Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GOSAT XCO2 Observations
2.3. Bottom–Up NIR
2.4. Visualization Utilizing GOSAT Level 3 Products
2.5. Geographically Weighted Regression (GWR)
3. Results
3.1. A Comparative Evaluation of Top–Down vs. Bottom–Up
3.2. A Comparative Evaluation among Individual Countries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Turner, A.J.; Weitz, M.; Wirth, T.; Hight, C.; DeFigueiredo, M.; Desai, M.; Schmeltz, R.; et al. Gridded National Inventory of U.S. Methane Emissions. Environ. Sci. Technol. 2016, 50, 13123–13133. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Sarzynski, A.; Albrecht, J.; Schulz, N. The geography of urban greenhouse gas emissions in Asia: A regional analysis. Glob. Environ. Chang. 2012, 22, 944–958. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J. Carbon Footprint: Current Methods of Estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef]
- Miglietta, F.; Hoosbeek, M.R.; Foot, J.; Gigon, F.; Hassinen, A.; Heijmans, M.; Peressotti, A.; Saarinen, T.; van Breemen, N.; Wallén, B. Spatial and Temporal Performance of the MiniFACE (Free Air CO2 Enrichment) System on Bog Ecosystems in Northern and Central Europe. Environ. Monit. Assess. 2001, 66, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, V.; Schultz, M.; Herold, N.; de Bruin, S.; Pratihast, A.K.; Manh, C.P.; Quang, H.V.; Herold, M. Carbon emissions from land cover change in Central Vietnam. Carbon Manag. 2016, 7, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Jones, D.B.A.; Henze, D.K.; Bousserez, N.; Bowman, K.W.; Fisher, J.B.; Nassar, R.; O’Dell, C.; Wunch, D.; Wennberg, P.O.; et al. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmos. Chem. Phys. 2014, 14, 3703–3727. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Um, J.-S. Comparative evaluation of XCO2 concentration among climate types within India region using OCO-2 signatures. Spat. Inf. Res. 2016, 24, 679–688. [Google Scholar] [CrossRef]
- Nisbet, E.; Weiss, R. Top-Down Versus Bottom-Up. Science 2010, 328, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Janardanan, R.; Maksyutov, S.; Oda, T.; Saito, M.; Kaiser, J.W.; Ganshin, A.; Stohl, A.; Matsunaga, T.; Yoshida, Y.; Yokota, T. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates. Geophys. Res. Lett. 2016, 43, 3486–3493. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Um, J.-S. Exploring causal relationship between landforms and ground level CO2 in Dalseong forestry carbon project site of South Korea. Spat. Inf. Res. 2017, 25, 361–370. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Ialongo, I.; Tamminen, J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophys. Res. Lett. 2016, 43, 400–411. [Google Scholar] [CrossRef]
- McKain, K.; Wofsy, S.C.; Nehrkorn, T.; Eluszkiewicz, J.; Ehleringer, J.R.; Stephens, B.B. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA 2012, 109, 8423–8428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, I.; Hammer, S.; Eichelmann, E.; Vogel Felix, R. Verification of greenhouse gas emission reductions: The prospect of atmospheric monitoring in polluted areas. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1906–1924. [Google Scholar] [CrossRef]
- National Research Council. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements; The National Academies Press: Washington, DC, USA, 2010; p. 124. [Google Scholar] [CrossRef]
- European Environment Agency. European Forest Types: Categories and Types for Sustainable Forest Management Reporting and Policy; EEA: Copenhagen, Denmark, 2006. [Google Scholar]
- Hwang, Y.; Um, J.-S. Evaluating co-relationship between OCO-2 XCO2 and in situ CO2 measured with portable equipment in Seoul. Spat. Inf. Res. 2016, 24, 565–575. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S. Performance evaluation of OCO-2 XCO2 signatures in exploring casual relationship between CO2 emission and land cover. Spat. Inf. Res. 2016, 24, 451–461. [Google Scholar] [CrossRef]
- Sussmann, R.R.M. Can We Measure a COVID-19-Related Slowdown in Atmospheric CO2 Growth? Sensitivity of Total Carbon Column Observations. Remote Sens. 2020, 12, 2387. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Maksyutov, S.; Oda, T.; Saito, M.; Takagi, H.; Belikov, D.; Valsala, V. Cger’s Supercomputer Monograph Report Volume 25; Center for Global Environmental Research, National Institute for Environmental Studies: Ibaraki, Japan, 2019.
- Inoue, M.; Morino, I.; Uchino, O.; Nakatsuru, T.; Yoshida, Y.; Yokota, T.; Wunch, D.; Wennberg, P.O.; Roehl, C.M.; Griffith, D.W.T.; et al. Bias corrections of GOSAT SWIR XCO2 and XCH4 with TCCON data and their evaluation using aircraft measurement data. Atmos. Meas. Tech. 2016, 9, 3491–3512. [Google Scholar] [CrossRef] [Green Version]
- Grainger, A.K.; Kim, J. Reducing Global Environmental Uncertainties in Reports of Tropical Forest Carbon Fluxes to REDD+ and the Paris Agreement Global Stocktake. Remote Sens. 2020, 12, 2369. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S.; Schlüter, S. Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables. Int. J. Environ. Res. Public Health 2020, 17, 5976. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Um, J.-S.; Hwang, J.; Schlüter, S. Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux. Energies 2020, 13, 6009. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical Bayesian Kriging Implemented in ArcGIS Geostatistical Analyst. Available online: https://www.esri.com/NEWS/ARCUSER/1012/files/ebk.pdf (accessed on 20 December 2020).
- Park, A.-R.; Joo, S.-M.; Hwang, Y.; Um, J.-S. Evaluating seasonal CH4 flow tracked by GOSAT in Northeast Asia. Spat. Inf. Res. 2018, 26, 295–304. [Google Scholar] [CrossRef]
- Um, J.-S. Comparative evaluation of CO2 concentrations across administrative regions with temperate climates in Northeast Asia: Potentials and constraints. Carbon Manag. 2015, 6, 89–99. [Google Scholar] [CrossRef]
- Park, S.-I.; Hwang, Y.; Um, J.-S. Utilizing OCO-2 satellite transect in comparing XCO2 concentrations among administrative regions in Northeast Asia. Spat. Inf. Res. 2017, 25, 459–466. [Google Scholar] [CrossRef]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef]
- Liao, D.; Peuquet, D.J.; Duan, Y.; Whitsel, E.A.; Dou, J.; Smith, R.L.; Lin, H.-M.; Chen, J.-C.; Heiss, G. GIS approaches for the estimation of residential-level ambient PM concentrations. Environ. Health Perspect. 2006, 114, 1374–1380. [Google Scholar] [CrossRef]
- Jing, Y.; Shi, J.; Wang, T.; Sussmann, R. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution. Atmosphere 2014, 5, 870. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, G.; Bilgili, A.V. Modeling seasonal variations of long-term soil CO2 emissions in an orchard plantation in a semiarid area, SE Turkey. Environ. Monit. Assess. 2018, 190, 486. [Google Scholar] [CrossRef] [PubMed]
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2011 and Inventory Report 2013; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2012 and Inventory Report 2014; European Environment Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2014 and Inventory Report 2016; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2015 and Inventory Report 2017; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2016 and Inventory Report 2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Levy, P.E.; Cannell, M.G.R.; Friend, A.D. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob. Environ. Chang. 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Chatterjee, A.; Gierach, M.M.; Sutton, A.J.; Feely, R.A.; Crisp, D.; Eldering, A.; Gunson, M.R.; O’Dell, C.W.; Stephens, B.B.; Schimel, D.S. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 2017, 358, eaam5776. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.A.; Kemp, S.; Williams, I. ‘Carbon footprinting’: Towards a universally accepted definition. Carbon Manag. 2011, 2, 61–72. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S. Comparative evaluation of OCO-2 XCO2 signature between REDD+ project area and nearby leakage belt. Spat. Inf. Res. 2017, 25, 693–700. [Google Scholar] [CrossRef]
- Ackerman, K.; T Sundquist, E. Comparison of Two US Power-Plant Carbon Dioxide Emissions Data Sets. Environ. Sci. Technol. 2008, 42, 5688–5693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Amstel, A.; Olivier, J.; Janssen, L. Analysis of differences between national inventories and an Emissions Database for Global Atmospheric Research (EDGAR). Environ. Sci. Policy 1999, 2, 275–293. [Google Scholar] [CrossRef]
- Moore, B., III; Braswell, B. The lifetime of excess atmospheric carbon dioxide. Glob. Biogeochem. Cycles 1994, 8, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Japan National Institute for Environmental Studies. A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories; National Institute for Environmental Studies: Ibaraki, Japan, 2018.
- Ishizawa, M.; Mabuchi, K.; Shirai, T.; Inoue, M.; Morino, I.; Uchino, O.; Yoshida, Y.; Belikov, D.; Maksyutov, S. Inter-annual variability of summertime CO2 exchange in Northern Eurasia inferred from GOSAT XCO2. Environ. Res. Lett. 2016, 11, 105001. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency. GOSAT/IBUKI Data Users Handbook; National Institute for Environmental Studies (Japan): Ibaraki, Japan, 2011. [Google Scholar]
- Williams, I.; Kemp, S.; Coello, J.; Turner, D.A.; Wright, L.A. A beginner’s guide to carbon footprinting. Carbon Manag. 2012, 3, 55–67. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006. [Google Scholar]
- Grasso, M. The Political Feasibility of Consumption-Based Carbon Accounting. New Political Econ. 2016, 21, 401–413. [Google Scholar] [CrossRef]
- Herold, A. Comparison of CO2 Emission Factors for Fuels Used in Greenhouse Gas Inventories and Consequences for Monitoring and Reporting under the EC Emissions Trading Scheme; ETC/ACC: Copenhagen, Denmark, 2003; p. 23. [Google Scholar]
- Agora Energiewende and Sandbag. The European Power Sector in 2017; State of Affairs and Review of Current Developments: London, UK, 2018. [Google Scholar]
- IEA. The IEA CHP and DHC Collaborative-CHP/DHC Scorecard: Sweden; OECD/IEA: Paris, France, 2016. [Google Scholar]
- IEA. Energy Policies of IEA Countries Belgium 2016 Review; OECD/IEA: Paris, France, 2016. [Google Scholar]
- UN. 2015 Energy Statistics Yearbook; UN: New York, NY, USA, 2017. [Google Scholar]
- Pittsburgh Energy Technology Center. A Coal Combustion Primer. PETC Rev. 1990, 2, 17.
- Zhang, C.; Sun, Z.; Chen, S.; Wang, B. Enriching blast furnace gas by removing carbon dioxide. J. Environ. Sci. 2013, 25, S196–S200. [Google Scholar] [CrossRef]
- Beér, J.M. Combustion technology developments in power generation in response to environmental challenges. Prog. Energy Combust. Sci. 2000, 26, 301–327. [Google Scholar] [CrossRef]
- Marland, G.; Hamal, K.; Jonas, M. How Uncertain Are Estimates of CO2 Emissions? J. Ind. Ecol. 2009, 13, 4–7. [Google Scholar] [CrossRef]
- Keenan, T.; Baker, I.; Barr, A.; Ciais, P.; Davis, K.; Dietze, M.; Dragoni, D.; Gough, C.M.; Grant, R.; Hollinger, D. Terrestrial biosphere model performance for inter—Annual variability of land—Atmosphere CO2 exchange. Glob. Chang. Biol. 2012, 18, 1971–1987. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.; Wunch, D.; et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos. Meas. Tech. 2013, 6, 1533–1547. [Google Scholar] [CrossRef]
- Maksyutov, S.; Patra, P.K.; Onishi, R.; Saeki, T.; Nakazawa, T. NIES/FRCGC global atmospheric tracer transport model: Description, validation, and surface sources and sinks inversion. Earth Simulator 2008, 9, 3–18. [Google Scholar]
- Coskun, M. Fundamental pollutants in the European Union (EU) countries and their effects on Turkey. Procedia Soc. Behav. Sci. 2011, 19, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K. The main characteristics of atmospheric circulation over East-Central Europe from 1871 to 2010. Meteorol. Atmos. Phys. 2017, 129, 113–129. [Google Scholar] [CrossRef] [Green Version]
Category | Year | Min | Max | Mean | Std. Dev |
---|---|---|---|---|---|
NIR 4 sectors (Mt CO2-equivalent) | 2010 | 0.1 | 833.7 | 142.6 | 183.6 |
2011 | 0.1 | 810.8 | 139.2 | 178.5 | |
2012 | 0.1 | 815.2 | 137.6 | 179.5 | |
2013 | 0.1 | 832.6 | 134.6 | 178.9 | |
2014 | 0.1 | 793.6 | 128.5 | 169.8 | |
2015 | 0.1 | 797.1 | 129.1 | 170.7 | |
2016 | 0.1 | 801.8 | 129.5 | 171.2 | |
NIIR 5 sectors (Mt CO2-equivalent) | 2010 | 0.1 | 815.6 | 127.5 | 177.2 |
2011 | 0.1 | 793.4 | 124.7 | 172.0 | |
2012 | 0.1 | 799.0 | 123.1 | 173.3 | |
2013 | 0.1 | 816.6 | 120.0 | 172.1 | |
2014 | 0.1 | 777.0 | 114.1 | 162.7 | |
2015 | −3.1 | 781.0 | 114.6 | 163.2 | |
2016 | −2.1 | 785.5 | 115.6 | 163.7 | |
GOSAT XCO2 (ppm) | 2010 | 384.2 | 388.7 | 387.1 | 1.0 |
2011 | 387.5 | 390.6 | 389.1 | 0.9 | |
2012 | 390.1 | 393.9 | 392.1 | 1.0 | |
2013 | 390.7 | 395.0 | 394.0 | 0.9 | |
2014 | 393.1 | 398.5 | 396.3 | 1.3 | |
2015 | 394.5 | 400.5 | 398.3 | 1.4 | |
2016 | 398.3 | 403.2 | 401.3 | 1.1 |
Category | RMSE (ppm) | ASE (ppm) | RMSSE | MSE |
---|---|---|---|---|
2010 | 1.873 | 1.860 | 0.993 | −0.010 |
2011 | 1.787 | 1.864 | 0.969 | 0.009 |
2012 | 1.795 | 1.887 | 0.969 | −0.008 |
2013 | 1.920 | 2.013 | 0.974 | 0.003 |
2014 | 2.121 | 2.204 | 0.976 | 0.013 |
2015 | 2.000 | 2.091 | 0.976 | −0.011 |
2016 | 1.765 | 1.833 | 0.981 | −0.005 |
Category | GOSAT XCO2 (Unit: Annual Variations, %) | NIR 4 Sectors (Unit: Ton, %) | NIR 5 Sectors (Unit: Ton, %) |
---|---|---|---|
Top countries | 1. Bulgaria (0.22) 2. Finland (0.22) 3. Liechtenstein (0.17) 4. Turkey (0.14) 5. Switzerland (0.13) | 1. Turkey (3.37) 2. Ireland (0.95) 3. Germany (−0.22) 4. Norway (−0.42) 5. Netherlands (−0.43) | 1. Belarus (10.65) 2. Norway (3.24) 3. Turkey (2.57) 4. Portugal (1.94) 5. Ireland (0.95) |
Bottom countries | 1. Hungary (−0.12) 2. Slovenia (−0.06) 3. Slovakia (−0.05) 4. United Kingdom (−0.02) 5. Estonia (−0.01) | 1. Greece (−4.90) 2. Ukraine (−4.68) 3. Luxembourg (−3.71) 4. Liechtenstein (−3.22) 5. Denmark (−3.21) | 1. Sweden (−24.17) 2. Finland (−5.26) 3. Greece (−5.11) 4. Romania (−4.77) 5. Ukraine (−4.49) |
Category | Period | R2 | GWR Coefficient | Local R2 | p-Value | AIC | ||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |||||
NIR 4 sectors | 2011–2016 | 0.070 | −0.069 | −0.008 | −0.041 | 0.002 | 0.102 | 0.047 | 0.50 | 18.57 |
NIR 5 sectors | 2011–2016 | 0.024 | −0.003 | 0.000 | −0.001 | 0.000 | 0.004 | 0.001 | 0.56 | 17.78 |
Category | GOSAT XCO2 (Top–Down) [20,49] | NIR 5 Sectors (Bottom–Up) [50,51] |
---|---|---|
Measurement tool | TANSO is composed of two subunits: the Fourier-Transform Spectrometer (FTS) and the Cloud and Aerosol Imager (CAI). | IPCC default methodology (allometric model), field survey and laboratory experiments (determining the quantity of emissions of a particular GHG per unit of activity: emissions factor) |
Data type (unit) | Column-averaged dry air mole fractions of CO2 data (ppm: density), background atmospheric CO2, trans-boundary real atmospheric CO2 density | Statistical data (Kt CO2-equivalents: ton) derived from CO2 per unit of a particular emission-generating activity (an emission factor), confined within the national boundary |
Influencing variables | Natural disturbances: CO2 absorption and concentration from terrestrial biotic activity atmospheric inflow and transport, solar radiation Anthropogenic disturbances: CO2 sources such as power plants, chemical and metal factories, oil and natural gas production sites, forest fires, transport, etc. | Energy: fuel combustion activity Industrial processes: uses of fossil fuel carbon in the mineral industry, chemical industry, metal industry, etc. Agriculture: liming to reduce soil acidity LULUCF: carbon stock gain and loss due to biomass growth by afforestation and forest management, decay, degradation, and fire Waste: Solid waste disposal, incineration, etc. |
Category | Belgium and Sweden | Other EU-33 Countries |
---|---|---|
Fuel types in public electricity and heat production | Blast furnace gas | Anthracite, lignite, etc. |
Productions | Secondary fuels (by-product during the production of metals or steels) | Primary fuel (raw materials) |
Usage | Combined heat and power (CHP) plants | Conventional power plants |
Emission factor | 206.37 to 238.23 tCO2/TJ | 89.95 to 122.96 tCO2/TJ |
Net Calorific Value (NCV) | Lower NCV (0.000003 TJ/Nm3) | Higher NCV (0.025 to 0.033 TJ/ton) [57] |
Density of Combustible component | 18–25% | More than 60% (anthracite) to 80% (lignite) [58] |
Combustion temperature peak | Limited to get the high temperature over 1199.85 °C [59] | Above 1199.85 °C [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.; Schlüter, S.; Choudhury, T.; Um, J.-S. Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries. Sustainability 2021, 13, 6700. https://doi.org/10.3390/su13126700
Hwang Y, Schlüter S, Choudhury T, Um J-S. Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries. Sustainability. 2021; 13(12):6700. https://doi.org/10.3390/su13126700
Chicago/Turabian StyleHwang, Youngseok, Stephan Schlüter, Tanupriya Choudhury, and Jung-Sup Um. 2021. "Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries" Sustainability 13, no. 12: 6700. https://doi.org/10.3390/su13126700
APA StyleHwang, Y., Schlüter, S., Choudhury, T., & Um, J.-S. (2021). Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries. Sustainability, 13(12), 6700. https://doi.org/10.3390/su13126700