Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gastines, M.; Correa, E.; Pattini, A. Heat Transfer Through Window Frames in Energyplus: Model Evaluation and Improvement. Adv. Build. Energy Res. 2019, 13, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Shahrestani, M.; Yao, R.; Cook, G.K. A Fuzzy Multiple Attribute Decision Making Tool For Hvac&R Systems Selection with Considering the Future Probabilistic Climate Changes And Electricity Decarbonisation Plans in The Uk. Energy Build. 2018, 159, 398–418. [Google Scholar] [CrossRef]
- Wang, S.; Yan, C.; Xiao, F. Quantitative Energy Performance Assessment Methods for Existing Buildings. Energy Build. 2012, 55, 873–888. [Google Scholar] [CrossRef]
- Indicative Energy Efficiency Action Plan 2017–2022. Available online: http://extwprlegs1.fao.org/docs/pdf/col181199.pdf (accessed on 30 June 2021). (In Spanish).
- Unidad De Planeación Minero Energética. Plan Energético Nacional Colombia: Ideario Energético 2050, Unidad Planeación Min. Energética; Upme: Bogotá, Colombia, 2015. Available online: https://www1.upme.gov.co/documents/pen_idearioenergetico2050.pdf (accessed on 12 February 2021). (In Spanish)
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Poel, B.; Van Cruchten, G.; Balaras, C.A. Energy Performance Assessment of Existing Dwellings. Energy Build. 2007, 39, 393–403. [Google Scholar] [CrossRef]
- Nikolaou, T.; Kolokotsa, D.; Stavrakakis, G. Review on Methodologies for Energy Benchmarking, Rating and Classification of Buildings. Adv. Build. Energy Res. 2011, 5, 53–70. [Google Scholar] [CrossRef]
- Brambley, M.R.; Hansen, D.; Haves, P.; Holmberg, D.R.; Mcdonald, S.C.; Roth, K.W.; Torcellini, P. Advanced Sensors and Controls For Building Applications: Market Assessment and Potential R&D Pathways. Pac. Northwest Natl. Lab. 2005, 162. [Google Scholar] [CrossRef]
- Luo, R.; Han, Y.; Zhou, X. Characteristics of Campus Energy Consumption in North China of Science and Technology Ruijiang. Procedia Eng. 2017, 205, 3816–3823. [Google Scholar] [CrossRef]
- Alajmi, A. Energy Audit of An Educational Building in A Hot Summer Climate. Energy Build. 2012, 47, 122–130. [Google Scholar] [CrossRef]
- Xia, J.; Hong, T.; Shen, Q.; Feng, W.; Yang, L.; Im, P.; Lu, A.; Bhandari, M. Comparison of Building Energy Use Data between the United States and China. Energy Build. 2014, 78, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Afroz, Z.; Higgins, G.; Urmee, T.; Shafiullah, G. Technological Advancement of Energy Management Facility of Institutional Buildings: A Case Study. Energy Procedia 2017, 142, 3088–3095. [Google Scholar] [CrossRef]
- Madrigal, J.A.; Cabello, J.J.; Sagastume, A.; Balbis, M. Evaluation of Air Conditioning in Commercial Buildings, Integrating Thermography Techniques, Simulation and Modeling. Inf. Tecnol. 2018, 29, 179–188. [Google Scholar] [CrossRef]
- Aryal, A.; Becerik-Gerber, B. Energy Consequences of Comfort-Driven Temperature Setpoints in Office Buildings. Energy Build. 2018, 177, 33–46. [Google Scholar] [CrossRef]
- Shahrestani, M.; Yao, R.; Cook, G.K.; Clements-Croome, D. Decision-Making on Hvac & R Systems Selection: A Critical Review. Intell. Build. Int. 2017, 10, 133–153. [Google Scholar] [CrossRef]
- Balbis-Morejon, M.; Tovar-Ospino, I.; Castro-Peña, J.J.; Cárdenas-Escorcia, Y.D.C. Energy assessment of the system pumping a climate control scheme with water coolers for an educational building using dynamic simulation. Espacios 2017, 38, 19–32. [Google Scholar]
- Kim, D.; Cox, S.J.; Cho, H.; Im, P. Evaluation of Energy Savings Potential of Variable Refrigerant Flow (Vrf) from Variable Air Volume (Vav) in the U.S. Climate Locations. Energy Rep. 2017, 3, 85–93. [Google Scholar] [CrossRef]
- Aynur, T.N.; Hwang, Y.; Radermacher, R. Simulation Comparison of Vav and Vrf Air Conditioning Systems in an Existing Building for The Cooling Season. Energy Build. 2009, 41, 1143–1150. [Google Scholar] [CrossRef]
- Barros-Alvarez, M.; Balbis-Morejon, M.; Tovar-Ospino, I.; Castro-Peña, J.J.; De Leon-Siado, L.; Silva-Ortega, J.I.; Rosales Villa, D.E. Energy Consumption Comparison Between Air Conditioning System Mini-Split and Variable Refrigerant Flow in an Educational Building. Espacios 2017, 38, 19–32. [Google Scholar]
- Zhu, Y.; Jin, X.; Fang, X.; Du, Z. Optimal Control of Combined Air Conditioning System with Variable Refrigerant Flow and Variable Air Volume for Energy Saving. Int. J. Refrig. 2014, 42, 14–25. [Google Scholar] [CrossRef]
- Sekki, T.; Airaksinen, M.; Saari, A. Impact of Building Usage and Occupancy on Energy Consumption in Finnish Daycare and School Buildings. Energy Build. 2015, 105, 247–257. [Google Scholar] [CrossRef]
- Montoya, P.; Morejón, J.L.; Inga, E. Maximum Coverage of Wireless Sensor Networks for an Energy Management System in Smart Homes. INGE CUC 2016, 12, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Kolokotsa, D.; Gobakis, K.; Papantoniou, S.; Georgatou, C.; Kampelis, N.; Kalaitzakis, K.; Vasilakopoulou, K.; Santamouris, M. Development of A Web Based Energy Management System for University Campuses: The Camp-It Platform. Energy Build. 2016, 123, 119–135. [Google Scholar] [CrossRef]
- Rey Martínez, J.M.; Fancisco, J.; Velazco Gómez, E.; Hernández, R. Eficiencia Energética De Los Edificios, 1st ed.; Paraninfo Sa: Madrid, España, 2018. (In Spanish) [Google Scholar]
- Gavilán, A. Análisis Comparativo De La Eficiencia Energética En Edificios Existentes Con Diferentes Herramientas De Simulación Energética. Doctoral Thesis, University of Valladolid, Valladolid, Spain, 2015. [Google Scholar]
- Harish, V.; Kumar, A. A Review on Modeling and Simulation of Building Energy Systems. Renew. Sustain. Energy Rev. 2016, 56, 1272–1292. [Google Scholar] [CrossRef]
- Zhao, H.X.; Magoulès, F. A Review on the Prediction of Building Energy Consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Strack, J.L.; Siárez, J.A.; Di Mauro, G.F.; Jacob, S.B. Impacto De La Iluminación Residencial Eficiente En La Calidad De La Energía De Una Red De Distribución. Inge Cuc 2014, 10, 9–19. (In Spanish) [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Coronel, J.F.; Maestre, I.R. A Review of Hvac Systems Requirements in Building Energy Regulations. Energy Build. 2011, 43, 255–268. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Maestre, I.R.; Coronel, J.F. Constructing Hvac Energy Efficiency Indicators. Energy Build. 2012, 47, 619–629. [Google Scholar] [CrossRef]
- Fumo, N.; Mago, P.; Luck, R. Methodology To Estimate Building Energy Consumption Using Energyplus Benchmark Models. Energy Build. 2010, 42, 2331–2337. [Google Scholar] [CrossRef]
- Papakostas, K.T.; Michopoulos, A.K.; Kyriakis, N.A. Equivalent Full-Load Hours for Estimating Heating and Cooling Energy Requirements in Buildings: Greece Case Study. Appl. Energy 2009, 86, 757–761. [Google Scholar] [CrossRef]
- Li, Q.; Meng, Q.; Cai, J.; Yoshino, H.; Mochida, A. Applying Support Vector Machine to Predict Hourly Cooling Load in the Building. Appl. Energy 2009, 86, 2249–2256. [Google Scholar] [CrossRef]
- Mui, K.W.; Wong, L.T.; Wai, M.K. Cooling Load Calculations in Subtropical Climate. Build. Environ. 2007, 42, 2498–2504. [Google Scholar] [CrossRef]
- Al-Rabghi, O.M.A.; Al-Johani, K.M. Utilizing transfer function method for hourly cooling load calculations. Energy Convers. Manag. 1997, 38, 319–332. [Google Scholar] [CrossRef]
- Victorio, D.; Raúl, B. Acondicionamiento Térmico De Edificios, 1st ed.; Juan O’Gorman Librerias: Buenos Aires, Argentina, 2005. (In Spanish) [Google Scholar]
- Stephens, B. The Impacts of Duct Design on Life Cycle Costs of Central Residential Heating and Air-Conditioning Systems. Energy Build. 2014, 82, 563–579. (In Spanish) [Google Scholar] [CrossRef]
- Balbis-Morejón, M.; Rey-Hernández, J.M.; Amaris-Castilla, C.; Velasco-Gómez, E.; San José-Alonso, J.F.; Rey-Martínez, F.J. Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate. Sustainability 2020, 12, 8886. [Google Scholar] [CrossRef]
- Balbis-Morejón, M.; Noya-Sambrano, A. Thermal Comfort Evaluation in an Educational Building with Air Conditioning Located in the Warm Tropical Climate of Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 844. [Google Scholar] [CrossRef]
- Ma, H.; Lai, J.; Li, C.; Yang, F.; Lai, J.; Li, C. Analysis Of School Building Energy Consumption in Tianjin, China. Energy Procedia 2019, 158, 3476–3481. [Google Scholar] [CrossRef]
- Unidad De Planeacion Minero Energetica. Inflación De Energía En Colombia; Upme: Bogotá, Colombia, 2021. Available online: http://www1.upme.gov.co/demandaenergetica/informe_inflacion_energia_dic_2020.pdf (accessed on 12 April 2021). (In Spanish)
- Shahrestani, M.; Yao, R.; Cook, G.K. Decision Making for Hvac&R System Selection for a Typical Office Building in the UK. Ashrae Trans. 2012, 118, 222–229. [Google Scholar]
Item | Material | Transmittance [U] (W/m2-K) |
---|---|---|
Walls | 0.025 mm stucco, 200 mm brick, and 0.019 mm plaster | 2.886 |
Windows | Standard glass—6 mm | 5.778 |
AC Systems | kWh/m2-Year | |
---|---|---|
EEPi AC | EEPi Building | |
Chiller | 141.4 | 215.3 |
VRF | 88.1 | 161.9 |
AC System | Investment Cost | Maintenance Cost | LCC |
---|---|---|---|
Chiller | $1,043,867,160 | $14,256,000 | $4,699,414,150 |
VRF | $510,801,950 | $9,828,000 | $3,066,046,630 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbis-Morejón, M.; Cabello-Eras, J.J.; Rey-Hernández, J.M.; Rey-Martínez, F.J. Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building. Sustainability 2021, 13, 7527. https://doi.org/10.3390/su13147527
Balbis-Morejón M, Cabello-Eras JJ, Rey-Hernández JM, Rey-Martínez FJ. Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building. Sustainability. 2021; 13(14):7527. https://doi.org/10.3390/su13147527
Chicago/Turabian StyleBalbis-Morejón, Milen, Juan J. Cabello-Eras, Javier M. Rey-Hernández, and Francisco J. Rey-Martínez. 2021. "Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building" Sustainability 13, no. 14: 7527. https://doi.org/10.3390/su13147527
APA StyleBalbis-Morejón, M., Cabello-Eras, J. J., Rey-Hernández, J. M., & Rey-Martínez, F. J. (2021). Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building. Sustainability, 13(14), 7527. https://doi.org/10.3390/su13147527