9 | 4.9 × 10–2 | 0.74 |
No | 1.00 | 1.00 | |||||
Season: Winter | 3 | 2.9 | 4.0 × 10–1 | 0.92 | 3.5 | 3.3 × 10–1 | 0.73 |
Spring | 0.76 | 0.78 | |||||
Summer | 0.94 | 0.83 | |||||
Fall | 1.00 | 1.00 | |||||
Time of Day: 8 p.m.–6 a.m. | 1 | 81.8 | 2.2 × 10–16 | 1.00 | 30.8 | 2.8 × 10–8 | 1.00 |
All other hours | 0.33 | 0.45 | |||||
Collision Type: Going Straight | 2 | 28.7 | 2.6 × 10–7 | 2.59 | 12.6 | 2.0 × 10–3 | 1.94 |
Turning Right | 0.59 | 1.32 | |||||
Turning Left | 1.00 | 1.00 | |||||
Alignment: Straight/Curve (Level) | 1 | 7.6 | 6.0 × 10–3 | 0.60 | 3.4 | 6.3 × 10–2 | 0.65 |
Straight/Curve (Grade/Hillcrest) | 1.00 | 1.00 | |||||
Vehicle Type: Car/SUV | 2 | 10.8 | 5.0 × 10–3 | 1.17 | 2.1 | 3.5 × 10–1 | 0.90 |
Truck or EV | 1.80 | 1.14 | |||||
Bus/Van | 1.00 | 1.00 | |||||
Surface Condition: Wet | 1 | 0.1 | 7.6 × 10–1 | 0.93 | 0.7 | 4.0 × 10–1 | 0.82 |
Dry | 1.00 | 1.00 | |||||
Traffic Control: Divider/Marked Lane | 1 | 31.9 | 1.7 × 10–8 | 1.00 | 6.8 | 9.0 × 10–3 | 1.00 |
Crosswalk/Stop/Signal/None | 0.50 | 0.69 | |||||
Gender: Male | 1 | 5.8 | 1.6 × 10–2 | 1.37 | 5.4 | 2.1 × 10–2 | 1.37 |
Female | 1.00 | 1.00 | |||||
Age: ≤18 | 2 | 34.0 | 4.2 × 10–8 | 1.00 | 4.3 | 1.1 × 10–1 | 1.00 |
19–64 | 2.45 | 1.33 | |||||
≥65 | 2.96 | 1.53 | |||||
Ethnicity: Non-Hispanic | 1 | 2.6 | 1.1 × 10–1 | 1.22 | 0.5 | 4.7 × 10–1 | 1.11 |
Hispanic | 1.00 | 1.00 |
KA | KAB | ||||||
---|---|---|---|---|---|---|---|
Variable | df | Chi-Square Statistic | p-Value | OR | Chi-Square Statistic | p-Value | OR |
Lighting condition: Daylight | 1 | 68.0 | 2.2 × 10–16 | 0.47 | 34.9 | 3.5 × 10–9 | 0.67 |
Dark | 1.00 | 1.00 | |||||
Weather Condition: Rain | 1 | 0.1 | 8.0 × 10–1 | 0.94 | 1.7 | 2.0 × 10–1 | 0.84 |
Clear/Cloudy | 1.00 | 1.00 | |||||
Road Class: Highway/FM Road | 1 | 85.3 | 2.2 × 10–16 | 1.00 | 36.8 | 1.3 × 10–9 | 1.00 |
Other Roads | 0.37 | 0.56 | |||||
Speed limit: ≤25 mph | 1 | 51.0 | 9.2 × 10–13 | 1.00 | 54.5 | 1.6 × 10–13 | 1.00 |
> 25 mph | 2.44 | 1.73 | |||||
Day of Week: Weekend | 1 | 12.3 | 4.6 × 10–4 | 1.43 | 2.1 | 1.5 × 10–1 | 1.12 |
Weekday | 1.00 | 1.00 | |||||
Intersection Presence: Yes | 1 | 8.1 | 4.0 × 10–3 | 0.75 | 0.1 | 7.9 × 10–1 | 1.02 |
No | 1.00 | 1.00 | |||||
Season: Winter | 3 | 11.9 | 8.0 × 10–3 | 0.67 | 5.1 | 1.7 × 10–1 | 0.87 |
Spring | 0.80 | 0.89 | |||||
Summer | 0.97 | 1.02 | |||||
Fall | 1.00 | 1.00 | |||||
Time of Day: 8 p.m.–6 a.m. | 1 | 81.7 | 2.2 × 10–16 | 1.00 | 42.7 | 6.3 × 10–11 | 1.00 |
All other hours | 0.43 | 0.61 | |||||
Collision Type: Going Straight | 2 | 48.1 | 3.7 × 10–11 | 1.98 | 16.0 | 3.4 × 10–4 | 0.95 |
Turning Right | 0.67 | 0.62 | |||||
Turning Left | 1.00 | 1.00 | |||||
Alignment: Straight/Curve (Level) | 1 | 17.5 | 2.9 × 10–5 | 0.56 | 19.0 | 1.3 × 10–5 | 0.60 |
Straight/Curve (Grade/Hillcrest) | 1.00 | 1.00 | |||||
Vehicle Type: Car/SUV | 2 | 5.8 | 5.6 × 10–2 | 0.95 | 2.1 | 3.5 × 10–1 | 0.84 |
Truck or EV | 1.24 | 0.91 | |||||
Bus/Van | 1.00 | 1.00 | |||||
Surface Condition: Wet | 1 | 0.3 | 6.2 × 10–1 | 0.92 | 1.1 | 2.9 × 10–1 | 0.89 |
Dry | 1.00 | 1.00 | |||||
Traffic Control: Divider/Marked Lane | 1 | 78.0 | 2.2 × 10–16 | 1.00 | 12.2 | 4.9 × 10–4 | 1.00 |
Crosswalk/Stop/Signal/None | 0.40 | 0.73 | |||||
Gender: Male | 1 | 4.9 | 2.6 × 10–2 | 1.23 | 1.3 | 2.5 × 10–1 | 1.08 |
Female | 1.00 | 1.00 | |||||
Age: ≤18 | 2 | 29.5 | 4.0 × 10–7 | 1.00 | 8.8 | 1.2 × 10–2 | 1.00 |
19–64 | 1.81 | 0.96 | |||||
≥65 | 2.54 | 1.27 | |||||
Ethnicity: Non-Hispanic | 1 | 1.4 | 2.3 × 10–1 | 1.12 | 0.1 | 7.8 × 10–1 | 0.98 |
Hispanic | 1.00 | 1.00 |
All Pedestrian | Pedestrian-at-Fault | Pedestrian-not-at-Fault | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Reference | Estimates | Std Error | OR | Estimates | Std Error | OR | Estimates | Std Error | OR |
intercept 1 | −0.92 ** | 0.34 | −0.15 | 0.63 | −1.11 * | 0.43 | ||||
Stop/Signal/ Crosswalk/None | Divider/ Marked Lane | −0.50 *** | 0.10 | 0.61 | −0.38 * | 0.15 | 0.68 | −0.50 *** | 0.14 | 0.61 |
Daylight | Dark | −0.63 *** | 0.13 | 0.53 | −1.10 *** | 0.20 | 0.33 | −0.22 | 0.18 | 0.80 |
Rain | No−Rain | 0.22 | 0.31 | 1.24 | 0.17 | 0.47 | 1.19 | 0.31 | 0.43 | 1.36 |
Other Roads | Highway | −0.49 *** | 0.10 | 0.62 | −0.41 ** | 0.16 | 0.67 | −0.48 *** | 0.14 | 0.62 |
Weekend | Weekday | 0.15 | 0.10 | 1.16 | 0.04 | 0.17 | 1.04 | 0.24. | 0.14 | 1.27 |
Speed Limit > 25 | Speed Limit ≤ 25 | 0.86 *** | 0.16 | 2.35 | 0.51 | 0.39 | 1.66 | 0.72 *** | 0.18 | 2.06 |
Right Turning | Left Turning | −0.42. | 0.25 | 0.66 | −1.01 | 0.67 | 0.37 | −0.30 | 0.27 | 0.74 |
Straight | Left Turning | 0.59 *** | 0.13 | 1.81 | 0.47. | 0.27 | 1.59 | 0.48 *** | 0.16 | 1.62 |
Level | Grade/Hillcrest | −0.28 * | 0.14 | 0.75 | −0.37 * | 0.22 | 0.69 | −0.22 | 0.19 | 0.81 |
Wet | Dry | −0.43. | 0.26 | 0.65 | −0.29 | 0.39 | 0.75 | −0.57 | 0.37 | 0.57 |
Car | Bus/Van | 0.10 | 0.20 | 1.10 | 0.08 | 0.32 | 1.08 | 0.10 | 0.26 | 1.10 |
EV/Truck | Bus/Van | 0.38. | 0.21 | 1.46 | 0.49. | 0.34 | 1.63 | 0.35 | 0.27 | 1.43 |
6 a.m.−8 p.m. | 8 p.m.−6 a.m. | −0.28 * | 0.13 | 0.76 | −0.34. | 0.18 | 0.71 | −0.30 | 0.19 | 0.74 |
Spring | Fall | −0.27 * | 0.12 | 0.77 | 0.06 | 0.20 | 1.06 | −0.47 ** | 0.16 | 0.63 |
Summer | Fall | −0.14 | 0.13 | 0.87 | −0.01 | 0.21 | 0.99 | −0.27 | 0.17 | 0.76 |
Winter | Fall | −0.28 * | 0.12 | 0.75 | −0.07 | 0.19 | 0.94 | −0.48 ** | 0.16 | 0.62 |
Intersection_Yes | Intersection_No | −0.22 * | 0.11 | 0.80 | −0.09 | 0.19 | 0.91 | −0.21 | 0.14 | 0.81 |
intercept 2 | −2.31 *** | 0.11 | −1.59 *** | 0.18 | −2.59 *** | 0.15 | ||||
Male | Female | 0.37 *** | 0.07 | 1.45 | 0.32 * | 0.13 | 1.38 | 0.22 * | 0.09 | 1.24 |
Age 19–64 | Age ≤ 18 | 0.61 *** | 0.11 | 1.84 | 0.86 *** | 0.17 | 2.36 | 0.60 *** | 0.15 | 1.81 |
Age ≥ 65 | Age ≤ 18 | 0.84 *** | 0.14 | 2.32 | 1.07 *** | 0.24 | 2.92 | 0.94 *** | 0.18 | 2.56 |
Non−Hispanic | Hispanic | 0.11 | 0.07 | 1.11 | 0.18 | 0.12 | 1.19 | 0.09 | 0.09 | 1.09 |
All Pedestrian | Pedestrian-at-Fault | Pedestrian-not-at-Fault | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Reference | Estimates | Std Error | OR | Estimates | Std Error | OR | Estimates | Std Error | OR |
intercept 1 | 1.55 *** | 0.27 | 1.55 ** | 0.59 | 1.55 *** | 0.32 | ||||
Stop/Signal/ Crosswalk/None | Divider/ Marked Lane | −0.18. | 0.09 | 0.84 | −0.04 | 0.16 | 0.96 | −0.15 | 0.12 | 0.86 |
Daylight | Dark | −0.22 * | 0.10 | 0.80 | −0.51 * | 0.20 | 0.60 | −0.04 | 0.13 | 0.96 |
Rain | No−Rain | −0.13 | 0.23 | 0.88 | −0.13 | 0.46 | 0.88 | −0.10 | 0.27 | 0.91 |
Other Roads | Highway | −0.36 *** | 0.10 | 0.70 | −0.20 | 0.17 | 0.82 | −0.36 ** | 0.12 | 0.69 |
Weekend | Weekday | 0.15. | 0.09 | 1.16 | 0.08 | 0.18 | 1.08 | 0.17 | 0.11 | 1.18 |
Speed Limit > 25 | Speed Limit ≤ 25 | 0.41 *** | 0.10 | 1.51 | 0.28 | 0.29 | 1.32 | 0.28 ** | 0.11 | 1.33 |
Right Turning | Left Turning | −0.56 *** | 0.14 | 0.57 | 0.07 | 0.43 | 1.07 | −0.63 *** | 0.15 | 0.53 |
Straight | Left Turning | −0.03 | 0.09 | 0.97 | 0.37. | 0.22 | 1.45 | −0.21 * | 0.11 | 0.81 |
Level | Grade/Hillcrest | −0.27 * | 0.13 | 0.76 | −0.17 | 0.25 | 0.84 | −0.32 * | 0.16 | 0.72 |
Wet | Dry | −0.18 | 0.19 | 0.83 | −0.27 | 0.38 | 0.77 | −0.17 | 0.23 | 0.85 |
Car | Bus/Van | −0.10 | 0.16 | 0.91 | −0.08 | 0.32 | 0.93 | −0.11 | 0.18 | 0.90 |
EV/Truck | Bus/Van | −0.09 | 0.17 | 0.92 | 0.14 | 0.35 | 1.15 | −0.14 | 0.19 | 0.87 |
6 a.m.−8 p.m. | 8 p.m.−6 a.m. | −0.32 ** | 0.12 | 0.73 | −0.39. | 0.21 | 0.68 | −0.33 * | 0.14 | 0.72 |
Spring | Fall | −0.18. | 0.10 | 0.84 | −0.03 | 0.21 | 0.97 | −0.22. | 0.11 | 0.80 |
Summer | Fall | −0.04 | 0.11 | 0.97 | −0.28 | 0.23 | 0.76 | 0.03 | 0.13 | 1.03 |
Winter | Fall | −0.29 ** | 0.10 | 0.75 | −0.39. | 0.20 | 0.68 | −0.27 * | 0.11 | 0.76 |
Intersection_Yes | Intersection_No | −0.22 * | 0.09 | 0.68 | −0.19 | 0.18 | 0.83 | −0.18. | 0.10 | 0.83 |
intercept 2 | 0.17 * | 0.07 | 0.56 *** | 0.17 | 0.07 | 0.08 | ||||
Male | Female | 0.20 *** | 0.06 | 1.22 | 0.34 * | 0.14 | 1.41 | 0.09 | 0.06 | 1.09 |
Age 19–64 | Age ≤ 18 | −0.01 | 0.07 | 0.99 | 0.24 | 0.16 | 1.28 | −0.04 | 0.08 | 0.96 |
Age ≥ 65 | Age ≤ 18 | 0.22 * | 0.10 | 1.25 | 0.39 | 0.25 | 1.48 | 0.25 * | 0.12 | 1.29 |
Non−Hispanic | Hispanic | 0.003 | 0.06 | 1.00 | 0.10 | 0.13 | 1.10 | −0.02 | 0.06 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billah, K.; Sharif, H.O.; Dessouky, S. Analysis of Pedestrian–Motor Vehicle Crashes in San Antonio, Texas. Sustainability 2021, 13, 6610. https://doi.org/10.3390/su13126610
Billah K, Sharif HO, Dessouky S. Analysis of Pedestrian–Motor Vehicle Crashes in San Antonio, Texas. Sustainability. 2021; 13(12):6610. https://doi.org/10.3390/su13126610
Chicago/Turabian StyleBillah, Khondoker, Hatim O. Sharif, and Samer Dessouky. 2021. "Analysis of Pedestrian–Motor Vehicle Crashes in San Antonio, Texas" Sustainability 13, no. 12: 6610. https://doi.org/10.3390/su13126610
APA StyleBillah, K., Sharif, H. O., & Dessouky, S. (2021). Analysis of Pedestrian–Motor Vehicle Crashes in San Antonio, Texas. Sustainability, 13(12), 6610. https://doi.org/10.3390/su13126610